Presentation Attack Detection in Finger and Hand Vein Biometrics using Video Sequences

Johannes Schuiki

University of Salzburg
Department of Computer Sciences

24.02.2022

Table of Contents

- Introduction
- Problem Statement & Research Goals
- 3 Data Sets
- 4 Threat Evaluation Methodology
- 5 Threat Evaluation Results
- 6 Attack Detection Methodology
- 7 Attack Detection Results
- 8 Conclusion / Future Work

Introduction

Figure: Near-Infrared Imaging.

The Presentation Attack Problem

Figure: Block diagram visualisation of presentation attack problem

Research Goals

Initial situation: 2 Video attack data sets.

- Threat Analysis: Potential to fool a real system?
- Attack Detection: Find methods to detect attacks.

The Data

Figure: Example finger vein attack frames. Top row: LED. Bottom row: Laser. Column f.l.t.r.: Bona fide, Thin Attack, Thick Attack.

The Data

Figure: Example hand vein attack frames. Top row: Reflected Light. Bottom row: Transillumination. Column f.l.t.r.: Bona fide, Paper Attack, Display Attack.

The Data

Sample Type	Unique Fingers	Samples	Videos
Finger Bona Fide LED	96 (16 * 6)	5	480
Finger Bona Fide Laser	96 (16 * 6)	5	480
Finger Attack LED Thin Still	96 (16 * 6)	3	192
Finger Attack LED Thick Trembling	96 (16 * 6)	3	192
Finger Attack LED Thin Still	96 (16 * 6)	3	192
Finger Attack LED Thick Trembling	96 (16 * 6)	3	192
Finger Attack Laser Thin Still	96 (16 * 6)	3	192
Finger Attack Laser Thick Trembling	96 (16 * 6)	3	192
Finger Attack Laser Thin Still	96 (16 * 6)	3	192
Finger Attack Laser Thick Trembling	96 (16 * 6)	3	192
Hand Bona Fide Reflected Light	26 (13 * 2)	1	26
Hand Bona Fide Transillumination	26 (13 * 2)	1	26
Hand Attack Reflected Light Paper Still	26 (13 * 2)	1	26
Hand Attack Reflected Light Paper Moving	26 (13 * 2)	1	26
Hand Attack Reflected Light Display Still	26 (13 * 2)	1	26
Hand Attack Reflected Light Display Moving	26 (13 * 2)	1	26
Hand Attack Reflected Light Display Zoom	26 (13 * 2)	1 //	26
Hand Attack Transillumination Paper Still	26 (13 * 2)	1	26
Hand Attack Transillumination Paper Moving	26 (13 * 2)	1	26
Hand Attack Transillumination Display Still	26 (13 * 2)	1	26
Hand Attack Transillumination Display Moving	26 (13 * 2)	1	26
Hand Attack Transillumination Display Zoom	26 (13 * 2)	1	26
	النجااا	VA	SIL

Table: Overview scale of the video attack data sets

Threat Evaluation Metrics

Threat Analysis

Threat Evaluation Metrics

Genuine Attempt

Impostor Attempt

Attack Attempt

Figure: 3 Types of comparisons

Threat Evaluation Metrics

False Match Rate (FMR)

$$FMR = \frac{accepted\ impostor\ attempts}{all\ impostor\ attempts}$$

■ False Non Match Rate (FNMR)

$$FNMR = \frac{denied\ genuine\ attempts}{all\ genuine\ attempts}$$

Equal Error Rate (EER)

$$EER = Operating point where FMR = FNMR$$

Impostor Attack Presentation Match Rate (IAPMR)

$$IAPMR = \frac{accepted\ attack\ attempts}{all\ attack\ attempts}$$

Threat Evaluation Protocol

Finger Subject A

Finger Subject A

Finger Subject B

Figure: Step 1

Threat Evaluation Protocol

Figure: Step 2

Feature Extraction Algorithms

- Binarized Vessel Network
 - Maximum Curvature (MC) [1]
 - Principal Curvature (PC) [2]
 - Wide Line Detector (WLD) [3]
 - Repeated Line Tracking (RLT) [4]
 - Gabor Filters (GF) [5]
 - Isotropic Undecimated Wavelet Transform (IUWT) [6]
 - Anatomy Structure Analysis-Based Vein Extraction (ASAVE) [7]

Figure: Binarized Vessel Networks

Feature Extraction Algorithms

- Binarized Vessel Network
 - Maximum Curvature (MC) [1]
 - Principal Curvature (PC) [2]
 - Wide Line Detector (WLD) [3]
 - Repeated Line Tracking (RLT) [4]
 - Gabor Filters (GF) [5]
 - Isotropic Undecimated Wavelet Transform (IUWT) [6]
 - Anatomy Structure Analysis-Based Vein Extraction (ASAVE) [7]
- Keypoints
 - Scale Invariant Feature Transform (SIFT) based [8]
 - Speeded Up Robust Features (SURF) based [8]
 - Deformation Tolerant Feature Point Matching (DTFPM) [9]

Figure: Keypoints

Feature Extraction Algorithms

- Binarized Vessel Network
 - Maximum Curvature (MC) [1]
 - Principal Curvature (PC) [2]
 - Wide Line Detector (WLD) [3]
 - Repeated Line Tracking (RLT) [4]
 - Gabor Filters (GF) [5]
 - Isotropic Undecimated Wavelet Transform (IUWT) [6]
 - Anatomy Structure Analysis-Based Vein Extraction (ASAVE) [7]
- Keypoints
 - Scale Invariant Feature Transform (SIFT) based [8]
 - Speeded Up Robust Features (SURF) based [8]
 - Deformation Tolerant Feature Point Matching (DTFPM) [9]
- Texture
 - Local Binary Pattern & Histogram Intersection (LBP) [10]
 - Convolutional Neural Network trained using triplet loss (CNN) [11]

Threat Evaluation Results

Figure: Results IAPMR Finger Vein Data

Threat Evaluation Results

Figure: Exemplary visualization 2 scenario protocol used on hand vein data with maximum curvature.

Threat Evaluation Results

Attack Detection Methods from Literature

Attack Detection

Attack Detection Methods from Literature

Eulerian Video Magnification + Optical Flow by Raghavendra et al.[12]

FFT-based by Bok et al. [13]

Attack Detection Methods Developed During Thesis

FFT-based by Schuiki & Uhl 1[14]

FFT-based by Schuiki & Uhl 2 [14]

Attack Detection Metrics

Attack Presentation Classification Error Rate (APCER)

$$APCER = \frac{spoof\ attempts\ classified\ as\ real\ finger\ attempts}{all\ spoof\ attempts}$$

Bona Fide Presentation Classification Error Rate (BPCER)

$$BPCER = \frac{real \ finger \ attempts \ classified \ as \ spoof}{all \ real \ finger \ attempts}$$

■ Detection - Equal Error Rate (D-EER)

$$D - EER = Point where APCER = BPCER$$

Attack Detection Results Finger Vein

D-EER Attack Detection Finger Vein [%]							
	Eulerian Video Magnification	PPG Bok et al.	PPG Schuiki & Uhl 1	PPG Schuiki & Uhl 2			
Thick Still Thick Trembling Thin Still Thin Trembling	3.57	4.49	3.74	0.52			
	58.51	9.62	11.75	7.05			
	3.31	1.85	6.60	0.43			
	62.92 (37.08)	23.38	23.38	10.90			
Thick Still Thick Trembling Thin Still Thin Trembling	6.52	12.12	1.05	1.94			
	72.78 (27.22)	26.48	16.84	24.62			
	7.70	4.80	0.58	0.51			
	73.48 (26.52)	24.97	29.85	22.42			

Attack Detection Results Hand Vein

D-EER Attack Detection Hand Vein [%]						
	Eulerian Video Magnification	PPG Bok et al.	PPG Schuiki & Uhl 1	PPG Schuiki & Uhl 2		
Paper Still Paper Moving Display Still Display Moving Display Zooming	60.94 (39.06)	9.75	23.08	7.69		
	87.10 (12.90)	1.46	0.00	0.00		
	8.06	16.81	11.54	3.85		
	41.02	7.63	3.85	7.69		
	53.08	0.37	0.00	0.00		
Paper Still □ Paper Moving □ Display Still □ Display Moving □ Display Zooming	65.44 (34.56)	15.66	15.38	3.85		
	86.81 (13.19)	0.00	19.23	0.00		
	22.01	31.54	0.00	0.00		
	74.18 (25.82)	19.26	0.00	3.85		
	73.63 (26.37)	7.60	0.00	0.00		

Conclusion / Future Work

Conclusion:

- We saw that for all of the video attacks at least one scenario exists where a system could potentially be fooled.
- Although often the newly developed methods for attack detection work quite well, there is room for improvement.

Future Work:

■ Deep Learning Methods

Thank you for your attention!

Thank You! Q & A

Bibliography I

- N. Miura, A. Nagasaka, and T. Miyatake, "Extraction of finger-vein patterns using maximum curvature points in image profiles," *IEICE - Trans. Inf. Syst.*, vol. E90-D, p. 1185–1194, Aug. 2007.
- [2] J. H. Choi, W. Song, T. Kim, S.-R. Lee, and H. C. Kim, "Finger vein extraction using gradient normalization and principal curvature," in *Image Processing: Machine Vision Applications II*, vol. 7251, pp. 7251 7251 9, 2009.
- [3] B. Huang, Y. Dai, R. Li, D. Tang, and W. Li, "Finger-vein authentication based on wide line detector and pattern normalization," in 2010 20th International Conference on Pattern Recognition, pp. 1269–1272, 2010.
- [4] N. Miura, A. Nagasaka, and T. Miyatake, "Feature extraction of finger-vein patterns based on repeated line tracking and its application to personal identification," *Machine Vision and Applications*, vol. 15, pp. 194–203, 10 2004.
- [5] A. Kumar and Y. Zhou, "Human identification using finger images," *IEEE Transactions on Image Processing*, vol. 21, no. 4, pp. 2228–2244, 2012.
- [6] J. Starck, J. Fadili, and F. Murtagh, "The undecimated wavelet decomposition and its reconstruction," *IEEE Transactions on Image Processing*, vol. 16, no. 2, pp. 297–309, 2007.
- [7] L. Yang, G. Yang, Y. Yin, and X. Xi, "Finger vein recognition with anatomy structure analysis," *IEEE Transactions on Circuits and Systems for Video Technology*, vol. 28, no. 8, pp. 1892–1905, 2018.

Bibliography II

- [8] C. Kauba, J. Reissig, and A. Uhl, "Pre-processing cascades and fusion in finger vein recognition," in *Proceedings of the International Conference of the Biometrics Special Interest Group (BIOSIG'14)*, (Darmstadt, Germany), Sep. 2014.
- [9] Y. Matsuda, N. Miura, A. Nagasaka, H. Kiyomizu, and T. Miyatake, "Finger-vein authentication based on deformation-tolerant feature-point matching," *Machine Vision and Applications*, vol. 27, 02 2016.
- [10] E. C. Lee, H. C. Lee, and K. R. Park, "Finger vein recognition using minutia-based alignment and local binary pattern-based feature extraction," *Int. J. Imaging Syst. Technol.*, vol. 19, p. 179–186, Sept. 2009.
- [11] G. Wimmer, B. Prommegger, and A. Uhl, "Finger vein recognition and intra-subject similarity evaluation of finger veins using the cnn triplet loss," in *Proceedings of the 25th International* Conference on Pattern Recognition (ICPR), pp. 400–406, 2020.
- [12] R. Raghavendra, M. Avinash, S. Marcel, and C. Busch, "Finger vein liveness detection using motion magnification," in 2015 IEEE 7th International Conference on Biometrics Theory, Applications and Systems (BTAS), pp. 1–7, 2015.
- [13] J. Bok, K. Suh, and E. C. Lee, "Detecting fake finger-vein data using remote photoplethysmography," *Electronics*, vol. 8, p. 1016, 09 2019.
- [14] J. Schuiki and A. Uhl, "Improved liveness detection in dorsal hand vein videos using photoplethysmography," in *Proceedings of the IEEE 19th International Conference of the Biometrics Special Interest Group (BIOSIG 2020)*, (Darmstadt, Germany), pp. 57–65, 2020.