
c⃝ IEEE. Personal use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted component of this work
in other works must be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copyright holders. All
persons copying this information are expected to adhere to the terms and constraints invoked
by each author’s copyright. In most cases, these works may not be reposted without the explicit
permission of the copyright holder.



GENERATION OF IRIS SENSOR PRNU FINGERPRINTS
FROM UNCORRELATED DATA

Luca Debiasi, Andreas Uhl

Department of Computer Sciences
Multimedia Signal Processing and Security Lab

University of Salzburg
Jakob-Haringer-Str. 2,

5020 - Salzburg, Austria

Zhenan Sun

Center for Biometrics and Security Research
National Laboratory of Pattern Recognition,

Institute of Automation,
Chinese Academy of Sciences,

P.O. Box 2728, Beijing, 100080, P.R. China

ABSTRACT

The photo response non-uniformity (PRNU) of a sensor can
be used for various forensic tasks, such as source device
identification, source device linking, classification of images
taken by unknown cameras, integrity verification, authentica-
tion. To ensure good results a high quality PRNU fingerprint
of the sensor is needed. This can be achieved by acquiring
images with uncorrelated content and high saturation, which
are then used to calculate the fingerprint.

Generating the desired data with iris sensors is not trivial,
since they mostly have limited configuration options. These
limitations come either by the sensor itself or by the software
used to acquire the data. We describe how the desired im-
ages can be acquired with different iris sensors and illustrate
the challenges and problems faced during the acquisition pro-
cess. Finally the impact of the PRNU fingerprints calculated
from the uncorrelated data on the device identification results
is evaluated in respect to the usage of correlated data.

Index Terms— Digital image forensics, Biometric sen-
sor forensics, iris sensor identification, photo response non-
uniformity

1. INTRODUCTION

Biometric recognition is becoming more and more popular,
because possession and knowledge based authentication tech-
niques are error-prone, since e.g. smart-cards can be lost or
PINs and passwords can be forgotten. Biometric authentica-
tion systems are able to resolve many of these issues, since
biometric features are distinct for different persons. These
features cannot be lost or forgotten. However, biometric fea-
tures can be stolen or adopted and various other ways to cir-
cumvent the integrity of a biometric authentication system ex-
ist.

To ensure the integrity of biometric systems watermarks
have been proposed. As watermarks represent additional data
that is inserted into sample data, impact on recognition ac-

curacy may be expected. In fact, literature reports on corre-
sponding effects in case of iris recognition [1], speech recog-
nition [2], and fingerprint recognition [3]. Hence, an other
way of ensuring media security is needed. This is where pas-
sive media security techniques comes into play, also known
as digital image forensics [4]. Sensor fingerprints, a method-
ology used in digital image forensics, are based on a sensors
photo response non uniformity (PRNU) [5, 6]. They provide
image integrity and also authenticity by identifying the source
sensor uniquely, even various sensors from the same make
and model can be distinguished. To ensure good results a
high quality PRNU fingerprint of the sensor is needed.

As shown in previous work [7] this methodology was ap-
plied to iris biometric datasets in order to investigate its use-
fulness. The discriminability of the fingerprints of the sen-
sors in the CASIA Iris V4 database was tested with the con-
clusion, that the EERs and respective thresholds vary highly.
Some sensors show satisfying results while others yield EERs
over 20% which is not acceptable. The question raised, that
if the PRNU fingerprint is going to be applied as an authen-
tication measure for iris databases, it is not clear if the poor
EER values in some sensors result from the images special
content with low variance between the images, or from the
sensor properties.

In this work, we describe how we used the biometric sen-
sor equipment (sensors used to generate the CASIA Iris V4
database) to acquire uncorrelated iris sensor data. For this
purpose uncorrelated images have been acquired with the spe-
cific sensors, which were afterwards used to generate PRNU
fingerprints for the sensors. In section 2 we describe how to
acquire uncorrelated and high saturated images for high qual-
ity PRNU fingerprint generation. Besides, the challenges and
problems faced at doing so are also described. Section 3 ex-
plains how a iris-sensor PRNU fingerprint is generated from
uncorrelated data. In Section 4 we present our experimental
study, where we evaluate the results using the PRNU finger-
prints calculated from uncorrelated data, while section 6 con-
cludes the paper.



2. ACQUISITION OF UNCORRELATED IRIS
SENSOR DATA FOR PRNU FINGERPRINT

GENERATION

Previous work regarding Iris-Sensor Authentication using
Camera PRNU Fingerprints [7] came to the conclusion that
low variance between images used to generate the PRNU
fingerprint of the imaging sensors might result in a poor fin-
gerprint. To obtain high-quality PRNU fingerprints, images
with uncorrelated content and high saturation are needed.
Generating the desired data with the biometric sensors is not
trivial, since these sensors are not like cameras in a common
way. The configuration options are often limited either by the
sensor itself or by the software used to acquire the data. Usu-
ally these sensors are optimized to only take specific types of
images and have a built-in quality assessment, which ensures
that the acquired image satisfies defined constraints.

As noted by Fridrich [8], the best images for estimating
the fingerprint are those with high luminance (but not satu-
rated) and small �2 (images with a smooth content). If the
camera under investigation is available to the analyst, unsatu-
rated out-of-focus images of bright cloudy sky would be the
best.

The sensors used for the image acquisition are the CASIA
long-range iris camera, OKI IRISPASS-h, Irisguard AD100
and Irisguard H100 IRT. To capture the data different mate-
rials, like paper sheets and plastic foil, were used to obtain
uncorrelated out-of-focus images with high luminance.

2.1. CASIA long-range iris camera

The CASIA long-range iris camera operates with near infra-
red illumination and has a lens, which allows manual focus-
ing and aperture control. Therefore the acquisition of the de-
sired data was not challenging, since high luminance could be
achieved by using a large aperture and the focus could be eas-
ily set to obtain out-of-focus images. The image acquisition
software did not contain any quality assessment preventing
the images to be taken. A total of 38 images have been ac-
quired with this sensor. Examples are presented in figure 1.

2.2. OKI Irispass-h (1)

The OKI Irispass-h sensor is also operating with near infra-
red illumination and is a small hand held device, which does
not allow any manual changes of exposure or focus and the
acquisition software has a quality threshold. This threshold
can be set to a minimum, where it it possible to take lightly
blurred images, but all images must contain a dark filled cir-
cle (the pupil) in order to be acquired. The image content
could be blurred by holding plastic foil between the sensor
and the eye, where the amount of blur could be controlled by
adjusting the distance of the foil from the sensor. The larger
the distance between the eye and the foil was set, the higher

(a)

(b) (c)

(d) (e)

Fig. 1. (a) CASIA long-range iris camera. (b),(c) Examples
from CASIA-Iris-Distance data set. (d),(e) Examples from
uncorrelated data acquisition.

the amount of blur became. The foil had also to be hold in
a 45 degree angle, to avoid reflections of the NIR illumina-
tion. We were able to acquire lightly blurred images, but it
was very challenging because the quality assessment allowed
only a certain amount of blur. Therefore the acquisition pro-
cess with this sensor was very time consuming, resulting in a
total of 65 images. Examples are presented in figure 2.

(a) (b)

(c) (d)

Fig. 2. (a) OKI Irispass-h (1) sensor. (b) Example from
CASIA-Iris-Lamp data set. (c),(d) Examples from uncorre-
lated data acquisition.

2.3. Irisguard AD100

The Irisguard AD100 sensor is an auto-focus iris camera
and features native built-in passive, behavioural and dynamic
countermeasures like liveness detection, Cosmetic contact
lenses spoofing detection, replay attacks and their denial us-
ing a built-in flash illumination tickler and advanced software
countermeasures mechanics. Further countermeasures detect
severe head tilting, abnormal pupil dilation in order to reduce
vulnerability to malign attacks. These quality assessments
could not be disabled and therefore made it impossible to ac-
quire out-of-focus images with uncorrelated content and high



saturation. Blurring the images with plastic foil did not work
because the quality assessment did not capture any blurred
images. Hence, for this sensor uncorrelated images could not
be acquired. Examples can be seen in figure 3.

(a) (b)

(c) (d)

Fig. 3. (a) Irisguard AD100 sensor. (b) Example from subject
captured in the AD100-2013 data set. (c),(d) Examples from
attempted uncorrelated data acquisition.

2.4. Irisguard H100 IRT

The Irisguard H100 IRT sensor, a hand held device, also fea-
tures near infra-red illumination and offers no manual con-
trols. The quality assessment of its acquisition software can
be deactivated, which allows to acquire the desired images
using different sheets of paper to obtain uncorrelated out-of-
focus images. By holding the sheets at a closer distance to
the sensor than its near focus limit, blurred images could be
captured. A total of 400 images have been acquired with this
sensor. Examples can be seen in figure 4.

(a) (b)

(c) (d)

Fig. 4. (a) Irisguard H100 IRT sensor. (b) Example from
subject captured in the H100-2013 data set. (c),(d) Examples
from uncorrelated data acquisition.

3. IRIS-SENSOR FINGERPRINT GENERATION
FROM UNCORRELATED DATA

For an estimation of each sensors PRNU fingerprint, the al-
gorithm described by Fridrich [7] was used to calculate the
PRNU. The PRNU is represents the noise intrinsically in-
serted into an image during the acquisition process. For each
image I the noise residual WI is estimated

WI = I � F (I) (1)

where F is a denoising function filtering out the sensor pattern
noise. We used the wavelet-based denoising filter as described
in Appendix A of [9] , because it is producing good results in
filtering out the PRNU.

From Equation 1 it can be seen that the PRNU covers
the high frequency components of the Image I . Hence it in-
terferes with high frequency components of the image con-
tent,like edges, which leads to a less accurate estimation of
the PRNU. If images with high luminance (but not saturated)
and smooth content are used to calculate the PRNU finger-
print as proposed by Fridrich in [8] then estimation accuracy
is higher. The PRNU fingerprint K̂ of a sensor is then esti-
mated using a maximum likelihood estimator for images Ii

with i = 1...N

K̂ =

PN
i=1 W

i
II

i

PN
i=1(I

i)2
(2)

The images used in our work have not been geometri-
cally transformed, therefore the normalized cross correlation
(NCC) is used to detect the presence of a PRNU fingerprint
K̂ in an Image J with

⇢[J,K̂] = NCC(WJ , JK̂) (3)

where ⇢ indicates the correlation between the PRNU residual
Wj of the image J and the fingerprint K̂ weighted by the
image content of J . The correlation ⇢ is calculated between
each image from a sensor Si and the PRNU fingerprint K̂i

of the sensor Si, where only images are used that have not
been part of the PRNU fingerprint estimation. Additionally
the correlation ⇢ between all images from the other sensors
Sj , i 6= j , and the PRNU fingerprint K̂i of the sensor Si is
also calculated.

We chose the EER to measure the discriminative perfor-
mance of the PRNU extracted from the images of the different
sensors under investigation. It relies on 2 different types of er-
rors, the false match rate (FMR) and the false-non-match rate
(FNMR). Let I be an image captured with sensor SI , J is an
image captured with sensor SJ and K̂ is the PRNU fingerprint
estimate for the sensor SI , where SI 6= SJ .

A false match (FM) is given, if

⇢[J,K̂] � min(⇢[I,K̂]) (4)

Equation 4 implies that the PRNU fingerprint of sensor SI is
more likely present in the image J although it has been ac-
quired with the sensor SJ and the NCC score ⇢[J,K̂] is higher



than the minimal matching NCC score⇢[I,K̂], which leads to
an identification error because no NCC score threshold can
be found either exclude the NCC score of image J from the
matches without also excluding the NCC score of image I .
The more images J from sensor SJ have a higher correlation
score with the PRNU fingerprint K̂I then images I taken with
sensor SI , the higher the FMR becomes.

This brings us to the other error type, the false non match
(FNM), which is given if

⇢[I,K̂]  max(⇢[J,K̂]) (5)

Equation 5 implies that the PRNU fingerprint of sensor SI is
less likely present in the image I although it has been ac-
quired with the same sensor SI and the NCC score ⇢[I,K̂]
is lower than the maximal non-matching NCC score⇢[J,K̂],
which leads to an identification error because no NCC score
threshold can be found either exclude the NCC score of im-
age I from the non-matches without also excluding the NCC
score of image J . The more images I from sensor SI have
a lower correlation score with the PRNU fingerprint K̂I then
images J taken with sensor SJ , the higher the FNMR be-
comes. The EER rate describes the point where the FMR and
FNMR are equal and can therefore be used to measure the
discriminability between two different sensors, where a lower
EER implies better discrimination performance.

We calculated the equal error rate (EER) from all correla-
tion values ⇢ by comparing the sensors pairwise. To estimate
the real variability of these values, the interval of confidence
at 95% was estimated, because only a finite set of values was
used to calculate the EER. To do so, the calculation of EER
and threshold was repeated 1000 times on the respective set of
m matching and n non-matching ⇢ values, by drawing m cor-
relation values from the matching-data set and n correlation
values from the non-matching data set, making use of sam-
pling with replacement. As a result, we obtained 1000 EERs
and the range containing 95% of these values is the interval
of confidence. This range excludes the 2.5% lowest and 2.5%
highest measures, hence the most extreme values.

4. EXPERIMENTS

In the following experiments we used images from six dif-
ferent iris sensors. The six sensors are: CASIA close-up iris
camera, OKI IRISPASS-h (1), OKI IRISPASS-h (2), CASIA
long-range iris camera, Irisking IKEMB-100, and Irisguard
H100 IRT.

The first experiment, subsequently denoted as CASIA Iris
V4 experiment, has been conducted with the first five sen-
sors from the CASIA Iris V4 database. The respective data
sets are: CASIA-Iris-Interval, CASIA-Iris-Lamp, CASIA-
Iris-Twins, CASIA-Iris-Distance and CASIA-Iris-Thousand.
For the CASIA Iris V4 data sets it is not clear, whether the
single data sets have been acquired with a specific sensor or
if multiple sensors of the same model have been used.

The second experiment, subsequently denoted as 2013 iris
data sets experiment, has been conducted only for the OKI
IRISPASS-h (1) and Irisguard H100 IRT sensors with the cor-
responding data sets Irispass-2013 and H100-2013. These
data sets have reliably been completely acquired with a spe-
cific sensor each.

The following steps have been executed for the two ex-
periments mentioned above.

Because the image size is varying between the data sets,
we decided to extract the PRNU of every image from 4
patches located in the corners of the image with a size of
128x128 pixels each.

From each of the data set, 180 images were randomly cho-
sen, resulting in a total of 1080 images. From this 180 images
30 were used to calculate the PRNU fingerprint for the re-
spective sensor and the other 150 were used to calculate the
correlation scores. At this, the presence of the PRNU finger-
print K̂ in images taken with a sensor S is examined to obtain
the correlation scores.

This leads to 150 matching (fingerprint K̂ comes from
the same sensor as the images in the data set under investiga-
tion) and 5x150 non-matching correlation scores (fingerprint
K̂ comes from an other sensor as the images in the data set
under investigation) for each sensor. From this correlation
scores the EER was calculated for each sensor pair Si and Sj ,
where i 6= j.

The steps described above was repeated twice, first with
the PRNU fingerprints generated using images from the re-
spective data sets and then with PRNU fingerprints generated
using the uncorrelated data acquired as described in section 2
for the sensors OKI IRISPASS-h (1), CASIA long-range iris
camera, and Irisguard H100 IRT.

5. RESULTS

5.1. CASIA Iris V4 experiment

Table 1 shows the first iteration of the CASIA Iris V4 exper-
iment, where the images used to calculate the PRNU finger-
print for each sensor are taken from the data set of the given
sensor, which contains correlated data.

Table 2 shows the second iteration of the CASIA Iris V4
experiment , where the images used to calculate the PRNU
fingerprint for the sensors OKI IRISPASS-h (1) and CASIA
long-range iris camera are the acquired uncorrelated data ac-
cording to section 2. For all other sensors, the PRNU finger-
print was calculated as before from images of the respective
data set.

Table 3 shows the the absolute difference for the EER val-
ues between the first experiment iteration and the second. The
values were calculated by subtracting the EER result of a spe-
cific sensor pair (Si, Sj) , i 6= j, from the first iteration from
the EER value of same sensor pair (Si, Sj) of the second it-
eration. Therefore positive values indicate that the EER has



(a) Equal error rates.
Data set Interval Lamp Twins Distance
Thousand 24.67 14.67 4.33 5.33
Distance 17.67 11.33 1.33
Twins 17.67 15.33
Lamp 25.33

(b) Confidence Intervals.
Data set Interval Lamp Twins Distance
Thousand (21.54-

27.54)
(11.68-
16.62)

(2.98-
6.02)

(3.50-
6.96)

Distance (14.88-
20.34)

(8.62-
13.47)

(0.68-
2.48)

Twins (14.69-
20.52)

(12.65-
17.52)

Lamp (21.95-
27.98)

Table 1. EERs (a) and CI (b) for all possible sensor com-
binations. PRNU fingerprints generated from respective data
sets.

increased and negative values that it has decreased.
It can be seen that the generation of the PRNU fingerprints

from the uncorrelated data has brought a general increase in
the EER between all the different sensor combinations. The
increase varies a lot between the different sensors. The sensor
pairs having ’0’ as value used the same fingerprints as in the
first iteration.

For the CASIA long-range iris camera respectively the
Distance data set there has been an increase of up to almost
50%. Looking at the correlation scores from this sensor us-
ing the PRNU fingerprint estimated by the uncorrelated data,
it can be seen that they are very low. This could indicate,
that the images used to generate the fingerprint and the im-
ages in the Dist data set have been acquired with a different
sensor. Another explanation for this behaviour is that the two
generated PRNU fingerprints do not correlate at all, which
could also indicate that this might be different sensors. Tak-
ing a closer look at the images from both the data set and the
uncorrelated data shows that both contain pixel defects, but
the positions of these defects do not match as illustrated in
figure 5. Furthermore the defects from the image from the
dataset (acquired in 2009) cannot be found in the image with
uncorrelated content (acquired in 2013), which excludes age-
ing effects since pixel defects do not recover over time. All
these hints lead to the assumption, that the sensor used to ac-
quire the uncorrelated data was not the same as the one used
to acquire the Dist data set and therefore explains the very
high EERs. The OKI IRISPASS-h (1) sensor used for the
Lamp data set had an increase of the EER of about 9-10%.
Because the EER is already relatively high for the Lamp data
set (see table 1), Hoeller and Uhl [7] assumed that maybe
the data set could have been acquired with different sensors.
The increase of the EER could intensify this assumption. On
the other hand the uncorrelated data acquired with this sensor

(a) Equal error rates.
Data set Interval Lamp Twins Distance
Thousand 24.67 23.67 4.33 49.17
Distance 52.33 58.17 46.00
Twins 17.67 24.83
Lamp 30.83

(b) Confidence Intervals.
Data set Interval Lamp Twins Distance
Thousand (21.22-

26.96)
(20.87-
26.70)

(3.01-
6.01)

(44.41-
53.59)

Distance (48.63-
55.82)

(54.32-
61.63)

(41.60-
49.76)

Twins (14.62-
20.32)

(22.20-
27.83)

Lamp (27.69-
34.02)

Table 2. EERs (a) and CI (b) for all possible sensor combina-
tions. PRNU fingerprints for Dist and Lamp generated with
uncorrelated data.

Data set Interval Lamp Twins Distance
Thousand 0.00 +9.00 0.00 +43.84
Distance +34.66 +46.84 +44,67
Twins 0.00 +9.50
Lamp +5.50

Table 3. Absolute differences of EERs between PRNU fin-
gerprints generated from the data sets and PRNU fingerprints
generated from the uncorrelated data.

could have been insufficient to improve the quality of the sen-
sors PRNU fingerprint. Using the fingerprint generated from
the uncorrelated data, where it is verified that the exact same
sensor has been used to acquire all the images, it could be
investigated if the Lamp data set was acquired with different
sensors.

5.2. 2013 iris data sets experiment

Table 4 shows the first iteration of the 2013 iris data sets ex-
periment. It can be seen from table 4 that using correlated data

Data set pair Irispass-2013 , H100-2013
EER corellated data 0.00
EER uncorellated data 0.00
CI corellated data (0.00-0.00)
CI uncorellated data (0.00-0.00)
EER absolute difference 0.00

Table 4. EERs, CI and absolute EER difference of the com-
parison of the Irispass-2013 and H100-2013 data sets.

to calculate the PRNU fingerprints already leads to a EER of 0
for this two data sets. Using uncorrelated data to generate the
PRNU fingerprints for both sensors does not change the EER
in this experiment and therefore the general increase from ex-



(a) (b)

Fig. 5. 128x128 pixel patch from the upper left corner of: (a)
uncorrelated data acquired with CASIA long-range iris cam-
era; (b) image from the CASIA Iris-Distance data set. The
position of the pixel defects (marked by the circle) is differ-
ent in both images.

periment 5.1 is not confirmed. This leads to the assumption
that the increase in EER from the previous experiment might
come from the usage of different sensors during the acqui-
sition of the images in the data sets and that the fingerprints
generated from uncorrelated data could further reveal this. To
verify this assumption further investigation on the CASIA Iris
V4 data set is needed.

6. CONCLUSION

High quality PRNU fingerprints are fundamental for good re-
sults in different forensic tasks. In this work we have ac-
quired uncorrelated data with iris sensors and described dif-
ferent challenges and problems faced by doing so. Because of
the nature of iris sensors of being developed for a special task,
in most cases it is not trivial to successfully capture such kind
of data, especially with iris sensors incorporating a highly so-
phisticated quality assessment. After the data acquisition we
used the new images to generate PRNU fingerprints for var-
ious iris sensors and compared the device identification per-
formance with the results obtained by using correlated data
for the PRNU fingerprint generation. The use of uncorrelated
data to generate the fingerprint yielded to an increase of the
EER for the respective sensors, varying from negligible in-
crease of 0-1% to an increase of up to almost 50%. Because
it is not verified whether the CASIA data sets have been ac-
quired each with a single sensor or if they have not, it is diffi-
cult to interpret the results, but hints have been found that the
latter could apply. It is also possible that the usage of uncor-
related data does not bring any benefit in this case because the
estimated fingerprints have already been accurate enough.

Future work will include the application of the method
proposed by Chang-Tsun Li to enhance PRNU fingerprints
[10] and its impact on both PRNU fingerprints calculated
from correlated data and uncorrelated data is evaluated. Some
forensic investigation on the CASIA iris database could also
clarify if different sensors were used to acquire the images.
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