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Introduction

digital humanities project; computer vision & art history

overall topic: analysis of painted material

trend in medieval Europe 14th and 15th century: draw/paint material realistically

a prominent example where material wood appears on paintings: crucifixion of Jesus.
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Depiction of Crucifixion of Jesus

© IMAREAL, Univ. Salzburg
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Intro

Art-historical perspective:

how artists painted materials (in this case: wood)

which wood textures were used more frequently than others and why

cumbersome to do manually through large corpora

Computer science perspective:

(eventually) deliver tools to do such analyses more efficiently
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Intro: Example of wood texture interpretation
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Intro: Manual Segmentation using CVAT
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Intro: Some statistics and examples

In total: 287 Images were annotated, resulting in 4107 pieces of wooden cross. (most of

them too small)

E: straight H: hues

D: cathedral-roundedC: cathedral-balanced
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Motivation: Science-to-public event
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Motivation: Science-to-public event
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Figure: Class assignments from visitors at the ’Long Night of Research’ (Lange Nacht der Forschung)
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Motivation: ResNet-50 embeddings
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Figure: t-SNE plot of ResNet-50 embeddings of all wooden pieces
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This study

Hypothesis: Labels according to art historians are unsuited.

Question: Can we measure ”intrinsic” correspondence of labels (ground truth) and actual

image content?

Task: Find ”natural representation” of image content / texture and check its separability

according to ground truth labels

Approach to measure this / experiment design:

Patches
Vector

Representation
Cluster
Vectors

Compare Cluster
Labels with

Ground Truth
Labels using

Adjusted Mutual
Infomation (AMI)

- TinyNet
- ResNet
- ConvNext
- ViT
- MobileViT
- ...

- DinoV3
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Patch Dataset Distribution
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Legend
A: no texture
B: cathedral-pointed
C: cathedral-balanced
D: cathedral-rounded
E: straight

F: undulating
G: dotted
H: hues
I: burl

J: diffuse
K: defect
L: growth rings
M: bark
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Methods: Patch Embeddings

Classical Features:

Dense SIFT & Fisher Vector Encoding (+ PCA)

Pre-trained (classic ImageNet) models:

TinyNet

ViT Tiny

ResNet-18

MobileViT

ConvNext Tiny (Dino V3)

ViT Small (Dino V3)
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Methods: Clustering Methods

Clustering Methods used:

Vanilla k-Means clustering1

Hierarchical / agglomerative clustering1

Deep Embedded Clustering (DEC)2

Subspace k-Means2

1 implementations used from scikit-learn
2 implementations used from https://github.com/collinleiber/ClustPy
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Results
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Legend
kmeans clustering
hierarchical clustering
deep embedded clustering
subspace kmeans

dsift = dense sift + fisher enc.
DL1 = tinynet_a
DL2 = vit_tiny_patch16_224
DL3 = resnet18

DL4 = mobilevit_s
DL5 = dinov3 convnext_tiny
DL6 = dinov3 vit_small
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Conclusion

Expert labels do not necessarily align with automatic, texture-based grouping (nor
with laymen assignments at science to public event)

→ rethink texture classes

Subjective bias could also be a factor

→ assign multiple labels to each piece and combine them
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The End

Q & A
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Interpretation of AMI value
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Figure: Left: Simulated alienation of ground truth ; Right: Resulting relation
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