

Rotation Detection in Finger Vein Biometrics using CNNs

Bernhard Prommegger, Georg Wimmer and Andreas Uhl

Department of Computer Sciences University of Salzburg

December 9, 2020

Introduction I

What is longitudinal finger rotation?

misplacement of the finger during acquisition

The Problem of longitudinal finger rotation:

- causes a deformation of the vein pattern
- negatively effects recognition performance

The Problem for finger vein recognition:

- detection and correction is a difficult task
- state-of-the art single camera recognition systems can handle it only to a certain extent

Our Solution:

 A CNN based rotation detector that allows to align images ahead of biometric comparison

CNN Based Rotation Detection I

CNN Training

Data Sets

- Protect Multimodal Database (PMMDB, [2]) for training
- PLUSVein Finger Rotation Data Set (PLUSVein-FR, [3]) for evaluation
- Provide finger vein samples all around the finger in steps of 1°
- Rotational difference between two samples is known

CNN Based Rotation Detection III

Experiments

CNN Training was executed on different rotational ranges Θ

Result Verification / Generalisability of Proposed CNN

- 4 publicly available finger vein data sets
- Evaluate change of the recognition performance after applying rotation correction using our rotation prediction $\hat{\varphi}$
- Data sets contain different amount of longitudinal finger rotation
- Align images ahead of evaluation
- CNN was not retrained for evaluated data sets!

Table: Recognition performance (EER) and relative performance increase (RPI)

Data Set	Method	EER [%]	RPI [%]
SDUMLA-HMT [4]	original	4.73	-
	aligned	1.30	263.40
FV-USM [5]	original	1.23	-
	aligned	0.52	137.03
UTFVP [6]	original	0.42	-
	aligned	0.18	125.47
PLUSVein-FV3 [7]	original	0.08	_
	aligned	0.05	61.23

Conclusion

- CNN-based rotation detector to estimate longitudinal rotation between two finger vein image samples.
- Fast prediction (approximately 15ms on a GPU system)
- Stable results in the range of ±30°
- Rotation detector is not limited to a single data set (can be reused without retraining)
- Can be used in live systems (rotation detection and correction ahead of every biometric comparison)

Thank you!

- B. Prommegger, C. Kauba, and A. Uhl, "Longitudinal finger rotation - problems and effects in finger-vein recognition," in *Proceedings of the International Conference of the Biometrics Special Interest Group (BIOSIG'18)*, Darmstadt, Germany, 2018.
- [2] A. F. Sequeira, J. Ferryman, L. Chen, C. Galdi, J.-L. Dugelay, V. Chiesa, A. Uhl, B. Prommegger, C. Kauba, S. Kirchgasser, A. Grudzien, M. Kowalski, L. Szklarski, P. Maik, and P. Gmitrowicz, "Protect multimodal db: a multimodal biometrics dataset envisaging border control," in *Proceedings of the International Conference of the Biometrics Special Interest Group (BIOSIG'18)*, Darmstadt, Germany, 2018, pp. 1–8. [Online]. Available: https://doi.org/10.23919/BIOSIG.2018.8552926

- [3] B. Prommegger, C. Kauba, and A. Uhl, "Multi-perspective finger-vein biometrics," in *Proceedings of the IEEE 9th International Conference on Biometrics: Theory, Applications, and Systems* (*BTAS2018*), Los Angeles, California, USA, 2018.
- [4] Y. Yin, L. Liu, and X. Sun, "SDUMLA-HMT: a multimodal biometric database," *Biometric Recognition*, pp. 260–268, 2011.
- [5] M. S. M. Asaari, S. A. Suandi, and B. A. Rosdi, "Fusion of band limited phase only correlation and width centroid contour distance for finger based biometrics," *Expert Systems with Applications*, vol. 41, no. 7, pp. 3367–3382, 2014.

[6] B. Ton and R. Veldhuis, "A high quality finger vascular pattern dataset collected using a custom designed capturing device," in *International Conference on Biometrics, ICB 2013.* IEEE, 2013. [Online]. Available: http://doc.utwente.nl/87790/ [7] C. Kauba, B. Prommegger, and A. Uhl, "Focussing the beam - a new laser illumination based data set providing insights to finger-vein recognition," in *Proceedings of the IEEE 9th International Conference on Biometrics: Theory, Applications, and Systems (BTAS2018)*, Los Angeles, California, USA, 2018, pp. 1–9.