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Background | Imaging mass cytometry

m fluorescence microscopy suffers from spectral overlap of fluorescent markers and
autofluorescence

® one alternative is mass spectrometry (here: imaging mass cytometry)

S time of flight
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laser ablation

m commercialized system named “Hyperion"by Flugidim
m fixed-size resolution: 1um per pixel
®m many channels (40+)

B tissue sample gets destroyed in the process
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Aim of research

1) Assess inter-annotator agreement on a set of lymphoid tissue samples annotated by 4
experts.

2) Evaluate performance of 4 generalist cell segmentation models in the light of the
results from 1) and also on four external datasets.
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Methods | Annotation process

Typical workflow:

m Experts annotate patches manually using Ilastik! to generate pixel probability maps
(background, nuclei, membrane)

m Probability maps are expanded to the whole mage using CellProfiler?
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1 S. Berg et al. (2019). “ilastik: interactive machine learning for (bio)image analysis”. In: Nature Methods
D. R. Stirling et al. (2021). “CellProfiler 4: improvements in speed, utility and usability”. In: BMC Bioinformatics
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Methods | Evaluation metrics

m Related works rely on F1-score or "average precision”-variant (dependent on fixed IoU)
m Side note to average precision: a recent work® unravels confusion

This work uses three metrics:
average precision@IoU (as cited above and used in the Data Science Bowl 2018)
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mean average precision average AP values over IoU = [0.5, 0.55, .., 0.95]

3 D. Hirling et al. (2024). “Segmentation metric misinterpretations in bioimage analysis”. In: Nature Methods
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Methods | Evaluation metrics (continued)

sorted average precision

Calc IoU between all corresponding cell instances of two images

4

Determine matching objects by treating this as an assignment problem (optimization, e.g.
scipy.optimize — linear_sum_assignment)

sort pairs according to their IoU and calculate AP at every point

Metrics visualized on toy example
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L. Chen et al. (2023). “SortedAP: Rethinking Evaluation Metrics for Instance Segmentation”. In: Proceedings of the IEEE/CVF International Conference on
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Results | Inter-annotator agreement
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Methods | Generalist cell segmentation models

Model Name Version Year Backbone Architecture
Cellpose® v3 /cyto3 2024 Residual U-Net
Deepcell/Mesmer® 0.12.10 2021 ResNet-50 + FPN
CellSAM’ 0.1.0 2023 SAM

VISTA-2D8 - 2024 SAM

m Models expect RGB input including membrane and nucleus channel. 11 channels are
collapsed into membrane channel; 2 channels are collapsed into nucleus channel.

C. Stringer et al. (2025). “Cellpose3: one-click image restoration for improved cellular segmentation”. In: Nature Methods

N.F. Greenwald et al. (2021). “Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning”. In
Nat Biotechnol

7
U. Israel et al. (2023). A Foundation Model for Cell Segmentation. Preprint: biorxiv
8 NVIDIA (2024). VISTA-2D: A foundational model for cell segmentation in spatial omics workflows. https://github.com/Project-MONAI/VISTA /tree/main/vista2d.
Version 0.3.0
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Methods | Patching strategy

m Preliminary experiments showed that full images often result in bad segmentation
results

m Hence, sliding window patching strategy:
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Methods | Overview data

# Samples avg resolution # Samples | # annotators avg # cell
Dataset Abbrev. | Tissue type . whole image
whole image (y/%) patches per sample | masks per patch
in-house Al-4 | Lymphoid 10 1000.0/1000.0 360 4 823.7
Ali20° A20 Breast 548 462.8/478.0 2787 1 314.0
Rendeiro21 1° R21 Lung 229 1108.4/1187.5 13361 1 185.3
Jackson20 1! J20 Breast 746 596.5/626.7 8714 1 320.5
Hoch22 12 H22 | Melanoma 167 993.1/963.4 6361 1 4674
9 H.R. Ali et al. (2020). “Imaging mass cytometry and multiplatform genomics define the phenogenomic landscape of breast cancer”. In: Nature Cancer
i? A.F. Rendeiro et al. (2021). “The spatial landscape of lung pathology during COVID-19 progression”. In: Nature

H. W. Jackson et al. (2020). “The single-cell pathology landscape of breast cancer”. In: Nature

T. Hoch et al. (2022). “Multiplexed imaging mass cytometry of the chemokine milieus in melanoma characterizes features of the response to immunotherapy”.
In: Sci. Immunol.
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Results | Model output vs. individual annotators

whole image

sliding window patches
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Results | Model output vs. external datasets

whole image sliding window patches
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Limitations of this study / Future work

m Transfer of lymphoid tissue upper bound to other tissue types is debatable
m This study focused on generalist models

m Channel aggregations can be evaluated using ablation study
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Conclusion

This study did:

m Quantification of inter-annotator agreement between four annotators; used as upper
bound for seg. model performance

m Evaluate performance of four generalist models on in-house data and external
datasets; View results in light of this upper bound

Conclusions:
m Within this experimental setup, no tested model was able to reach this upper bound

m SAM based models tend to fail at arbitrary sized images
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The End
Q&A

Find resources here:
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