Blind Biometric Source Sensor Recognition using Advanced PRNU Fingerprints

EUSIPCO 2015

Luca DeBiasi and Andreas Uhl

University of Salzburg

01.09.2015
1. Introduction

2. Forensic Investigation

3. PRNU Contaminations and Enhancement Techniques

4. Results and Conclusion
Introduction
Devices (Sensors) add signatures to the data they produce

- **Intrinsic:** artefacts that are due to optical, electrical, or mechanical limitations of the device
- **Extrinsic:** generated by modulating the process parameters according to a specified pattern that may encode the serial number of the sensor or other information

Forensic characterization: Identify characteristics of the device by observing the produced data
Photo-response non-uniformity
CCD/CMOS Sensors
intrinsic property
noise-like pattern
Variations in quantum efficiency among pixels
PRNU noise residual: PRNU extracted from a single image
PRNU fingerprint: Averaged PRNU extracted from multiple images from same sensor
Forensic Investigation
CASIA-Iris V4 Database

<table>
<thead>
<tr>
<th>Subset name</th>
<th>Short name</th>
<th>Sensor</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASIA-Iris-Interval</td>
<td>intv</td>
<td>CASIA close-up iris camera</td>
<td>320 × 280</td>
</tr>
<tr>
<td>CASIA-Iris-Lamp</td>
<td>lamp</td>
<td>OKI IRISPASS-h</td>
<td>640 × 480</td>
</tr>
<tr>
<td>CASIA-Iris-Twins</td>
<td>twin</td>
<td>OKI IRISPASS-h</td>
<td>640 × 480</td>
</tr>
<tr>
<td>CASIA-Iris-Distance</td>
<td>dist</td>
<td>CASIA long-range iris camera</td>
<td>2352 × 1728</td>
</tr>
<tr>
<td>CASIA-Iris-Thousand</td>
<td>thou</td>
<td>Irisking IKEMB-100</td>
<td>640 × 480</td>
</tr>
</tbody>
</table>
Previous work and results

- Iris-Sensor Authentication using Camera PRNU Fingerprints [UH12]
- Distinction rate varies between 0.21 and 23.26% (EER)
- Do poor EERs for some sensors come from low variance in image content? → uncorrelated data [LZA14]
- Have all images in a data set been acquired with the same sensor? → forensic investigation [LA15]
Proposed in [LA15]:

- **Sliding Window Fingerprinting (SWFP):**
 Iteratively computes PRNU FPs from consecutive images and compares their similarity.

- **Device Identification on Dataset Partitions (DIODP):**
 Partitions the dataset and performs source identification by assuming each partition is a different sensor.

- **Blind Camera Fingerprinting and Image Clustering (BCFAIC) [G B08]:**
 Agglomerative clustering of images by grouping images with similar PRNU together.
PRNU Contaminations and Enhancement Techniques
Undesired contaminations affect both PRNU fingerprints and noise residuals.

Sources:
- Non-unique artifacts (NUAs)
- Image content

Degrade quality of the PRNU and decrease discriminative power of distinct sensors.
Image content related contamination

- Covers high-frequency components of the image
- Edges and textured image regions
- Correlated content among various images
- Hard to separate from the PRNU
- Visible in the extracted PRNU

[Li10]
Applied Enhancement Techniques

- Image content contamination suppression using various attenuation models in DWT domain
 - Enhancement model Li [Li10]
 - Enhancement model Caldelli [R C+10]

- Idea: The larger a component in the PRNU, the more likely it is contaminated by the image content

![Attenuation function Li](image1.png) ![Attenuation function Caldelli](image2.png)
Results and Conclusion
Results: Sliding Window Fingerprinting

intv - Li

- FP #1
- FP #628
- FP #1257

intv - Caldelli

- FP #1
- FP #522
- FP #1045

twin - Li

- FP #1
- FP #522
- FP #1045

twin - Caldelli

- FP #1
- FP #628
- FP #1257
Results: Device Identification on Dataset Partitions

thou - Li

intv - Li

thou - Caldelli

intv - Caldelli
Results

Blind Camera Fingerprinting and Image Clustering

<table>
<thead>
<tr>
<th>EnhLi3</th>
<th>intv</th>
<th>lamp</th>
<th>twin</th>
<th>dist</th>
<th>thou</th>
</tr>
</thead>
<tbody>
<tr>
<td># P</td>
<td>11</td>
<td>15</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>P > 100</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>P < 10</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Unass. IMGs</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EnhCalD</th>
<th>intv</th>
<th>lamp</th>
<th>twin</th>
<th>dist</th>
<th>thou</th>
</tr>
</thead>
<tbody>
<tr>
<td># P</td>
<td>17</td>
<td>20</td>
<td>6</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>P > 100</td>
<td>4</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>P < 10</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Unass. IMGs</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Conclusion

- Results of applied PRNU enhancements comparable to previous results without enhancement
- Overall correlation scores show a slight offset (decrease)
- Results for CASIA-Iris V4 datasets indicate:
 - Single sensor: \textit{dist, twin, thou, lamp}
 - Multiple sensors: \textit{intv}
- Intra-set correlation scores mostly low, which indicate low quality PRNU extraction
- Unknown factors that lower PRNU quality
References

Thank you!