Comparing Image Labeling Based on Art Historical Criteria to Automatic Clustering

Johannes Schuiki¹, Miriam Landkammer², Isabella Nicka² and Andreas Uhl¹

¹Department of Artificial Intelligence and Human Interfaces, University of Salzburg, Jakob-Haringer-Straße 2, 5020 Salzburg, Austria

²Institute for Medieval and Early Modern Material Culture, University of Salzburg, Körnermarkt 13, 3500 Krems an der Donau, Austria

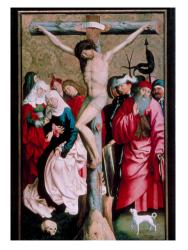
ISPA 2025

Paper #19

Introduction

- digital humanities project; computer vision & art history
- overall topic: analysis of painted material
- trend in medieval Europe 14th and 15th century: draw/paint material realistically
- a prominent example where material wood appears on paintings: crucifixion of Jesus.

Depiction of Crucifixion of Jesus



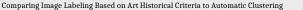
Intro

Art-historical perspective:

- how artists painted materials (in this case: wood)
- which wood textures were used more frequently than others and why
- cumbersome to do manually through large corpora

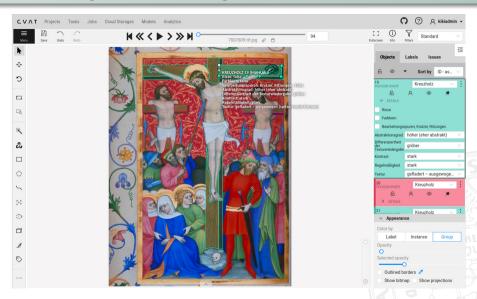
Computer science perspective:

• (eventually) deliver tools to do such analyses more efficiently



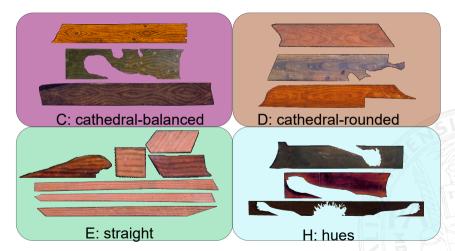
Intro: Example of wood texture interpretation

Intro: Manual Segmentation using CVAT



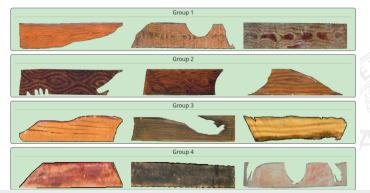
Intro: Some statistics and examples

In total: 287 Images were annotated, resulting in 4107 pieces of wooden cross. (most of them too small)



Motivation: Science-to-public event

Choose a group where the sample is most similar in terms of texture



Motivation: Science-to-public event

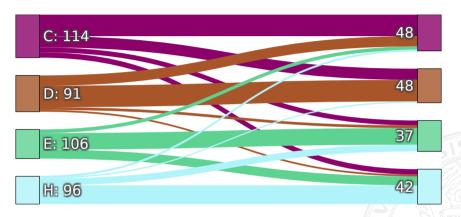


Figure: Class assignments from visitors at the 'Long Night of Research' (Lange Nacht der Forschung)

Motivation: ResNet-50 embeddings

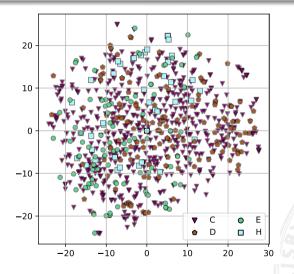


Figure: t-SNE plot of ResNet-50 embeddings of all wooden pieces

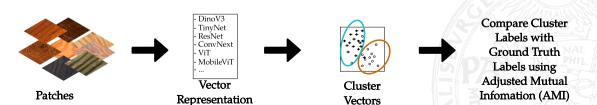
This study

Hypothesis: Labels according to art historians are unsuited.

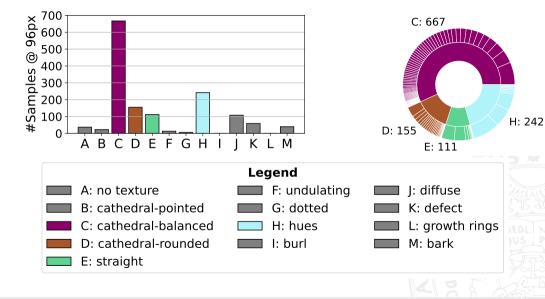
Question: Can we measure "intrinsic" correspondence of labels (ground truth) and actual image content?

Task: Find "natural representation" of image content / texture and check its separability according to ground truth labels

Approach to measure this / experiment design:



Patch Dataset Distribution



Methods: Patch Embeddings

Classical Features:

■ Dense SIFT & Fisher Vector Encoding (+ PCA)

Pre-trained (classic ImageNet) models:

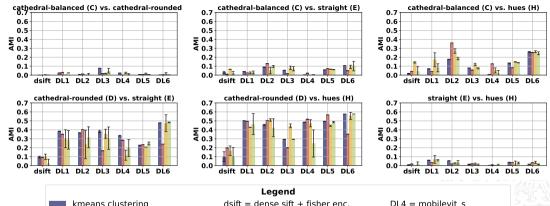
- TinyNet
- ViT Tiny
- ResNet-18
- MobileViT
- ConvNext Tiny (Dino V3)
- ViT Small (Dino V3)

Methods: Clustering Methods

Clustering Methods used:

- Vanilla k-Means clustering¹
- Hierarchical / agglomerative clustering¹
- Deep Embedded Clustering (DEC)²
- Subspace k-Means²
- ¹ implementations used from scikit-learn
- $^2 \ implementations \ used \ from \ https://github.com/collinleiber/ClustPy$

Results



DL1 = tinynet_a
DL2 = vit_tiny_patch16_224
DL3 = respet18

DL4 = mobilevit_s DL5 = dinov3 convnext_tiny DL6 = dinov3 vit_small

Conclusion

- Expert labels do not necessarily align with automatic, texture-based grouping (nor with laymen assignments at science to public event)
 - \rightarrow rethink texture classes
- Subjective bias could also be a factor
 - $\,\rightarrow\,$ assign multiple labels to each piece and combine them

Q&A

Interpretation of AMI value



Figure: Left: Simulated alienation of ground truth; Right: Resulting relation