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Abstract In this paper, we present our H.264 Blu-ray

watermarking framework which operates at bit stream
level and preserves the length of the underlying bit

stream. Apart from a description of our watermark em-

bedding and detection (and synchronisation) approaches,

we discuss the embedding capacity for di�erent exem-

plary Blu-ray disks based on their bit stream charac-

teristics as well as the robustness of our watermark to

H.264 transcoding and resizing. Furthermore, we as-

sess the parallelizability of our embedding approach

and the impact of di�erent hard drive con�gurations on

the overall embedding speed, showing that low access

times are as relevant as high transfer rates when maxi-

mum speedup through parallelization is desired. Lastly,
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1 Introduction

As more and more movies are released on Blu-ray disk,
the number of illegitimate copies which make it onto

a variety of platforms throughout the Internet before

the o�cial release date increases, resulting in signi�cant

�nancial losses. Usually, sales1 for the second week are

about 60 − 80% lower than the �rst week. This makes
the �rst week the most in�uential for �nancial success

of a release. A leak prior to the release can thus reduce

the revenue of the �nancially most rewarding sales pe-

riod. While DRM following release can also be an issue,

it is not usually solved by means of a watermark but

rather by copy protection mechanisms [10]. It should

also be noted that the goal of the watermarking sys-

tem presented in this paper is not to prevent but to re-

veal leaks. The security on-site, i.e., in the production

plants, and the employed process security is responsible

for preventing leaks.

We explicitly only deal with the leakage of content

prior to the release date. The goal of the watermarking

1 Sales information is taken from http://www.

the-numbers.com
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scheme is twofold. On the one hand, it allows to ascer-

tain whether the content was leaked from a speci�c site,

or conversely to plausibly deny that a leak has occurred.

And, on the other hand, when a leak has happened,

it allows to identify the source of the leak and aid in

improving the local security arrangements to prevent

further leaks. Content can be leaked in di�erent pro-

duction stages of a Blu-ray disk, making it necessary to

identify the stage in which the leak occurred in order

to eliminate it. One way to do so is by adding a wa-

termark after the completion of each production stage.

If content leaks, the existence of the watermarks from
previous production steps identi�es the production step

in which the leak occurred.

A number of constraints are imposed on such a wa-

termarking system intended for industrial application.
In conjunction with our industrial partner, SONYDADC

Austria AG, we identi�ed the following list of constraints

for both, practical and economical reasons.

Firstly, the watermark has to be robust against trans-

coding. The leaked video could be altered in terms of

format, bitrate or aspect ratio, e.g., by reencoding to

another format. In order to identify the source of the

leak, the watermark has to be robust against such changes

in order to be detected reliably after a leak.

Secondly, the watermark has to be invisible to the hu-

man eye. Any change in quality is a problem for a con-

tent provider since it would displease consumers and

content creators alike. This in turn can impact sales

and the reputation of the content provider.

Thirdly, the size of the watermarked content has to be

equal to the size of the original content, i.e., the wa-

termarking process has to be length-preserving. This

is a practical restriction originating from a concurrent

work�ow. On the one side the video content is handled
and on the other side the accompanying content, e.g.,

menus and chapter lists, are handled. On the menu side,

the jump-in points to the video content are o�set based.

As such, they would have to be adjusted whenever the

length of the video content changes. This would intro-

duce a higher cost in the production process since the

concurrency in the work�ow would be inhibited.

Finally, Blu-ray watermarking has to be fast. While

�fast� does not necessarily mean real-time processing,

it means that undue delays in the production should

not occur. This, again, would in�uence the production

cost and is not acceptable. This implies that bitstream-

based watermarking is more feasible than other wa-

termarking techniques which require format-compliant

reencoding and subsequent compliancy checks.

All other constraints which are usually assumed when

dealing with a modern watermarking system, e.g., the

requirement of blind watermarking or further robust-

ness issues, are second to these primary concerns.

In this paper, we present a watermarking framework

which ful�lls all of the aforementioned criteria by wa-

termarking a user-de�ned selection of the Blu-ray disk's

video tracks. As nearly two thirds of the Blu-ray disks
released to date contain video streams which are H.264-

compliant2 [7], most of which use context adaptive bi-

nary arithmetic coding (CABAC) [9] entropy coding,
our approach is targeted at H.264 with CABAC.

Although full watermarking frameworks like ours
have not been described in the literature, bit-stream-

based and length-preserving watermarking approaches

for H.264 have been proposed before. Our watermarking

framework uses a variation of the approaches proposed

in [11, 12] and [13], which both embed watermarks by
changing motion vector di�erences in the bitstream. Al-

though we do so as well, our modi�cation allows for a

signi�cantly higher embedding capacity than the ap-
proach described in [13]. This is due to the greater set

of modi�cations allowed by our approach as described

in detail in Section 2. Although the capacity of our ap-

proach is slightly smaller than the one described in [11],

the latter is limited to context adaptive variable length

coding (CAVLC) entropy coding, which is rarely used

on H.264-compliant Blu-rays.

CAVLC and CABAC are the two ways in which

H.264 bit streams are entropy-coded. We apply the wa-

termarking approach of Stütz et al. [11], which performs

CAVLC watermarking, to CABAC entropy coded bit

streams. Since entropy coding is inherently lossless, the

actual changes we make to the visual data are entirely

identical to the changes of the approach by Stütz et al.

Therefore, both our approaches share the same prop-

erties with respect to rate distortion performance, sub-
jective quality degradation and robustness, and security

which are therefore not discussed in detail herein (they

are described in detail in [11, 12]).

CABAC approaches come at the expense of an ad-
ditional entropy reencoding step, which is not required

by [11, 12] as they aim at �nding substitutable code

word parts which do not require entropy reencoding.

While our CABAC approach employs only one entropy

reencoding step for the entire bitstream, numerous �ne

grain entropy reencodings step are applied in the ap-

proach of [13]. The advantage of the approach of [13] is

that actual watermark embedding can be implemented

by simple bit substitutions. However, in our targeted

application scenario this feature (substitution water-

marking) is not required.

2 http://www.blu-raystats.com/Stats/TechStats.php as
of February 18, 2013
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Since our watermarking framework is similar to the

CAVLC framework proposed by Stütz et al. [11] as de-

scribed above, we do not aim at reinvestigating their re-

sults, but instead focus on the industry-level implemen-

tation of our framework as well as on practical consider-

ations thereby complementing results in [11, 12]. Thus,

the contributions of this paper are as follows: First, we

detail the technical approach to conduct H.264-CABAC

bitstream-based embedding of the CAVLC technique

in [11, 12] and explain the corresponding di�erences to

[13]. Second, we discuss questions of detection and (re-

)synchronisation in manipulated (i.e. scaled, cropped,
transcoded) video. Finally, highly practical questions

like computational embedding issues (runtime and stor-

age aspects) as well as embedding capacity are covered.

This paper is structured as follows: In Section 2,
we describe our watermarking framework, including the
details of our H.264-CABAC-based watermarking al-

gorithm w.r.t. embedding and detection. Subsequently,

in Section 3, we outline practical considerations that

evolved during the development of our framework (qual-

ity control, synchronisation and actual transcoding).

Finally, in Section 4, we evaluate our watermarking

approach as well as our framework in terms of speed

and embedding capacity before concluding this paper

in Section 5.

2 Framework Overview

Our watermarking framework consists of two major parts

� one for watermark embedding and one for water-

mark detection. Figure 1 shows the components of the
watermark embedding process as well as their inter-

dependencies. The dotted line indicates the interfaces

between our framework (on the right) and pre- or post-

processing steps which are out of scope.

The watermarking process involves the following steps

and components: Firstly, the demuxed H.264 stream

is split into the smallest possible groups of pictures

(GOPs) to allow parallelized watermarking. Secondly,

each GOP is analyzed for possible watermark locations

using a modi�ed version of the H.264 reference software

(JM). Thirdly, a quality control loop eliminates water-

mark locations which cause spatial drift as described in

detail in Section 2.1.

Finally, the remaining watermarks are embedded us-

ing a transcoder as described in Section 2.2 before the

watermarked GOPs are merged back together to form

the watermarked output stream. Note that the water-

mark embedding framework additionally outputs de-

tection information for the watermarks, i.e., the precise

locations of the watermarks so that they can be found
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Fig. 1 Watermark Embedding Overview

again during detection, the process of which is described
in Section 2.3.

2.1 Watermarking Approach

The basic principle for robust watermarking is to em-

bed the watermark in coe�cients of known robustness

[4]. For a real world application this requires a feature

which is robust against transcoding as well as spatial

transformation, i.e., scaling and cropping. Since current

video coding standards, e.g., H.264 [7], H.265 [3] and

MPEG-4 Part 2 [6], rely on DCT based encoding the

DC coe�cient, i.e., the average luminance over a mac-

roblock, is a good choice. Furthermore, if the spatial

transformation applied to a video can be inverted, the

same average luminance can be regained for a given

macroblock. The utilization of the average luminance

in the DC coe�cient for watermarking is further af-

�rmed by literature, see Hartung and Kuttner [5] for an

overview or Chen et al. [1] for the use of DC coe�cients

for H.264. Overall, the known robustness characteris-

tics regarding transcoding and spatial transformations
render the DC coe�cients the optimal choice for our

application scenario.

It is possible to change the luminance of a mac-

roblock by changing the motion vector di�erences in

order to predict from another macroblock. If the new

macroblock is brighter or darker, then the macroblock

originally used for prediction, the predicted macroblock

in the frame will also be brighter or darker. In this

way we can adjust the average luminance with a mini-

mal change in the bitstream. To �nd suitable blocks for

watermark embedding we modify the MVD of a mac-

roblock (i.e., we scan every macroblock in the reference

frame in a given search radius for brighter and darker

macroblocks which do not introduce a too large distor-

tion). A macroblock can be watermarked if we �nd a
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brighter (embedding a 1-Bit) and a darker (embedding

a 0-Bit) macroblock to predict from.

Only a subset of the candidate MVD changes pre-

serves the length of the bitstream. In H.264/CABAC

MVDs are binarized (MVDs larger than 9 are encoded

using exponential Golomb codes). Exponential Golomb

codes consist of a pre�x and a su�x. The bits of the suf-
�x are encoded in bypass mode, i.e., all bits are assumed

to have equal probability. In a perfect arithmetic en-

coder equal probabilities would result in a same length

bitstream, in the case of the H.264 arithmetic encoder
length-preservation is at least very likely.

While our approach employs all these candidate MVD

(with same pre�x, but di�erent su�x) the approach

of Zou and Bloom [13] further reduces the candidate

MVD changes dramatically. Zou and Bloom consider

only MVD changes that preserve the exact arithmetic

encoder / decoder state. No probability states are up-

dated in bypass mode and the range variable R (codI-

Range in [7, see clause 9.3.1.2]) is also preserved [13].

However, it has to be checked whether the encoding

of the di�erent su�x results in the same o�set L (co-

dIO�set in [7, see clause 9.3.1.2]). Therefore the su�x

bits need be to arithmetically encoded (for all candidate

changes) and checked against the o�set from encoding

the original su�x. The variable codIO�set is in 16 bit

register precision and requires a minimum precision of

10 bits [7, see clause 9.3.1.2]. Thus only one of 1024

candidate changes will not be rejected (using the con-

servative assumption of a uniform distribution on the

values of codIO�set). The signi�cant reduction of can-

didate changes reduces the capacity and / or requires

to analyze more candidate changes. Furthermore, while

the approach of Zou and Bloom requires a signi�cant

amount of entropy encoding in the analysis step, our ap-

proach completely avoids any entropy encoding in the

analysis stage and performs only one entropy encoding
pass in the embedding stage.

A change in a macroblock can introduce further

bit errors through the prediction modes utilized by the

H.264. In order to prevent inter-frame propagation of

errors we watermark only non-reference frames, i.e., we

utilize non-reference B-frames or if the GOP structure

is of the form IP* we only change macroblocks from the

trailing P-frame in the GOP. There is still the problem

of intra frame predictions which can lead to spatial drift

in the same frame. In order to deal with this we employ

a quality assurance (QA) loop, described in Section 3.1,

which detects drift in the decoded frame and reverts the

macroblock changes which introduce the drift.

The drift is only removed if a given error is exceeded

in non-watermarked macroblocks (for the used thresh-

old see Section 3.1). In order to prevent the drift we re-

move the embedding from possible prediction sources.

Since the intra prediction predicts from macroblocks

to the left and above of the current macroblock, only

embeddings in this region are removed. By removing

all possible prediction ancestors, the QA-loop does not

impact the performance of the system unduly, but the

embedding capacity is reduced more than strictly nec-

essary. However, since the capacity is still high enough,

see Section 4.2, this faster way of removing drift sources

is preferable to a slower but more precise method.

2.2 Embedding Approach

When changing the MVDs of a CABAC bit stream by
changing the corresponding CABAC code words, the
state of the arithmetic coder is very likely to change,

resulting in invalid bit streams if the code words are

only replaced. Hence, a bit stream transcoder is re-
quired which performs the CABAC reencoding so that

the rest of the bit stream remains valid. Note that no

actual pixel-level decoding or reencoding is necessary

as all required changes only involve the entropy coding

layer.

As regular transcoders are not capable of performing

entropy-only-reencoding with the additional ability to

change MVDs, we used a special bitstream transcoder

developed at Ghent University which is capable of per-

forming the required changes [2]. The transcoder pro-

vides an interface which allows locating and changing

the desired MVDs for each frame and outputs the mod-

i�ed, i.e., watermarked, bit stream.

In the transcoder, a cascade of a decoder and an

encoder, which is typically used in video stream adap-
tation, is avoided. Not only will such a cascaded ap-

proach lead to a higher complexity (since it combines a

decoder and encoder loop), it will also introduce a qual-

ity loss, even at identical quantization settings (caused

by rounding). To avoid these drawbacks, an open-loop
mechanism is used in our transcoder [2]. First, the bit

stream is entropy decoded, resulting in the syntax el-

ements listed in the H.264 speci�cation (such as mac-

roblock types, MVDs, and residual coe�cients). Then,

the MVDs are modi�ed where needed, while all other el-

ements remain identical, hereby avoiding changes which

are not related to the watermarking process. Subse-

quently, the syntax elements are again entropy coded

with the updated state of the arithmetic coder.

2.3 Synchronization and Detection

Watermark detection is non-blind and relies on a de-

tection info �le containing temporal and spatial water-
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mark location as well as the embedded bit along with

the original feature value. In order to extract the water-

mark from the video under test we have to synchronize

the video under test and the original video by recon-

structing the original spatial and temporal dimensions.

In the spatial domain, eventual scaling and cropping

needs to be reversed. For the temporal dimension we

only deal with cut or added frames at the beginning of

the video.

In essence we only need to determine the crop (left,

right, top and bottom) of the original video to the video
under test. Given the crop (cl, cr, ct and cb) we can

calculate the inverse aspect ratio and scale since the

original video size, ow × oh and the size of the video
under test, tw × th, is known from the detection �le

and actual bitstream respectively. To invert the scaling

and cropping by linearly transforming the video from

tw × th 7→ (ow − cl − cr) × (oh − ct − cb) and pad
with black border according to cl, cr, ct and cb. See

Section 3.2 for strategies how to actually determine crop

parameters.

Since the spatial dimensions are aligned we can now

utilize the watermark information from the detection

�le to do a scan for temporal alignment. Utilizing N

watermark bits we can scan the �rst F frames of the

video under test and calculate the correlation C, as
given below. Under the assumption that the video is

watermarked the scan should yield a unique frame o�-

set where the correlation reaches maximum. If the high-

est correlation is not unique a rescan of the prospective

o�sets with an increased N should reduce the num-

ber of equal correlations until only one remains. This

o�set is taken as temporal shift and used in the ac-

tual watermark detection with the whole watermark

sequence. This approach di�ers from traditional tem-
poral synchronization approaches which utilize redun-

dancy in the watermark, e.g. [8]. However, since we uti-

lize a non-blind watermarking scheme we do not require

redundancy since the whole watermark information is

available during detection.

Given a synchronized video under test we then have

two binary sequences, one is the original watermark

sequence, wm, ∀i : wmi ∈ {0, 1}, from the detection

�le which consists of the bits embedded in the original

video. The other sequence is the extracted watermark

sequence, ex,∀i : exi ∈ {0, 1} which is extracted from

the synchronized video under test. The extracted water-

mark sequence is calculated by extracting the relevant

feature from the given location and comparing it with

the original feature as given in the detection info, this

process is illustrated in �gure 2.

The detection is based on the probability of false

positive, i.e., the probability that a watermark is de-

Detection Info
Location Original FeatureWM Bit

Original ∆ Extracted

Encoded Bit
Fig. 2 Extraction of a single watermark bit from a video
under test.

tected in a non-watermarked video. The watermark bits

wmi are drawn from a uniform random distribution in

{0, 1} and we assume that the extracted bits exi are

also uniformly distributed in {0, 1}. We calculate the

correlation between wm and ex in the following man-

ner

C =
1

n

n∑
i=1

(2wmi −1)(2 exi −1),

where n is the number of bits of wm and ex. The prob-
ability of false positive is then the probability that two

random sequences have at least correlation C. We can

easily see that each member of the sum, (2wmi −1) ·
(2 exi −1), is a Bernoulli trial with p = q = 1

2 . Thus C

has a binomial distribution B(n, p) and the probability

of false positive is consequently

pfp(C) =
n∑

k=kC

(
n

k

)
pkq(n−k) =

=
n∑

k=kC

(
n

k

)(
1

2

)n

=
1

2n

n∑
k=kC

(
n

k

)
,

where kC = (C+1)n
2 .

We assume video under test is a leaked video if the

probability of false positive is lower than a threshold,

i.e., pfp(C) < TC , TC defaults to 10−12 but can be

freely chosen.

Figure 3 gives an overview over the probability of

false positives (pfp) under di�erent scaling and quanti-

zation parameters. An original video (a sample of Band

MF), which is encoded in H.264 with HD1080 reso-

lution, was watermarked, 1839 bits were embedded in

1644 frames. The pfp is given in logarithmic scale and

capped at 10−100, the default threshold (10−10) for wa-

termark detection is also given. As can be seen the wa-
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Fig. 3 Probability of false positive for di�erent quantization
parameters and resolutions. Plot is capped at pfp = 10−100

and the default threshold is also given at 10−12.

termark detection is robust against scaling, bit rate re-

duction and the transformation to a di�erent aspect ra-

tio, i.e., 16 : 9 7→ 4 : 3. Figure 4 shows the sample part
of a frame from the original and for the rescaled ver-

sions. The samples from the rescaled version were taken

from the sequence with a QP for which the pfp < TC ,

which is QP 44 and 50 for VGA and HD720 respec-

tively, compare �g. 3. For more information about wa-

termark correlation under di�erent embedding strength

and quality parameters see [11].

3 Practical Considerations

In this section we provide information about e�ects and

circumstances which in practice impacted the design

and decision making regarding the framework. The top-

ics presented here were selected because they have a

huge impact on either the design of the framework, like
the decoder, or are important to consider for practical

application, i.e., quality assurance and length preserva-

tion.

We look at the quality assurance and show how,

and why, the current embedding strength was chosen.
We explain the practical considerations behind the pro-

cess of dealing with the situation when a GOP changes

length and �nally, we explain why the use of a transcoder

is necessary and what problems can arise from using a

transcoder.

3.1 Quality Assurance

For quality assurance the need to utilize a fast and re-

liable metric on a basic level lead to the use of the

MSE for watermark embedding and quality assurance.

In [11, 12] a subjective experiment is presented, which

suggests that an embedding strength of 100 in terms

of MSE is su�ciently low to be imperceivable. Since

our approach and the one from [11, 12] share the same

properties as explained in Section 1, we use an em-

bedding strength of 100 as well. On the one hand we

found that using MSE 100 as a limit for the macroblock

change allows for a su�cient number of watermark bits.

Statistics about the possible number of embedded wa-

termark bits, depending on source material, are given

in Section 4.2. This high embedding strength results in

a good detection response and low probability of false

positives, even for highly impaired images, as detailed

in Section 2.3, �g. 3. However, a error of higher than 100

MSE can still occur through prediction from a modi�ed
macroblock and drift of the error.

We can preclude temporal drift by systematically

avoiding embedding in frames which are a source of
temporal prediction. This leaves non-reference B-frames

or, in the case of GOPs with IP* structure, trailing

P-frames for embedding. However, spatial drift of the

error can still occur for such frames.
As the targeted application scenario requires reli-

ably high quality, we introduce a quality assurance stage

to eliminate spatial drift. In order to prevent a higher

than allowed distortion the quality assurance loop checks

the whole frame for errors that surpass our MSE 100
limit. If such errors are found the QA loop traces the

source of the predictions which introduces these errors

and reverts any changes to the responsible macroblocks.

A given macroblock is used for prediction only by mac-

roblocks to the right and downwards of the current

block. Conversely, the source of an error for a given

macroblock is located left or upwards of the current

macroblock. The QA loop searches for potential sources

of error drift and removes the embedding from them.

While this lowers the embedding capacity, the resulting

capacity is still high enough for all practical purposes,

see Section 4.2.

3.2 Synchronization Method

In the �nal framework we chose a semiautomatic method

for watermark synchronization to improve detection.

The main reason was to increase the stability of the

detection. The drawback of the semiautomatic method

is that human intervention is needed to measure crop,

if present. While this is more costly, in terms of person-

nel cost and time, it also increases the detection rate by

providing exact crop detection. However, the time con-

sumed by exact crop measures is refunded by the fast

scanning for synchronization which can be done when

crop is known.

The other option would be a fully automated syn-

chronization by detecting both crop and synchroniza-

tion algorithmically. The problem with a fully auto-
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(a) HD1080 (b) HD720, QP 50 (c) VGA, QP 44

Fig. 4 Side by side comparison of a sample of frame 111 from the test sequence. Shown are the original and scaled version
(for failed watermark detection).

mated approach is that the fast scanning for synchro-

nization requires a known crop while the automatic de-

tection of the crop requires two known matching frames.

Thus, we have to switch to a di�erent synchronization

method.

3.2.1 Automated Detection of Temporal Displacement

For synchronization without known crop we utilize a

scale-invariant feature based synchronization, by ex-

tracting scale-invariant features from the original video

and the video under test and searching for matching

frames. The advantage of this approach is the fact that

the potential scale and crop of the video under test

do not have to be known in order �nd temporal syn-

chronization. While this works well it also has certain
drawbacks. The scale-invariant feature extraction, and

the subsequent matching, is slow and computationally

expensive. Furthermore, it requires the original video,

as opposed to the current approach, since only the orig-

inal feature values are stored in the detection info �le
(see �g. 2). This further increases the computational de-

mand for this method since the original video also has

to be decoded. Additionally, care has to be taken to

not wrongly synchronize with repeating sequences. An

example of this would be a transition sequence which

appears multiple times in the video under test and can

match with the same transition sequence at another

point in time in the video. While these problems can be

handled, the resulting synchronization attempt is more

complicated and time consuming than the one currently

employed.

The method used for the detection of the tempo-

ral o�set is based on outlier detection. Using scale-

invariant-features we can calculate the di�erence be-

tween matching feature points. While this di�erence

hardly ever becomes zero, due to changes in quality

during re-compression of the video under test, we ex-

pect matching frames to produce a signi�cantly lower

feature distance than non-matching frames. In order to

�nd the o�set, a frame from the video under test is

compared to frames in a search window of the original

video. On this search window we perform outlier detec-

tion and �nd the best matching frame. If no outliers are

found, the search windows is advanced in the original

video and the process is repeated. If an outlier is de-

tected we apply another detection with the next frame

of the video under test. This has to be done in order

to ascertain whether the outlier was a set of matching

frames as opposed to a random statistic outlier. We as-
sume a true match if the followingN consecutive frames

from the video under test also match the following N
consecutive frames from the original video. This process

is illustrated in �g 5.

Since not all scale-invariant feature detection ap-

proaches exhibit the same performance, a number of

tests were conducted to �nd the most likely candidate.

In order to �nd the best feature detector and feature

point extractor pair we conducted an experiment using

the SURF, ORB, FAST, STAR, HARRIS and MSER

detectors and SURF, ORB and BRIEF extractors pro-

vided by the OpenCV. A test set was generated based

on four short sequences to be used as original video

as well as a number of expected changes, i.e. tempo-

ral crop, combined with scaling and quality reductions.

The videos under test exhibit o�sets of 10 or 25 frames,

down-sampling to HD720 and VGA resolution (from

an HD1080 original video) combined with a bit rate

cap of 1024kbps and 200kbps. The experiments using

the above algorithm (with a search window of 21 and
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Fig. 5 Overview over the temporal shift detection using
scale-invariant-based features.

Table 1 Temporal o�set detection rates for various combi-
nations of feature detectors and extractors.

[%] Extractor

Detector SURF ORB BRIEF

SURF 100.000 84.375 84.375
ORB 75.000 68.750 59.375
FAST 84.375 87.500 90.625
STAR 56.250 56.250 50.000
HARRIS 78.125 81.250 78.125
MSER 81.250 81.250 81.250

5 required consecutive matches) produces the detection

rates as shown in table 1. SURF is clearly best choice

among those tested. However, for all of the detectors

under test the introduction of crop, especially under

low quality conditions produces faulty synchronization.

In addition to �nding the correct o�set in low qual-

ity, scaled and cropped videos under test there is also

a systematic error which is introduced by repeating or
similar sequences which can lead to a faulty o�set de-

tection. Typical examples of similar sequences are cross

fades, fades to black and scene change sequences. There

is no clear way to exclude these sequence except by in-

creasing the number of necessary consecutive matches

(N in the above algorithm). However, increasing the

number of consecutive matches also leads to an overall

lower performance when detecting temporal shift in low

quality sequences.

3.2.2 Automated Detection of Spatial Displacement

The automatic detection of spatial displacement as-

sumes a temporal alignment and tries to �nd the crop

and scale which leads to the spatial displacement. The

only other in�uencing factor, besides spatial changes, is

the quality of the video under test.

While there is the option of using the feature points

extracted for temporal synchronization to �nd the pro-

jection of one video into the other, experimental results

showed that this is unreliable. There are instance where

the number of feature points are insu�cient to �nd a

projection. Another problem is avoidance of features

points which can not be matched, while this is required

for some sequences it will introduce errors into oth-

ers. Overall the use of extracted feature points for spa-

tial synchronization did not consistently perform well

enough.

Thus, in order to detect crop an approach based on
template matching is the obvious solution. The tem-

plate matching approach uses the video under test as

a template and tries to �nd it in the original video. A
direct search however is bound to produce a mismatch

if scaling also a�ects the video under test. In order to

compensate for scaling we have to do a template match

with di�erent scale factors. A list of possible scale fac-
tors, with visual examples, are given in �g. 6.

This exempli�es that we have to consider di�erent

scales when performing template matching. The scale

space is hardly limited besides very one-sided scaling

options, like stretching along one axis and shortening

along the other. What further complicates the matter

is the fact that template matching, under these trans-

forms with the template error as distance measure does

not create a convex space. This is illustrated in �g. 7

where for each scaling factor the value of the best match

is given as a heat map. If the space were convex, we

could perform a gradient descent search for the opti-

mal match. However, since the space is not convex, we

have to do a more complex, and consequently compu-

tationally more expensive search.

Assuming, based on the examples from �g. 6, no

more than half of a picture is cut and upscaled and

at most a down-sampling to VGA from HD1080 the
scale space is in the range S = [0.5, 3]× [0.5, 3]. Assum-

ing we utilize a search step of δs we can calculate the

maximum number of pixels by which we will miss the

correct resolution. This can be done by down-sampling

with the maximum scale which is also at the largest dis-

tance from the chosen search step. The pixel di�erence

δp will then be

δp =
1920

3− δs
2

3− 1920.

Conversely, we can calculate δs for a given δp by

δs = 6− 6
1920

δp + 1920
.

For a negligible pixel di�erence, i.e. δNp < 0.5 such that

rounding to integer produces the correct resolution, the
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→

Scalefactor fx = 1, fy = 1

(a) Crop

→

Scalefactor fx = 1, fy < 1 or fx < 1, fy = 1

(b) Crop and upscale

→

Scalefactor > 1, fx 6= fy; Example scaling HD1080 to VGA
fx = 1920/640 = 3, fy = 1080/480 = 2.25

(c) Scale

→

Scalefactor > 1, fx = fy

(d) Scale, keep aspect ratio

Fig. 6 Examples of di�erent scale factors based on various
possible spatial distortions.

resulting search step size is δNs = 0.00156. Searching

in S with δNs would result in over 2.5 · 106 template

matches. For a rough comparison 2.5 ·103 matches take

about 10 minutes. Thus, clearly this approach is not

feasible.

The question is then what in�uence δp has on the

detection rate, since an increase in δp signi�cantly in-

creases δs. We did a test with a medium quality se-

quence and simply shifted the video under test in the

range from 1 to 16 pixels.

Figure 8 shows the result for the detection. Note

that the y-axis is capped at 10−100. A 6 pixel shift is

the �rst o�set where detection fails, as such the pixel

error has to be signi�cantly lower. Note that the �m-

peg library used for rescaling treats even picture sizes

di�erently due to alignment-related optimizations, ex-

hibiting the depicted �uctuations in the detection rate

for the top and left curves.
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Fig. 7 The heat map shows the matching score (lower is
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Fig. 8 Detection rate when the spatial de-synchronization in
the video under test could not be correctly compensated.

Let us assume δ2p = 2, since for each of the cases

the detection rate for a two pixel shift is well above the

threshold. This would result in δ2s = 0.006 with 160 ·103
required matching steps, which would take almost 11

hours.

Overall, using a semiautomatic method is faster and

more accurate than the fully automatic method.
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3.3 Transcoding

As described in Section 2.2, the change of the state of

the arithmetic coder requires reencoding. Due to these

introduced changes, the positions in the bit stream where

the arithmetic coder performs its renormalization may

change, thus potentially changing the length of the bit

stream. As the arithmetic coder is reinitialized at slice
boundaries, these length changes cannot in�uence sub-

sequent slices, unless they are watermarked as well.

As changes in length are not allowed, watermarked

GOPs are replaced by their original, i.e., unwatermarked,
versions during the merging process at the end. This

way, all watermarked GOPs whose length remains un-

changed are kept and the GOPs whose length changed

are not watermarked. Note that this is easy to do, but
lowers the embedding capacity, in�uencing detection

later. We discuss this in detail in Section 4.2. It is

also possible to preserve length at NALU level using a

similar process which replaces all watermarked NALUs

whose lengths di�er with their original versions.

Another practical issue that has to be considered

during the watermarking process involves open GOPs.

An open GOP references pictures which are not con-

tained in that GOP, as opposed to a closed GOP in

which each picture can be decoded independently of

pictures from other GOPs. Although open GOPs can

be easily detected, they cannot be watermarked unless

they are grouped together with preceding and/or subse-

quent closed GOPs. For the sake of simplicity, we detect

and omit open GOPs from the watermarking process.

Note that this potentially reduces the embedding ca-

pacity depending on the number of open GOPs. We

analyze and discuss this in detail in Section 4.2.

4 Statistics and Evaluation

In this section we will evaluate two important proper-

ties discussed in previous sections.

First, the framework was designed with separate

splitting and merging steps in order to utilize the con-

text separate GOP structure for parallelization. We will

show how parallelization in�uences the embedding pro-

cess and illustrate where the bottlenecks for paralleliza-

tion are.

Second, in previous sections we argued that the cho-

sen embedding strength is su�cient to embed a high

number of watermark bits even with the possible loss of

potential watermarking locations due to length changes.

We will give statistics about the actual occurrence of

length changes and open GOPs as well as occurrence

and distribution of watermark bits in an embedded

stream.

4.1 Parallelization and Runtime

The QA loop performs a number of decodings of the

original bit stream in order to �nd suitable watermark-

able macroblocks. Consequently, the QA loop has high

computational requirements and is slow. An example

of this is given in table 2 where watermarking a 30

minute sequence takes a total of almost 12 hours. This

is unsuitable for a practical application and the time
requirement has to be reduced. If parallelization is pos-

sible the watermarking time can be split among a num-

ber of cores or machines and consequently reduce the
overall watermarking time greatly (at the cost of com-

putational power).

Our framework splits the H.264 bitstream into sepa-

rate GOPs, performs analysis and embedding per GOP

and, after sanity checks, merges the GOPs together to
create the watermarked bitstream. The important part

is that GOPs do not share a context, i.e., we can handle

GOPs separately without interdependence on the bit-

stream side. Since we embed a random sequence based

on a key the same concept of independent context holds

for the embedded bits. Thus we can parallelize the anal-

ysis and embedding steps, which accounts for the major

part of the watermarking time.

For the �gures and tables in this section we used a

30 minute full HD (HD1080) subsequence of the Han-

cock movie. Parallelization was done on a machine with

an INTEL core i7-3770 with four physical cores and

eight logical cores via hyper-threading, all cores share

a common L3 cache and a separate L2 and L1 cache

is available per core. In order to distinguish between

cache e�ects and tertiary storage e�ects on paralleliza-

tion we ran the experiments twice on the same PC but

with di�erent hard disks.

For the cache test run we used a SSD disk (denoted

ssd where applicable), a Liteon solid state disk (LCT-
256M3S) with 256 GB capacity, an average transfer rate

of 324.9 MB/sec and 0.1ms average access time. An-

other test is done with a regular internal disk (denoted

int), a Western Digital Caviar Blue (WD10EALX) with

1 TB capacity, an average transfer rate of 101.7 MB/sec

and 16.8ms average access time. In order to show the

impact of a slower disk we used a external hard disk (de-

noted ext where applicable), a Western Digital Caviar

Green (WD20EARX) with 2 TB capacity, an average

transfer rate of 37.2 MB/sec and 14 ms average access

time. The limiting factor for the transfer rate of the

external disk was the transfer speed over the USB port

rather than the actual hard disk transfer rate. Through-

put and access time measurements were performed with

HD Tune 2.55.
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Table 2 Time distribution for watermarking a 30 minute full HD sequence.

task
ssd int ext

time [s] % of total time time [s] % of total time time [s] % of total time

splitting 262 0.61 4:22 325 0.75 5:25 454 0.87 7:34
embedding 42849 99.30 11:54:09 43009 99.16 11:56:49 51365 99.03 14:16:05
merging 39 0.09 39 40 0.09 40 46 0.09 46

total 43151 100.00 11:59:11 43375 100.00 12:02:55 51866 100.00 14:24:26

parallel 4x 11762 27.26 3:16:02 11798 27.20 3:16:38 20765 40.03 5:46:05
parallel 8x 9691 22.46 2:41:31 10141 23.38 2:49:01 20354 39.24 5:39:14
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Fig. 9 Speedup and e�ciency plot for parallelization with p
processes on an Intel i7-3770 CPU with 4 cores and 8 logical
cores (through hyper-threading).

Table 2 shows the time required for a full water-

marking run and how the required time is distributed

among splitting, embedding and merging. The table

also shows the total time required for embedding un-

der 4× and 8× parallelization, i.e., four or eight anal-

ysis/embedding steps are started simultaneously, the

overall splitting and mering time for the parallelization

processes is the same.

A more detailed overview is given in �g. 9 were the

speedup and e�ciency are given for a di�erent number

of parallel processes. Given are the overall time, i.e.,

splitting, embedding and merging combined, as well as
embedding only.

If we disregard HDD limitations, i.e., the ssd case, it

can clearly be seen that parallelization up to the num-
ber of physical cores is almost linear (e�ciency > 0.9).
Further parallelization up to the number of logical cores

still improves overall speedup but at a lower rate, this is

due to cache con�icts in the shared L2 and L1 cache be-
tween two logical cores. Parallelizing with a number of

processes higher than the number of logical cores does

not improve speedup.

From the int and ext cases we can see that ac-

cess time is not a limiting factor for initial speedup.

Even though the int HDD has the slowest access time

it shows the same basic speedup pattern as the ssd

case while the ext HDD has a tremendous impact on

speedup. There is still a speedup and the overall pro-

cess bene�ts from parallelization but when the HDD

transfer limit is reached, at P = 3 in the �gure, fur-

ther parallelization does not improve overall computa-

tion speed.

Furthermore the parallelization should never use more
cores than are actually present, counting logical cores.

While we see in �g. 9 that utilizing more threads is

not detrimental as long as the HDD is able to handle

the seek time, which is easily the case for SSD disks.

However, when looking at the speedup for the ext case
it is clear that a high number of threads, and associ-

ated reads and writes, can cause a slowdown due to

seek time. In the �gure at P = 11 for the ext case and

P = 10 for the int case showcase this stalls. Since the

int case shows a slowdown earlier than the ext case

this behaviour cannot be due to transfer rate. How-

ever, when looking at the average access time of the int

and ext case, 16.8ms and 14ms respectively, it is clear

that this slowdown is due to seek stalls during reads

and writes. These seek stalls prevent the required data

from reaching the worker threads leading to an overall

drop in speedup, in extreme cases, e.g., P = 21, the
speedup can drop below 1. This is a hard limit of the

HDD, meaning the tertiary storage transfer rate as well

as average access time limits the parallelization.
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Overall, it is clear that the parallelization works

well, almost a linear speedup with the number of pro-

cesses used, but is limited by sharing primary memory

as well as the access time and throughput of tertiary

memory.

4.2 Embedding Capacity

To evaluate the embedding capacity of our watermark-

ing approach, we used the main movies of nine di�erent

Blu-ray disks. All movies were watermarked completely,

i.e., from beginning to end. The results are summarized

in table 3.

We distinguish two di�erent capacities: On the one

hand, applications which require length-preservation at
NALU level enforce that NALUs whose length changed

during the watermarking process are replaced by their

unmodi�ed versions, i.e., the unwatermarked NALUs.
This replacement reduces the number of embedded bits,

leaving a total capacity denoted as "Capacity (N)".

On the other hand, applications which require length-

preservation at GOP level tolerate NALU-level length

changes as long as the GOP length remains the same.

Similar to the NALU-level length preservation, GOP-

level length preservation enforces GOPs whose length

changed during the watermarking process to be replaced

by their unmodi�ed versions. This replacement reduces

the number of embedded bits on a GOP level, leaving

a total capacity denoted as "Capacity (G)".

As NALU-level length preservation only required re-

placing single NALUs whose length changed during the

watermarking process, it generally allows for a higher

capacity than the GOP-level length preservation. The

latter has to discard all bits in a GOP when its length

changed, reducing the capacity signi�cantly if the num-
ber of GOPs is low, i.e., the number of frames and there-

fore NALUs per GOP is high. In the examples listed

in table 3 the capacity of the NALU-length preserva-

tion watermarking approach is between about 1.5 and

3 times higher than the capacity of the GOP-length

preserving approach.

It is clear that the overall embedding capacity varies

strongly, although several conclusions can be drawn:

Firstly, movies with lots of motion, e.g., Resident Evil:

Extinction, tend to have a higher capacity, whereas the

opposite is true for movies with little motion, e.g., En-

emy at the Gates. Secondly, movies which are longer,

e.g., Gandhi with more than 270,000 frames, tend to

have a higher capacity, whereas the opposite is true for

short movies, e.g., Maya with less than 132,000 frames

(which was to be expected). Thirdly, movies with a

high percentage of non-reference B frames (denoted as

b frames), e.g., 1492, tend to have a higher capacity

than movies with a low percentage of b frames, e.g.,

Maya.
Furthermore, the distribution of watermark bits as

given by the capacity in table 3 is not uniform but also

depends on the structure of the video. Figure 10 illus-

trates this on a high capacity video (1492) and a low
capacity video (Enemy at the Gates). The �gure gives

the average number of bits per frame calculated on a

GOP basis and is plotted over the frame number, which

represents the location of the capacity in the video.

However, there is another important factor which in-

�uences the embedding capacity: the existence of open

GOPs. As open GOPs cannot be watermarked (see sec-

tion 3.3), the potential watermarking capacity is re-

duced by each open GOP, therefore being lower when

there is a high percentage of open GOPs. Although

movies with little motion and a signi�cant number of b

frames, e.g., Enemy at the Gates, have a signi�cantly
lower capacity compared to the other movies in table

3, the number of embedded bits is still very high and

allows for easy detection.

Note that the relative number of open GOPs seems

to be very low, although a larger test set would be nec-

essary in order to evaluate this in more detail. In our

small test set, most movies have either no or only one

open GOP, which is located at either the very begin-

ning or the very end of the corresponding movie. Note

that open GOPs at the end of a movie do not necessar-

ily reduce the capacity as linearly scrolling credits lead

to MVDs which are mostly zero and can therefore not

be watermarked using our approach.

5 Conclusion

We presented a Blu-ray watermark embedding and de-

tection framework which o�ers robustness to transcod-
ing and scaling. In addition, we showed how di�erent

videos and bit stream characteristics in�uence the em-

bedding capacity and run time. Furthermore, we showed

that our approach is highly parallelizable subject to

hard disk limitations, revealing that the hard disk's ac-

cess time is as crucial for achieving maximum speedup

as the hard disk's transfer rate.

From a practical point of view, we discussed that

splitting the bit stream enables parallelized embedding

in the �rst place. Furthermore, the design choice to

only mark non-reference frames helps avoiding tempo-

ral drift, thereby making the quality control loop in the

embedder less complex. In conclusion, we showed that

the robustness and run time of our framework su�ce to

meet industry-level requirements.

From a theoretical point of view, we gained knowl-

edge about the requirements for an industry-level wa-
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Table 3 Embedding capacity with frame and GOP statistics for a set of exemplary Blu-ray main movies

Movie name Capacity (N) Capacity (G) # Frames % b frames #GOPs #Open GOPs

1492 1,253,766 680,313 224,208 56.44 10,169 0
American Beauty 361,339 251,432 174,874 34.66 1,016 1
Cazzia 599,521 237,560 130,056 57.22 7,890 0
Enemy at the Gates 146,445 46,974 187,447 45.82 5,723 297
Gandhi 650,533 285,677 274,486 45.30 7,965 197
Independence Day 255,108 138,870 208,272 32.89 2,839 1
Maya 285,539 131,738 132,673 34.94 1,633 0
Resident Evil: Extinction 1,078,844 363,975 135,246 52.35 8480 0
Thor 402,095 229,693 164,920 32.36 1814 1
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Fig. 10 Location of the embedding capacity in the given videos. Note that the y and x axes are to the same scale, the dashed
vertical line denotes the end of the corresponding video.

termark application. Namely, properties which are often

thought of as irrelevant in science, like length changes,

are important in practice since they entail complicated

changes in the rest of the Blu-ray image. Other con-

siderations which are usually treated with higher pri-

ority in science, e.g., blind watermarking, are of less

or no concern. In conclusion, the design of watermark-

ing methods should further improve the preservation of
source properties, i.e., more than just format compli-

ance, to boost applicability.
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