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Introduction

m digital humanities project; computer vision & art history
m overall topic: analysis of painted material
m trend in medieval Europe 14th and 15th century: draw/paint material realistically

® a prominent example where material wood appears on paintings: crucifixion of Jesus.

Comparing Image Labeling Based on Art Historical Criteria to Automatic Clustering 1/14



Depiction of Crucifixion of Jesus

© IMAREAL, Univ. Salzburg
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Intro

Art-historical perspective:
m how artists painted materials (in this case: wood)
m which wood textures were used more frequently than others and why

m cumbersome to do manually through large corpora

Computer science perspective:

m (eventually) deliver tools to do such analyses more efficiently
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Intro: Example of wood texture interpretation
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Intro: Manual Segmentation using CVAT
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Intro: Some statistics and examples

In total: 287 Images were annotated, resulting in 4107 pieces of wooden cross. (most of
them too small)
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Motivation: Science-to-public event

Sample painted wood

Choose a group where the sample is most similar in terms of texture

Group 1
Group 2
Group 3
[,
N -
Group 4
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Motivation: Science-to-public event
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Figure: Class assignments from visitors at the 'Long Night of Research’ (Lange Nacht der Forschung)
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Motivation: ResNet-50 embeddings
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Figure: t-SNE plot of ResNet-50 embeddings of all wooden pieces
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This study

Hypothesis: Labels according to art historians are unsuited.

Question: Can we measure "intrinsic” correspondence of labels (ground truth) and actual
image content?

Task: Find "natural representation” of image content / texture and check its separability
according to ground truth labels

Approach to measure this / experiment design:

%ﬁ;&g Compare Cluster
- ResNet Labels with
- ConvNext
- ViT Ground Truth
- MobileViT Labels usmg
Vector Cluster Adjustefi Mutual
Patches Representation Vectors Infomation (AMI)
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Patch Dataset Distribution
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Methods: Patch Embeddings

Classical Features:
m Dense SIFT & Fisher Vector Encoding (+ PCA)

Pre-trained (classic ImageNet) models:
TinyNet

m ViT Tiny

m ResNet-18

m MobileViT

m ConvNext Tiny (Dino V3)
m ViT Small (Dino V3)
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Methods: Clustering Methods

Clustering Methods used:
m Vanilla k-Means clustering’
m Hierarchical / agglomerative clustering’
m Deep Embedded Clustering (DEC)?

m Subspace k-Means?

I implementations used from scikit-learn
2 implementations used from https://github.com/collinleiber/ClustPy
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https://github.com/collinleiber/ClustPy

Results
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Legend
dsift = dense sift + fisher enc.
DL1 = tinynet_a
DL2 = vit_tiny_patch16_224
DL3 = resnet18
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Conclusion

m Expert labels do not necessarily align with automatic, texture-based grouping (nor
with laymen assignments at science to public event)

— rethink texture classes

m Subjective bias could also be a factor
— assign multiple labels to each piece and combine them
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Q&A
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Interpretation of AMI value
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Figure: Left: Simulated alienation of ground truth ; Right: Resulting relation
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