Quantifying Inter-Annotator Agreement and Generalist Model Limitations in Imaging Mass Cytometry Single Cell Segmentation

Johannes Schuiki¹ Markus Steiner^{2,3} Heinz Hofbauer¹ Stephan Drothler^{2,3,4} Giulia Pessina^{2,3} Richard Greil^{2,3} Nadja Zaborsky^{2,3} Andreas Uhl¹

¹Dept. of Artificial Intelligence and Human Interfaces, Paris-Lodron-University Salzburg, Austria

²Cancer Cluster Salzburg, Austria

³Dept. of Internal Medicine III, Paracelsus Medical University, Austria

⁴Dept. of Biosciences, Paris-Lodron-University Salzburg, Austria

July 16, 2025

Background | Imaging mass cytometry

- fluorescence microscopy suffers from spectral overlap of fluorescent markers and autofluorescence
- one alternative is mass spectrometry (here: imaging mass cytometry)

1) Assess inter-annotator agreement on a set of lymphoid tissue samples annotated by 4 experts.

2) Evaluate performance of 4 generalist cell segmentation models in the light of the results from 1) and also on four external datasets.

Methods | Annotation process

Typical workflow:

- Experts annotate patches manually using Ilastik¹ to generate pixel probability maps (background, nuclei, membrane)
- Probability maps are expanded to the whole mage using CellProfiler²

full 1000 x 1000 image

256 x 256 crop

50 x 50 crop (upscaled)

- S. Berg et al. (2019). "ilastik: interactive machine learning for (bio)image analysis". In: *Nature Methods*
- D. R. Stirling et al. (2021). "CellProfiler 4: improvements in speed, utility and usability". In: BMC Bioinformatics

Methods | Evaluation metrics

- Related works rely on F1-score or "average precision"-variant (dependent on fixed IoU)
- Side note to average precision: a recent work³ unravels confusion

This work uses three metrics:

1 average precision@IoU (as cited above and used in the Data Science Bowl 2018)

$$AP(t_{IoU}) = \frac{TP(t_{IoU})}{TP(t_{IoU}) + FN(t_{IoU}) + FP(t_{IoU})}$$

2 mean average precision average AP values over IoU = [0.5, 0.55, ..., 0.95]

³ D. Hirling et al. (2024). "Segmentation metric misinterpretations in bioimage analysis". In: *Nature Methods*

Methods | Evaluation metrics (continued)

${f 3}$ sorted average precision ${f 4}$

- 1 Calc IoU between all corresponding cell instances of two images
- 2 Determine matching objects by treating this as an *assignment problem* (optimization, e.g. scipy.optimize → linear_sum_assignment)
- 3 sort pairs according to their IoU and calculate AP at every point

⁴ L. Chen et al. (2023). "SortedAP: Rethinking Evaluation Metrics for Instance Segmentation". In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops

Results | Inter-annotator agreement

Model Name	Version Year		Backbone Architecture	
Cellpose ⁵	v3 / cyto3	2024	Residual U-Net	
Deepcell/Mesmer ⁶	0.12.10	2021	ResNet-50 + FPN	
CellSAM ⁷	0.1.0	2023	SAM	
VISTA-2D ⁸	_	2024	SAM	

 Models expect RGB input including membrane and nucleus channel. 11 channels are collapsed into membrane channel; 2 channels are collapsed into nucleus channel.

⁵ C. Stringer et al. (2025). "Cellpose3: one-click image restoration for improved cellular segmentation". In: *Nature Methods*

⁶ N. F. Greenwald et al. (2021). "Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning". In: Nat Biotechnol 7

U. Israel et al. (2023). A Foundation Model for Cell Segmentation. Preprint: biorxiv

⁸ NVIDIA (2024). VISTA-2D: A foundational model for cell segmentation in spatial omics workflows. https://github.com/Project-MONAI/VISTA/tree/main/vista2d. Version 0.3.0

Methods | Patching strategy

- Preliminary experiments showed that full images often result in bad segmentation results
- Hence, sliding window patching strategy:

Dataset	Abbrev.	Tissue type	# Samples whole image	avg resolution whole image (y/x)	# Samples patches	# annotators per sample	avg # cell masks per patch
in-house	A1 – 4	Lymphoid	10	1000.0/1000.0	360	4	823.7
Ali20 ⁹	A20	Breast	548	462.8/478.0	2787	1	314.0
Rendeiro21 ¹⁰	R21	Lung	229	1108.4/1187.5	13361	1	185.3
Jackson20 ¹¹	J20	Breast	746	596.5/626.7	8714	1	320.5
Hoch22 ¹²	H22	Melanoma	167	993.1/963.4	6361	1	467.4

⁹ H. R. Ali et al. (2020). "Imaging mass cytometry and multiplatform genomics define the phenogenomic landscape of breast cancer". In: Nature Cancer

¹⁰ A. F. Rendeiro et al. (2021). "The spatial landscape of lung pathology during COVID-19 progression". In: *Nature*

¹¹ H. W. Jackson et al. (2020). "The single-cell pathology landscape of breast cancer". In: *Nature*

¹² T. Hoch et al. (2022). "Multiplexed imaging mass cytometry of the chemokine milieus in melanoma characterizes features of the response to immunotherapy". In: Sci. Immunol.

Results | Model output vs. individual annotators

Results | Model output vs. external datasets

- Transfer of lymphoid tissue upper bound to other tissue types is debatable
- This study focused on generalist models
- Channel aggregations can be evaluated using ablation study

This study did:

- Quantification of inter-annotator agreement between four annotators; used as upper bound for seg. model performance
- Evaluate performance of four generalist models on in-house data and external datasets; View results in light of this upper bound

Conclusions:

- Within this experimental setup, no tested model was able to reach this upper bound
- SAM based models tend to fail at arbitrary sized images

The End

Q & A

Find resources here:

