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Introduction I

Finger vein sensors

single finger, palmar perspective
suffers from different misplacements of the
finger during acquisition
apparatus to avoid finger misplacements

Longitudinal finger rotation
causes a deformation of the vein pattern
negatively effects recognition performance

Existing solutions for single camera systems
detect and/or compensate finger rotation
classical hand-crafted features only

Aim
improve rotation tolerance using CNNs
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Introduction II

The Problem of Longitudinal Finger Rotation

Figure: Longitudinal finger rotation principle: a schematic finger cross section
showing five veins (blue dots) rotated from -10° to -30° (top row) and 10° to
30° (bottom row) in 10° steps. The projection of the vein pattern is different
according to the rotation angle following a non-linear transformation [1].
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Introduction III

Proposed solutions (not complete):

Physical design of the sensor (e.g. Kauba et al. 2018 [2])

Pre-aligning of the images (e.g. Lee et al. 2009 [3], Yang 2017
et al. [4])

Pattern normalization (e.g. Huang et al. 2010 [5])

Analysis of the geometric shape of the finger (Chen et al. 2018 [6])

Deformation tolerant matching (e.g. Miura et al. 2004 [7], Matsuda
et al. 2016 [8], Chen et al. 2017 [9])

Pre-rotating enrolment perspectives with a fixed angle
(Prommegger et al. 2019 [10])

. . .
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Introduction IV

Rotation detection and correction (state-of-the-art)
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Figure: Trend of the EER across different rotation angles. Left: Performance
of different finger vein recognition schemes, right: different rotation
compensation approaches for the same scheme (MC) [10, 11]
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CNN Architecture and Training I

CNN Architectures

Squeeze-Net (SqNet) with triplet loss function
DenseNet (DenseNet-161) with SoftMax loss

Data Sets

PROTECT Multimodal Database (PMMDB) [12]
PLUSVein-Finger Rotation Data set (PLUSVein-FR) [10]

Training Data

Images acquired at different rotation angles vs
Augmented images to simulate the rotation of the finger
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CNN Architecture and Training II
Squeeze-Net (SqNet) with triplet loss function

Groups images of the same class together
Enforces a distance α to other classes
Can be applied classes not included in the training set

L(A,P,N) = max(||f (A)− f (P)||2 − ||f (A)− f (N)||2 + α,0),

A .. Anchor, P .. Positive, N .. Negative, α .. margin, f (x) .. embedding.
Anchor

Positive

Negative

CNN

Shared
weights

Shared
weights

CNN

CNN

Triplet
loss

Embedding
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CNN Architecture and Training III

DenseNet (DenseNet-161) with SoftMax loss

The SoftMax loss function is based on assigning classes to
images (probability values to each class).

Evaluation can only be applied to already trained classes.

This is impracticable for biometric applications.

To avoid this problem, the net is trained with the Soft-Max loss
function and then employed as feature extractor for evaluation by
using the CNN activations of intermediate layers.
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CNN Architecture and Training IV

CNN Training: Images acquired at different rotation angles vs
augmented input data

Acquired images: Using images actually acquired at different
rotation angles (±45° in steps of 1°).
Data Augmentation: Rotations are simulated by transforming
images from the palmar view (0°).

Circular pattern normalization (CPN) [10]
Rotation corresponds to a vertical shift of the image.

Reference: single camera system (training data acquired at
palmar view = ±0°)
Evaluations: Images from different rotational ranges (±5°, ±15°,
±30° and ±45°)
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Experimental Setup

Experimental Setup

CNN training on PMMDB
Evaluation on PLUSVein-FR (±45°)
EER is computed using Similarity scores between images of the
palmar view (0°) and images at rotation α (α ∈ [−45,45])
Relative performance degradation:

RPD =
ERRrot − ERRref

ERRref
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Results I
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Results II

Comparison to state-of-the art hand-crafted methods
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Figure: Performance degradation depending on the rotational difference. Left:
absolute EER values, right: relative performance degradation

inferior baseline performance @ palmar view
lower performance degradation for increasing rotational distance
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Conclusion I

Contribution:

First CNN based rotation tolerant single camera system
Two different training approaches:

1 Images acquired at different rotation angles
2 Artificial rotated versions of palmar images (data augmentation)

Low (relative) performance degradation on the whole rotational
range (±45°)

Augmented training data works only for Triplet-SqNet

Baseline performance at palmar view still needs improvement
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The End

Thank you!
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