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Introduction
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Figure: Near-Infrared Imaging.
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The Presentation Attack Problem
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Figure: Block diagram visualisation of presentation attack problem
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Research Goals

Initial situation: 2 Video attack data sets.
Threat Analysis: Potential to fool a real system?
Attack Detection: Find methods to detect attacks.
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The Data

Figure: Example finger vein attack frames. Top row: LED. Bottom row: Laser.
Column f.l.t.r.: Bona fide, Thin Attack, Thick Attack.
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The Data

Figure: Example hand vein attack frames. Top row: Reflected Light. Bottom
row: Transillumination. Column f.l.t.r.: Bona fide, Paper Attack, Display Attack.
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The Data

Sample Type Unique Fingers Samples Videos
Finger Bona Fide LED 96 (16 * 6) 5 480
Finger Bona Fide Laser 96 (16 * 6) 5 480
Finger Attack LED Thin Still 96 (16 * 6) 3 192
Finger Attack LED Thick Trembling 96 (16 * 6) 3 192
Finger Attack LED Thin Still 96 (16 * 6) 3 192
Finger Attack LED Thick Trembling 96 (16 * 6) 3 192
Finger Attack Laser Thin Still 96 (16 * 6) 3 192
Finger Attack Laser Thick Trembling 96 (16 * 6) 3 192
Finger Attack Laser Thin Still 96 (16 * 6) 3 192
Finger Attack Laser Thick Trembling 96 (16 * 6) 3 192
Hand Bona Fide Reflected Light 26 (13 * 2) 1 26
Hand Bona Fide Transillumination 26 (13 * 2) 1 26
Hand Attack Reflected Light Paper Still 26 (13 * 2) 1 26
Hand Attack Reflected Light Paper Moving 26 (13 * 2) 1 26
Hand Attack Reflected Light Display Still 26 (13 * 2) 1 26
Hand Attack Reflected Light Display Moving 26 (13 * 2) 1 26
Hand Attack Reflected Light Display Zoom 26 (13 * 2) 1 26
Hand Attack Transillumination Paper Still 26 (13 * 2) 1 26
Hand Attack Transillumination Paper Moving 26 (13 * 2) 1 26
Hand Attack Transillumination Display Still 26 (13 * 2) 1 26
Hand Attack Transillumination Display Moving 26 (13 * 2) 1 26
Hand Attack Transillumination Display Zoom 26 (13 * 2) 1 26

Table: Overview scale of the video attack data sets
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Threat Evaluation Metrics

Threat Analysis
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Threat Evaluation Metrics

Finger Subject A

Finger Subject A

Finger Subject B

Spoof Subject A

Genuine Attempt

Impostor Attempt

Attack Attempt

Figure: 3 Types of comparisons
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Threat Evaluation Metrics

False Match Rate (FMR)

FMR =
accepted impostor attempts

all impostor attempts

False Non Match Rate (FNMR)

FNMR =
denied genuine attempts

all genuine attempts

Equal Error Rate (EER)

EER = Operating point where FMR = FNMR

Impostor Attack Presentation Match Rate (IAPMR)

IAPMR =
accepted attack attempts

all attack attempts
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Threat Evaluation Protocol
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Threat Evaluation Protocol
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Feature Extraction Algorithms

Binarized Vessel Network
Maximum Curvature (MC) [1]
Principal Curvature (PC) [2]
Wide Line Detector (WLD) [3]
Repeated Line Tracking (RLT) [4]
Gabor Filters (GF) [5]
Isotropic Undecimated Wavelet Transform (IUWT) [6]
Anatomy Structure Analysis-Based Vein Extraction (ASAVE) [7]

Figure: Binarized Vessel Networks
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Feature Extraction Algorithms

Binarized Vessel Network
Maximum Curvature (MC) [1]
Principal Curvature (PC) [2]
Wide Line Detector (WLD) [3]
Repeated Line Tracking (RLT) [4]
Gabor Filters (GF) [5]
Isotropic Undecimated Wavelet Transform (IUWT) [6]
Anatomy Structure Analysis-Based Vein Extraction (ASAVE) [7]

Keypoints
Scale Invariant Feature Transform (SIFT) based [8]
Speeded Up Robust Features (SURF) based [8]
Deformation Tolerant Feature Point Matching (DTFPM) [9]

Figure: Keypoints
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Feature Extraction Algorithms

Binarized Vessel Network
Maximum Curvature (MC) [1]
Principal Curvature (PC) [2]
Wide Line Detector (WLD) [3]
Repeated Line Tracking (RLT) [4]
Gabor Filters (GF) [5]
Isotropic Undecimated Wavelet Transform (IUWT) [6]
Anatomy Structure Analysis-Based Vein Extraction (ASAVE) [7]

Keypoints
Scale Invariant Feature Transform (SIFT) based [8]
Speeded Up Robust Features (SURF) based [8]
Deformation Tolerant Feature Point Matching (DTFPM) [9]

Texture
Local Binary Pattern & Histogram Intersection (LBP) [10]
Convolutional Neural Network trained using triplet loss (CNN) [11]
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Threat Evaluation Results
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Figure: Results IAPMR Finger Vein Data
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Threat Evaluation Results
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Threat Evaluation Results
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Figure: Results IAPMR (Left and Right) Hand Vein Data
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Attack Detection Methods from Literature

Attack Detection
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Attack Detection Methods from Literature

Eulerian Video Magnification + Optical Flow by Raghavendra et
al.[12]

FFT-based by Bok et al. [13]
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Attack Detection Methods Developed During Thesis

FFT-based by Schuiki & Uhl 1[14]

W
indow

ing + H
ighpass

+ Zero Padding

FFT-based by Schuiki & Uhl 2 [14]

W
indow

ing + H
ighpass

+ Zero Padding

Feature vector
construction
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Attack Detection Metrics

Attack Presentation Classification Error Rate (APCER)

APCER =
spoof attempts classified as real finger attempts

all spoof attempts

Bona Fide Presentation Classification Error Rate (BPCER)

BPCER =
real finger attempts classified as spoof

all real finger attempts

Detection - Equal Error Rate (D-EER)

D − EER = Point where APCER = BPCER
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Attack Detection Results Finger Vein

D-EER Attack Detection Finger Vein [%]

Eulerian
Video

Magnification

PPG
Bok et al.

PPG
Schuiki &

Uhl 1

PPG
Schuiki &

Uhl 2

LE
D

Thick Still 3.57 4.49 3.74 0.52
Thick Trembling 58.51 9.62 11.75 7.05
Thin Still 3.31 1.85 6.60 0.43
Thin Trembling 62.92 (37.08) 23.38 23.38 10.90

La
se

r Thick Still 6.52 12.12 1.05 1.94
Thick Trembling 72.78 (27.22) 26.48 16.84 24.62
Thin Still 7.70 4.80 0.58 0.51
Thin Trembling 73.48 (26.52) 24.97 29.85 22.42
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Attack Detection Results Hand Vein

D-EER Attack Detection Hand Vein [%]

Eulerian
Video

Magnification

PPG
Bok et al.

PPG
Schuiki &

Uhl 1

PPG
Schuiki &

Uhl 2

R
efl

.
Li

gh
t Paper Still 60.94 (39.06) 9.75 23.08 7.69

Paper Moving 87.10 (12.90) 1.46 0.00 0.00
Display Still 8.06 16.81 11.54 3.85
Display Moving 41.02 7.63 3.85 7.69
Display Zooming 53.08 0.37 0.00 0.00

Tr
an

si
ll.

Paper Still 65.44 (34.56) 15.66 15.38 3.85
Paper Moving 86.81 (13.19) 0.00 19.23 0.00
Display Still 22.01 31.54 0.00 0.00
Display Moving 74.18 (25.82) 19.26 0.00 3.85
Display Zooming 73.63 (26.37) 7.60 0.00 0.00
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Conclusion / Future Work

Conclusion:
We saw that for all of the video attacks at least one scenario exists
where a system could potentially be fooled.
Although often the newly developed methods for attack detection
work quite well, there is room for improvement.

Future Work:
Deep Learning Methods
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Thank you for your attention!

Thank You!
Q & A
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