Confronting a Variety of Finger Vein Recognition Algorithms With Wax Presentation Attack Artefacts

Johannes Schuiki, Bernhard Prommegger, and Andreas Uhl

University of Salzburg Department of Computer Sciences

May 6th, 2021

Table of Contents

- 1 The Presentation Attack Problem
- 2 Presentation Attack Recipe & Data Collection
- 3 Matching Algorithms
- 4 Experimental Results
- 5 Conclusion & Future Work
- 6 Bibliography

The Presentation Attack Problem

Figure 1: Block diagram visualisation of presentation attack problem

State of research

- Currently 2 finger vein presentation attack databases available
 - The Idiap Research Institute VERA Fingervein Database [1]
 - South China University of Technology Finger Vein Database [2].
- Threat analysis commonly done using "2 Scenario Protocol"
 - Maximum Curvature (MC) [3]
 - Wide Line Detector (WLD) [4]
 - Repeated Line Tracking (RLT) [5]

State of research

Currently 2 finger vein presentation attack databases available

- The Idiap Research Institute VERA Fingervein Database [1]
- South China University of Technology Finger Vein Database [2].
- Threat analysis commonly done using "2 Scenario Protocol"
 - Maximum Curvature (MC) [3]
 - Wide Line Detector (WLD) [4]
 - Repeated Line Tracking (RLT) [5]

Scope of this research

- Reworked [6] presentation attack recipe using beeswax
- Generation of corresponding data set
- Extensive Threat analysis for this data set using 12 feature extraction & matching schemes that can be categorized into three meta types of algorithms

Presentation Attack Recipe

Figure 2: a) original finger from PLUS-FV3 database [7] b) & c) vein pattern extracted with Principal Curvature [8] d) 3D printed mould for beeswax e) sandwich-principle for PA generation

Data Collection

Figure 3: Top row: Bona Fide (PLUS-FV3 Data set), Bottom row: Presentation Attack. Left column: Laser illum., Right column: LED illum.

Sample Type	Unique Fingers	Samples	Images
PLUS-FV3 Bona Fide LED	132 (22 * 6)	5	660
PLUS-FV3 Bona Fide Laser	132 (22 * 6)	5	660
Presentation Attack LED thick	132 (22 * 6)	3	396
Presentation Attack LED thin	132 (22 * 6)	3	396
Presentation Attack Laser thick	132 (22 * 6)	3	396
Presentation Attack Laser thin	132 (22 * 6)	3	396

Table 1: Overview scale of wax presentation attack database

Metrics

False Match Rate (FMR)

$FMR = \frac{accepted impostor attempts}{all impostor attempts}$

False Non Match Rate (FNMR)

$FNMR = \frac{denied \ genuine \ attempts}{all \ genuine \ attempts}$

Equal Error Rate (EER)

EER = Operating point where FMR = FNMR

Impostor Attack Presentation Match Rate (IAPMR)

 $IAPMR = \frac{accepted attack attempts}{all attack attempts}$

Threat Analysis: 2 Scenario Protocol

Threat Analysis: 2 Scenario Protocol

Threat Analysis: Matching Algorithms

Binarized Vessel Network

- Maximum Curvature (MC) [3]
- Principal Curvature (PC) [8]
- Wide Line Detector (WLD) [4]
- Repeated Line Tracking (RLT) [5]
- Gabor Filters (GF) [9]
- Isotropic Undecimated Wavelet Transform (IUWT) [10]
- Anatomy Structure Analysis-Based Vein Extraction (ASAVE) [11]

Figure 6: Binarized Vessel Networks

Threat Analysis: Matching Algorithms

Binarized Vessel Network

- Maximum Curvature (MC) [3]
- Principal Curvature (PC) [8]
- Wide Line Detector (WLD) [4]
- Repeated Line Tracking (RLT) [5]
- Gabor Filters (GF) [9]
- Isotropic Undecimated Wavelet Transform (IUWT) [10]
- Anatomy Structure Analysis-Based Vein Extraction (ASAVE) [11]

Keypoints

- Scale Invariant Feature Transform (SIFT) based [12]
- Speeded Up Robust Features (SURF) based [12]
- Deformation Tolerant Feature Point Matching (DTFPM) [13]

Figure 6: Keypoints

Threat Analysis: Matching Algorithms

Binarized Vessel Network

- Maximum Curvature (MC) [3]
- Principal Curvature (PC) [8]
- Wide Line Detector (WLD) [4]
- Repeated Line Tracking (RLT) [5]
- Gabor Filters (GF) [9]
- Isotropic Undecimated Wavelet Transform (IUWT) [10]
- Anatomy Structure Analysis-Based Vein Extraction (ASAVE) [11]

Keypoints

- Scale Invariant Feature Transform (SIFT) based [12]
- Speeded Up Robust Features (SURF) based [12]
- Deformation Tolerant Feature Point Matching (DTFPM) [13]
- Texture
 - Local Binary Pattern & Histogram Intersection (LBP) [14]
 - Convolutional Neural Network trained using triplet loss (CNN) [15]¹

¹CNN trained on PROTECT data [16], everything else used implementation from OpenVein-Toolkit [17]

		LED			Laser	
Method	CED	IAPMR	IAPMR	EED	IAPMR	IAPMR
		thick	thin		thick	thin
MC	0.61	72.29	89.52	1.29	58.37	75.00
PC	0.62	71.24	80.93	1.90	55.17	64.27
WLD	1.13	69.28	84.22	2.80	57.73	78.66
RLT	4.91	43.40	36.49	6.59	23.75	17.30
GF	1.06	37.78	60.98	2.65	31.80	53.41
IUWT	0.53	79.35	90.03	1.97	79.82	84.34
ASAVE	2.35	24.31	19.07	2.59	8.81	1.89
DTFPM	2.20	16.99	16.16	2.64	5.62	6.31
SURF	3.43	0.00	0.00	3.49	0.00	0.00
SIFT	0.96	0.00	0.00	0.91	0.00	0.13
LBP	3.79	0.00	0.38	4.24	0.00	0.00
CNN	2.89	0.67	0.35	6.8	0.0	0.05

		LED			Laser	
Method	EED	IAPMR	IAPMR	EED	IAPMR	IAPMR
	EEN	thick	thin	EEN	thick	thin
MC	0.61	72.29	89.52	1.29	58.37	75.00
PC	0.62	71.24	80.93	1.90	55.17	64.27
WLD	1.13	69.28	84.22	2.80	57.73	78.66
RLT	4.91	43.40	36.49	6.59	23.75	17.30
GF	1.06	37.78	60.98	2.65	31.80	53.41
IUWT	0.53	79.35	90.03	1.97	79.82	84.34
ASAVE	2.35	24.31	19.07	2.59	8.81	1.89
DTFPM	2.20	16.99	16.16	2.64	5.62	6.31
SURF	3.43	0.00	0.00	3.49	0.00	0.00
SIFT	0.96	0.00	0.00	0.91	0.00	0.13
LBP	3.79	0.00	0.38	4.24	0.00	0.00
CNN	2.89	0.67	0.35	6.8	0.0	0.05

		LED			Laser	
Method	EED	IAPMR	IAPMR	EED	IAPMR	IAPMR
	EEN	thick	thin	EEN	thick	Laser PMR IAPMR hick thin 8.37 75.00 5.17 64.27 7.73 78.66 3.75 17.30 1.80 53.41 9.82 84.34 3.81 1.89 5.62 6.31 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.05
MC	0.61	72.29	89.52	1.29	58.37	75.00
PC	0.62	71.24	80.93	1.90	55.17	64.27
WLD	1.13	69.28	84.22	2.80	57.73	78.66
RLT	4.91	43.40	36.49	6.59	23.75	17.30
GF	1.06	37.78	60.98	2.65	31.80	53.41
IUWT	0.53	79.35	90.03	1.97	79.82	84.34
ASAVE	2.35	24.31	19.07	2.59	8.81	1.89
DTFPM	2.20	16.99	16.16	2.64	5.62	6.31
SURF	3.43	0.00	0.00	3.49	0.00	0.00
SIFT	0.96	0.00	0.00	0.91	0.00	0.13
LBP	3.79	0.00	0.38	4.24	0.00	0.00
CNN	2.89	0.67	0.35	6.8	0.0	0.05

		LED			Laser			
Method	EED	IAPMR	IAPMR	EED	IAPMR	IAPMR		
	EEN	thick	thin		Laser IAPMR IAPMR thick thin 58.37 75.00 55.17 64.27 57.73 78.66 23.75 17.30 31.80 53.41 79.82 84.34 8.81 1.89 5.62 6.31 0.00 0.00 0.00 0.13 0.00 0.00 0.0 0.05			
MC	0.61	72.29	89.52	1.29	58.37	75.00		
PC	0.62	71.24	80.93	1.90	55.17	64.27		
WLD	1.13	69.28	84.22	2.80	57.73	78.66		
RLT	4.91	43.40	36.49	6.59	23.75	17.30		
GF	1.06	37.78	60.98	2.65	31.80	53.41		
IUWT	0.53	79.35	90.03	1.97	79.82	84.34		
ASAVE	2.35	24.31	19.07	2.59	8.81	1.89		
DTFPM	2.20	16.99	16.16	2.64	5.62	6.31		
SURF	3.43	0.00	0.00	3.49	0.00	0.00		
SIFT	0.96	0.00	0.00	0.91	0.00	0.13		
LBP	3.79	0.00	0.38	4.24	0.00	0.00		
CNN	2.89	0.67	0.35	6.8	0.0	0.05		

		LED			Laser	
Method	сср	IAPMR	IAPMR	ггр	IAPMR	IAPMR
	EEN	thick	thin	EEN	thick	thin
MC	0.61	72.29	89.52	1.29	58.37	75.00
PC	0.62	71.24	80.93	1.90	55.17	64.27
WLD	1.13	69.28	84.22	2.80	57.73	78.66
RLT	4.91	43.40	36.49	6.59	23.75	17.30
GF	1.06	37.78	60.98	2.65	31.80	53.41
IUWT	0.53	79.35	90.03	1.97	79.82	84.34
ASAVE	2.35	24.31	19.07	2.59	8.81	1.89
DTFPM	2.20	16.99	16.16	2.64	5.62	6.31
SURF	3.43	0.00	0.00	3.49	0.00	0.00
SIFT	0.96	0.00	0.00	0.91	0.00	0.13
LBP	3.79	0.00	0.38	4.24	0.00	0.00
CNN	2.89	0.67	0.35	6.8	0.0	0.05

		LED			Laser	
Method		IAPMR	IAPMR	EED	IAPMR	IAPMR
		thick	thin		thick	thin
MC	0.61	72.29	89.52	1.29	58.37	75.00
PC	0.62	71.24	80.93	1.90	55.17	64.27
WLD	1.13	69.28	84.22	2.80	57.73	78.66
RLT	4.91	43.40	36.49	6.59	23.75	17.30
GF	1.06	37.78	60.98	2.65	31.80	53.41
IUWT	0.53	79.35	90.03	1.97	79.82	84.34
ASAVE	2.35	24.31	19.07	2.59	8.81	1.89
DTFPM	2.20	16.99	16.16	2.64	5.62	6.31
SURF	3.43	0.00	0.00	3.49	0.00	0.00
SIFT	0.96	0.00	0.00	0.91	0.00	0.13
LBP	3.79	0.00	0.38	4.24	0.00	0.00
CNN	2.89	0.67	0.35	6.8	0.0	0.05

		LED			Laser	IAPMR thin 75.00 64.27 78.66 17.30 53.41 84.34 1.89 6.31 0.00	
Method	CED	IAPMR	MR IAPMR _{EER} IAPMF	IAPMR	IAPMR		
		thick	thin		thick	thin	
MC	0.61	72.29	89.52	1.29	58.37	75.00	
PC	0.62	71.24	80.93	1.90	55.17	64.27	
WLD	1.13	69.28	84.22	2.80	57.73	78.66	
RLT	4.91	43.40	36.49	6.59	23.75	17.30	
GF	1.06	37.78	60.98	2.65	31.80	53.41	
IUWT	0.53	79.35	90.03	1.97	79.82	84.34	
ASAVE	2.35	24.31	19.07	2.59	8.81	1.89	
DTFPM	2.20	16.99	16.16	2.64	5.62	6.31	
SURF	3.43	0.00	0.00	3.49	0.00	0.00	
SIFT	0.96	0.00	0.00	0.91	0.00	0.13	
LBP	3.79	0.00	0.38	4.24	0.00	0.00	
CNN	2.89	0.67	0.35	6.8	0.0	0.05	

Conclusion & Future Work

Conclusion

- Generation of publicly available finger vein presentation attack dataset employing beeswax
- Finger vein recognition algorithms are not equally prone to presentation attacks used in this work

Conclusion

- Generation of publicly available finger vein presentation attack dataset employing beeswax
- Finger vein recognition algorithms are not equally prone to presentation attacks used in this work

Future Work

- Can we use in-homogeneous behaviour of recognition algorithms for presentation attack detection?
- Transfer of vulnerability analysis to other publicly available finger vein presentation attack datasets

Thank You! Q & A

- P. Tome, R. Raghavendra, C. Busch, S. Tirunagari, N. Poh, B. H. Shekar, D. Gragnaniello, C. Sansone, L. Verdoliva, and S. Marcel, "The 1st competition on counter measures to finger vein spoofing attacks," in *2015 International Conference on Biometrics (ICB)*, pp. 513–518, 2015.
- [2] X. Qiu, S. Tian, W. Kang, W. Jia, and Q. Wu, "Finger vein presentation attack detection using convolutional neural networks," in *Biometric Recognition* (J. Zhou, Y. Wang, Z. Sun, Y. Xu, L. Shen, J. Feng, S. Shan, Y. Qiao, Z. Guo, and S. Yu, eds.), (Cham), pp. 296–305, Springer International Publishing, 2017.
- [3] N. Miura, A. Nagasaka, and T. Miyatake, "Extraction of finger-vein patterns using maximum curvature points in image profiles," *IEICE - Trans. Inf. Syst.*, vol. E90-D, p. 1185–1194, Aug. 2007.
- [4] B. Huang, Y. Dai, R. Li, D. Tang, and W. Li, "Finger-vein authentication based on wide line detector and pattern normalization," in 2010 20th International Conference on Pattern Recognition, pp. 1269–1272, 2010.
- [5] N. Miura, A. Nagasaka, and T. Miyatake, "Feature extraction of finger-vein patterns based on repeated line tracking and its application to personal identification," *Machine Vision and Applications*, vol. 15, pp. 194–203, 10 2004.
- [6] L. Debiasi, C. Kauba, H. Hofbauer, B. Prommegger, and A. Uhl, "Presentation attacks and detection in finger- and hand-vein recognition," in *Proceedings of the Joint Austrian Computer Vision and Robotics Workshop (ACVRW'20)*, (Graz, Austria), pp. 65–70, 2020.

- [7] C. Kauba, B. Prommegger, and A. Uhl, "Focussing the beam a new laser illumination based data set providing insights to finger-vein recognition," in 2018 IEEE 9th International Conference on Biometrics Theory, Applications and Systems (BTAS), (Los Angeles, California, USA), pp. 1–9, 2018.
- [8] J. H. Choi, W. Song, T. Kim, S.-R. Lee, and H. C. Kim, "Finger vein extraction using gradient normalization and principal curvature," in *Image Processing: Machine Vision Applications II*, vol. 7251, pp. 7251 – 7251 – 9, 2009.
- [9] A. Kumar and Y. Zhou, "Human identification using finger images," IEEE Transactions on Image Processing, vol. 21, no. 4, pp. 2228–2244, 2012.
- [10] J. Starck, J. Fadili, and F. Murtagh, "The undecimated wavelet decomposition and its reconstruction," *IEEE Transactions on Image Processing*, vol. 16, no. 2, pp. 297–309, 2007.
- [11] L. Yang, G. Yang, Y. Yin, and X. Xi, "Finger vein recognition with anatomy structure analysis," *IEEE Transactions on Circuits and Systems for Video Technology*, vol. 28, no. 8, pp. 1892–1905, 2018.
- [12] C. Kauba, J. Reissig, and A. Uhl, "Pre-processing cascades and fusion in finger vein recognition," in *Proceedings of the International Conference of the Biometrics Special Interest Group (BIOSIG'14)*, (Darmstadt, Germany), Sep. 2014.
- [13] Y. Matsuda, N. Miura, A. Nagasaka, H. Kiyomizu, and T. Miyatake, "Finger-vein authentication based on deformation-tolerant feature-point matching," *Machine Vision and Applications*, vol. 27, 02 2016.

- [14] E. C. Lee, H. C. Lee, and K. R. Park, "Finger vein recognition using minutia-based alignment and local binary pattern-based feature extraction," *Int. J. Imaging Syst. Technol.*, vol. 19, p. 179–186, Sept. 2009.
- [15] G. Wimmer, B. Prommegger, and A. Uhl, "Finger vein recognition and intra-subject similarity evaluation of finger veins using the cnn triplet loss," in *Proceedings of the 25th International Conference on Pattern Recognition (ICPR)*, pp. 400–406, 2020.
- [16] C. Galdi, J. Boyle, L. Chen, V. Chiesa, L. Debiasi, J.-L. Dugelay, J. Ferryman, A. Grudzień, C. Kauba, S. Kirchgasser, M. Kowalski, M. Linortner, P. Maik, K. Michoń, L. Patino, B. Prommegger, A. F. Sequeira, Łukasz Szklarski, and A. Uhl, "Protect: Pervasive and user focused biometrics border project – a case study," *IET Biometrics*, vol. 9, no. 6, pp. 297–308, 2020.
- [17] C. Kauba, B. Prommegger, and A. Uhl, "Openvein an open-source modular multipurpose finger vein scanner design," in *Handbook of Vascular Biometrics* (A. Uhl, C. Busch, S. Marcel, and R. Veldhuis, eds.), ch. 3, pp. 77–111, Cham, Switzerland: Springer Nature Switzerland AG, 2019.