Improved Liveness Detection in Dorsal Hand Vein Videos using Photoplethysmography

Johannes Schuiki, Andreas Uhl

University of Salzburg Department of Computer Sciences

September 17, 2020

Table of Contents

- 1 Hand-Vein Biometrics
- 2 The Presentation Attack Problem
- 3 Video Database
- 4 Methods
- 5 Experimental Results
- 6 Conclusion
- 7 Bibliography

- Pattern of blood vessels under the skin has become an emerging biometric trait due to uniqueness
- Captured through near-infrared (NIR) illumination
- NIR light is absorbed by oxygen-saturated hemoglobin in blood
- Can be used for authentication (similar to fingerprint)

Hand-Vein Biometrics II

Advantages

- Hard to forge since intrinsic trait and only visible through NIR illumination
- No abrasion as with fingerprints
- Invariant to sweat, sunscreen, etc.
- Non-intrusive

Disadvantages

- Special hardware needed (Relatively strong NIR illumination, NIR imaging sensor, ...)
- Vein structure may be influenced by certain diseases or injuries
- In general low contrast and quality

The Presentation Attack Problem

Scenario: Access to previously captured hand vein data

- Presentation Attacks
 - Printed on paper [1]
 - Shown on smartphone display [2]
- Countermeasures
 - Still Images: Skin texture, image quality, 2D frequency space, CNNs
 - Additional sensors: capacitive sensing, 3D imaging
 - Differences in adjacent video frames

Video Database I

Figure: Modes of operation: Transillumination (left) and Reflected Light.

Video Database II

Figure: Example frames from NIR videos; top row: transillumination, bottom row: reflected light; left: real video frame, middle column: paper attack and right: smartphone attack, respectively. Captured with [3].

- 13 Persons à 2 Hands
- 2 Illumination Variants
- 5 Presentation Attack Scenarios
- Database in total: 312 Video Sequences → 13x2x2x(5+1)

Methods I

Related approaches build upon a common basis:

Figure: Idea of Average Pixel Illumination.

- Exception: [4] used "Eulerian motion magnification" → [5] used the described spoofing database to show that this method can still be fooled
- In [6], the peaks and valleys of the time series were used as classification criteria
- [7, 8, 9] reported the observation that this processing step contains information about heart rate by transforming the time series to Fourier domain
- Bok et al. [10] constructed classifier out of Fourier domain, although for finger vein videos

Methods III

Reference Method: Bok et al.

 $Feature \ Vector \in R^{50}$

Figure: Feature Vector Construction Bok et al.

Methods IV

Figure: Feature Vector Construction Method 1.

Methods V

Observation from Wei et al. [11]

Figure: Blood pressure measurement in Fourier space have harmonics that can be modelled through exponential decay. Figure taken from [11].

Methods VI

Introduced Method 2

Like before: Fourier transform for every window

Figure: Feature Vector Construction Method 2.

Evaluation metrics according to ISO/IEC 30107-3:2017

- Attack Presentation Classification Error Rate (APCER): proportion of attack presentations incorrectly classified as bona fide presentations in a specific scenario
- Bona Fide Presentation Classification Error Rate (BPCER): proportion of bona fide presentations incorrectly classified as presentation attacks in a specific scenario

Experimental Results II

RBF Kernel C=10, $\gamma = 0.001$

Spoof Method		Bok et al.		Method 1		Method 2	
		APCER	BPCER	APCER	BPCER	APCER	BPCER
Transill.	Paper	10.31	30.77	11.54	15.38	11.54	3.85
	Paper Mov.	4.35	37.50	26.92	11.54	11.54	0.00
	SP	0.00	89.42	3.85	7.69	0.00	0.00
	SP Mov.	77.36	89.42	0.00	19.23	19.23	0.00
	SP Zoom	59.43	17.31	3.85	19.23	11.54	0.00
Refl. Light	Paper	0.00	80.37	53.85	61.54	7.69	23.08
	Paper Mov.	49.06	5.61	23.08	3.85	42.31	7.69
	SP	63.55	6.54	7.69	3.85	3.85	3.85
	SP Mov.	23.08	6.54	3.85	0.00	0.00	3.85
	SP Zoom	15.24	7.48	3.85	0.00	0.00	3.85

Table: The table shows the SVM results with a RBF kernel, BoxConstraint of 10 and a γ value of 0.001 as proposed in [10]. Best results are highlighted **bold**.

Linear SVM Kernel

Spoof Method		Bok et al.		Method 1		Method 2	
		APCER	BPCER	APCER	BPCER	APCER	BPCER
Refl. Light Transill.	Paper	11.34	18.27	7.69	26.92	11.54	0.00
	Paper Mov.	7.61	16.35	26.92	19.23	11.54	7.69
	SP	13.21	54.81	7.69	26.92	0.00	0.00
	SP Mov.	17.92	57.69	11.54	11.54	3.85	0.00
	SP Zoom	27.36	40.38	7.69	11.54	0.00	0.00
	Paper	12.84	71.03	61.54	53.85	0.00	3.85
	Paper Mov.	25.47	1.87	15.38	3.85	3.85	7.69
	SP	46.73	6.54	7.69	19.23	3.85	3.85
	SP Mov.	28.85	6.54	3.85	3.85	0.00	3.85
	SP Zoom	18.10	5.61	3.85	0.00	3.85	3.85

Table: The table contains results with a simple linear kernel. Best results are highlighted **bold**.

Contribution

- Evaluated an existing Presentation Attack Detection Method for finger vein biometrics on a custom dorsal hand vein data set.
- Proposed two additional methods for PAD, employing spectral analysis of the average pixel illumination per frame.
 - Superior with respect to the reference method
 - High time consumption

Future Work

- Reduce computational cost of proposed algorithms
- Acquire more data samples

Thank You! Q & A

- [1] P. Tome and S. Marcel, "On the vulnerability of palm vein recognition to spoofing attacks," in 2015 International Conference on Biometrics (ICB), pp. 319–325, 2015.
- [2] I. Patil, S. Bhilare, and V. Kanhangad, "Assessing vulnerability of dorsal hand-vein verification system to spoofing attacks using smartphone camera," in 2016 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA), pp. 1–6, 2016.
- [3] A. Gruschina, "Veinplus: A transillumination and reflection-based hand vein database," in Proceedings of the 39th annual workshop of the Austrian association for pattern recognition (OAGM'15), 2015.
- [4] R. Raghavendra, M. Avinash, S. Marcel, and C. Busch, "Finger vein liveness detection using motion magnification," in 2015 IEEE 7th International Conference on Biometrics Theory, Applications and Systems (BTAS), pp. 1–7, 2015.
- [5] T. Herzog and A. Uhl, "Analysing a vein liveness detection scheme," in *Proceedings of the* 8th International Workshop on Biometrics and Forensics (IWBF'20), (Porto, Portugal), pp. 1–6, 2020.
- [6] H. Ding, "Anti-spoofing a finger vascular recognition device with pulse detection," in 24th Twente Student Conference on IT, (Enschede, The Netherlands), University of Twente, 01 2015.
- [7] J. Zheng, S. Hu, V. Azorin Peris, A. Echiadis, V. Chouliaras, and R. Summers, "Remote simultaneous dual wavelength imaging photoplethysmography: A further step towards 3-d mapping of skin blood microcirculation," *Proc SPIE*, vol. 6850, 03 2008.

- [8] H. Zhang and D. Hu, "A novel preprocessing method for palm vein," *Advanced Materials Research*, vol. 658, pp. 643–646, 01 2013.
- [9] J. H. Han, J. Kim, and E. C. Lee, "Single-camera vision-based vein biometric authentication and heart rate monitoring via infrared imaging analysis," in *Advances in Computer Science and Ubiquitous Computing* (J. J. Park, V. Loia, G. Yi, and Y. Sung, eds.), (Singapore), pp. 1307–1313, Springer Singapore, 2018.
- [10] J. Bok, K. Suh, and E. C. Lee, "Detecting fake finger-vein data using remote photoplethysmography," *Electronics*, vol. 8, p. 1016, 09 2019.
- [11] C.-C. Wei, C.-M. Huang, and Y.-T. Liao, "The exponential decay characteristic of the spectral distribution of blood pressure wave in radial artery," *Computers in Biology and Medicine*, vol. 39, no. 5, pp. 453 – 459, 2009.