Identification of In-Field Sensor Defects in the Context of Image Age Approximation 2021 IEEE International Conference on Image Processing Anchorage, Alaska USA, 19-22 September 2021

Robert Jöchl, Andreas Uhl

Department of Computer Sciences, University of Salzburg, Austria

19-22 September 2021

Outline

- 1 Introduction and Motivation
- 2 In-Field Sensor Defects
- 3 Defect Detection Methods
- 4 Data Sets and Experiments
- 5 Experimental Results
- 6 Conclusion

Image Age Approximation

Trustworthy Images in Chronological Order

Available age approximation methods based on the presence of in-field sensor defects.

- Fridrich et al. proposed a maximum likelihood approach for image age approximation in [1].
- We regard image age approximation as a multi-class classification problem and proposed to utilize two well-known machine-learning techniques in [2].
- The defect locations have to be determined in advance.

⇒ Reliable Methods for defect detection in the context of image age approximation are required!! In-field sensor defects are studied in various publications, e.g. [3,4,5,6,7,8]. In summary:

- Develop after the manufacturing process and accumulate over time.

 increases linearly with time.
- Are due to cosmic radiation.
- Are randomly distributed over the sensor area.
- Spread to the neighboring pixels because of preprocessing (e.g., demosaicing).
- Appear as point like, spiky shot noise.
- The trend towards ISO expansion and smaller pixel sizes increases the defect development rate.

To model a defective pixel, we rely on the definitions stated in [1]. By assuming no noise or other imperfections, a defective pixel can be defined as,

$$f(I) = I + \tau D + c. \tag{1}$$

Figure: In-field sensor defects extracted from captured dark-field images.

R. Jöchl, A. Uhl: Identification of In-Field Sensor Defects in the Context of Image Age Approximation

Defect Examples

Figure: In-field sensor defects in a regular scene image.

Defect Examples

Figure: In-field sensor defects in a regular scene image.

Defect Detection Methods - Notation

- Let S be the set of chronologically ordered trusted images
- The subset $S_1 \subset S$ contains the first *n* and $S_2 \subset S$ the last *m* images
- The sets R₁ and R₂ contain the corresponding median filter residuals
- Let \vec{s}_1 be an *n* and \vec{s}_2 an *m* dimensional vector containing the values of an arbitrary but fixed pixel over S_1 and S_2
- The corresponding noise residuals are represented by \vec{r}
- **Goal:** Only detect defects relevant for image age approximation, i.e. which developed within the time interval of *S*.

- Fridrich et al. suggest to threshold the median filter residual in [1]
- Since the median filter completely smooths out a peak in a homogeneous area, the method can be considered as 'spatial only' detection

Spatial only Detection

A pixel is regarded as a defect candidate if the inequality

$$\sigma^2(\vec{r}_2) > t,\tag{2}$$

where $t = \mu + \sigma * w$

holds. The global threshold *t* is defined by the average residual variance μ , the residual variance standard deviation σ and an adaptive weight $w \in \mathbb{R}^+$. The mean and standard deviation are computed over all pixels.

Spatial Detection with Temporal Information

 Based on the differences in residual values before and after the defect onset

Spatial Detection with Temporal Information

A pixel is considered defective if,

$$\sigma^{2}(\vec{r}_{1}) < \sigma^{2}(\vec{r}_{2}) \land ||\vec{r}_{2}'||_{1} > \alpha * |R_{2}|,$$
(3)
where $\vec{r}_{2}'(i) = \begin{cases} \vec{r}_{2}'(i) = 0, & \text{if } t_{l} < \vec{r}_{2}(i) < t_{u} \\ \vec{r}_{2}'(i) = 1, & \text{otherwise}, \end{cases}$
and $t_{l,u} = \lceil \text{median}(\vec{r}_{1}) \rceil \mp w_{S} * \sigma(\vec{r}_{1}).$

The parameter α controls the amount of residual values in \vec{r}_2 that have to be outside of $[t_l, t_u]$

Spatial Detection with Temporal Information

Figure: The left diagram shows the residual values before the defect onset and the residuals after the onset are shown in the right diagram. The interval $[t_l, t_u]$ is represented by the area shaded in red.

Based on the influence of the defect on the pixel's dynamic range.

Temporal Only

A pixel is considered defective if,

$$\sigma^{2}(\vec{s}_{1}) > \sigma^{2}(\vec{s}_{2}) \wedge ||\vec{s}_{1}'||_{1} > \alpha * |S_{1}|,$$
(4)
where $\vec{s}_{1}'(i) = \begin{cases} \vec{s}_{1}'(i) = 1, & \text{if } \vec{s}_{1}(i) < \hat{c} + w_{T} \\ \vec{s}_{1}'(i) = 0, & \text{otherwise} \end{cases}$
and $\hat{c} = \min(\vec{s}_{2}).$

The parameter w_T represents the variable offset τD , and \hat{c} is an estimator of the potential offset *c*.

Four available data sets:

- Nikon E7600, 1768 images (*S_N*)
- Canon PowerSht A720IS, 4379 images (S_C)
- Pentax K5, 4725 images (S_{P1})
- Pentax K5II, 1881 images (S_{P2})
- The subsets S_1 and S_2 contain 140 images each.
- All Nikon and Canon images are JPEG compressed and all Pentax images are PNG compressed 8 bit RGB colour images of regular scenes.

Figure: Random samples of set S_N (top left), S_C (bottom left), S_{P1} (top right) and S_{P2} (bottom right).

R. Jöchl, A. Uhl: Identification of In-Field Sensor Defects in the Context of Image Age Approximation

The f1-score is used to asses the detection methods performance

$$f1 = \frac{2TP}{2TP + FP + FN}$$

The ground-truth is extracted out of dark field images

(5)

Method	nikon01	canon01	pentax01	pentax02
spatial only	0.1247	0.3666	0.2250	0.3262
spatial & temp.	0.1474	0.7531	0.4139	0.6630
temporal only	0.0594	0.6830	0.1882	0.1788

Table: Average maximum f1-score.

Experimental Results - Detection Performance

Figure: Shows the maximum average f1-score over the amount of used input-images.

Experimental Results - Impact on Age Prediction

Set	Method	KDc	NB KDE	SVM
nikon01	spatial only	0.8653	0.7822	0.8949
	spatial & temp.	0.9041	0.7886	0.9232
canon01	spatial only	0.8299	0.8720	0.8030
	spatial & temp.	0.8172	0.9139	0.9867
pentax01	spatial only	0.7671	0.9367	0.9323
	spatial & temp.	0.7250	0.9435	0.9202
pentax02	spatial only	0.6876	0.8786	0.8518
	spatial & temp.	0.6710	0.8718	0.9041

Table: Average age approximation accuracy between images of S_1 and S_2 .

- We introduced two novel defect detection methods in the context of image age approximation
- The 'spatial detection with temporal information' outperforms the 'spatial only' approach proposed in [1].
 - In average a 0.0227, 0.3856, 0.1889 and 0.3368 higher f1-score is reached (Nikon, Canon, Pentax K5 and Pentax K5II).
 - In average 5 more defects are found, which increases the accuracy of a subsequent age approximation.
 - Increases the robustness with respect to a lower amount of input images.
- Due to the high scene dependency, the 'temporal only' methods are not very reliable

Thank you for your attention!

- J. Fridrich and M. Goljan, "Determining approximate age of digital images using sensor defects," in *Media Watermarking, Security, and Forensics III* (N. D. Memon, J. Dittmann, A. M. Alattar, and E. J. Delp, III, eds.), vol. 7880, pp. 49—-59, International Society for Optics and Photonics, SPIE, 2011.
- [2] R. Joechl and A. Uhl, "A machine learning approach to approximate the age of a digital image," in *Digital Forensics and Watermarking: 19th International Workshop, IWDW 2020, Melbourne, VIC, Australia, November 25–27, 2020, Revised Selected Papers*, vol. 12617 of *Springer LNCS*, pp. 181–195, Springer International Publishing, 2021.
- [3] J. Dudas, L. M. Wu, C. Jung, G. H. Chapman, Z. Koren, and I. Koren, "Identification of in-field defect development in digital image sensors," in *Digital Photography III* (R. A. Martin, J. M. DiCarlo, and N. Sampat, eds.), vol. 6502, pp. 319—-330, International Society for Optics and Photonics, SPIE, 2007.

- [4] J. Leung, J. Dudas, G. H. Chapman, I. Koren, and Z. Koren, "Quantitative analysis of in-field defects in image sensor arrays," in 22nd IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT 2007), IEEE, sep 2007.
- [5] J. Leung, G. H. Chapman, Z. Koren, and I. Koren, "Statistical identification and analysis of defect development in digital imagers," in *Digital Photography V* (B. G. Rodricks and S. E. Süsstrunk, eds.), vol. 7250, pp. 272—283, International Society for Optics and Photonics, SPIE, 2009.
- [6] J. Leung, G. H. Chapman, I. Koren, and Z. Koren, "Characterization of gain enhanced in-field defects in digital imagers," in 2009 24th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, pp. 155—163, 2009.
- [7] A. J. Theuwissen, "Influence of terrestrial cosmic rays on the reliability of ccd image sensors part 1: Experiments at room temperature," *IEEE Transactions on Electron Devices*, vol. 54, no. 12, pp. 3260—3266, 2007.

[8] A. J. Theuwissen, "Influence of terrestrial cosmic rays on the reliability of ccd image sensors part 2: Experiments at elevated temperature," *IEEE Transactions on Electron Devices*, vol. 55, no. 9, pp. 2324—2328, 2008.