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Abstract. Finger vein recognition deals with the identification of sub-
jects based on their venous pattern within the fingers. It was shown in
previous work that biometric data can include more than only identity
related information like e.g. age, gender and ethnicity. In this work, deep
learning based methods are employed to find out if finger vein image
data includes information on the age and gender of the subjects. In our
experiments we use different CNNs and different loss functions (triplet
loss, SoftMax loss and Mean Squared Error loss) to predict gender and
age based on finger vein image data. Using three publicly available fin-
ger vein image datasets, we show that it is feasible to predict the gender
(accuracies of up to 93.1%). By analyzing finger vein data from different
genders we found out that the finger thickness and especially the total
length over all finger veins are important features to differentiate between
images from male and female subjects. On the other hand, estimating
the age of the subjects hardly worked at all in our experiments.
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1 Introduction

Biometric systems extract identity related information to use it for person recog-
nition or identification. However, biometric data can include more than only
identity related information. For example, humans can deduce a lot of informa-
tion from images of the face of a person like age, gender and ethnicity.

Previous works predicted both the age and gender of subjects based on face
images [18, 29], voice recordings [15], gait [21], ear [28] and also using less intuitive
biometric traits for age and gender prediction like finger prints [6] and EEG
recordings [13]. Furthermore, iris (ocular) images have been used to predict age
[19] and gender [23, 1]. Reviews about the demographic bias in biometrics are
presented in [22, 5].
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In this work we analyze the demographic bias in biometric finger vein im-
age data with respect to the age and gender of the subjects. Research on soft-
biometrics showed that privacy-sensitive information can be deduced from bio-
metric templates of an individual. Since these templates are expected to be used
for recognition purposes only, this raises major privacy issues. We aim to find
out if these privacy issues also apply for finger vein data with regard to age and
gender information.

Two medical studies [14, 7], showed that there is no noticeable influence of
age on the size of the veins but the size of the veins is in general bigger for men
as for woman.

In [4], the authors claim that common finger vein recognition systems are not
able to recognize age and gender from finger vein images. However, the consid-
ered finger vein recognition systems were purely trained for subject recognition
and not to recognize the age or gender of the subjects. There are also previous
publications that developed methods specifically for age and gender recognition
based on vein images. However, these publications either use a heavily biased
experimental setup and/or show serious errors in the experimental setup by
speaking of age and gender recognition while actually doing subject recognition:

– [2, 3]: In these two papers from the same authors Local Binary Pattern (LBP)
operators are employed together with a nearest neighbor classifier to esti-
mate the age and gender based on finger vein [2] and palm vein [3] images.
What the authors actually did is to assign an image the age/gender of its
nearest neighbor. The systematical error in the experimental setup is that
they did not exclude comparisons between images from the same finger and
subject. As the nearest neighbor of nearly each image is an image from the
same finger, these two papers do misrepresent a subject recognition as an
age/gender recognition.

– [25]: In this publication a 2-layer network combined with a linear SVM clas-
sifier is applied for gender recognition of hand dorsal vein images. In the
publication there is no splitting in training and evaluation data (same data
is used for training and evaluation), which heavily biases the experiments
and makes the results unusable.

So this is the first paper for age and gender recognition based on finger
vein images with methods specifically trained to predict the age and gender of
the subjects without a heavily biased or incorrect experimental setup. In the
experiments we employ CNN-based methods for gender and age recognition on
three publicly available finger vein image datasets. The CNNs are trained using
various loss functions that are suited for age respectively gender recognition.
Furthermore, this is the first paper that analyses what features are really different
between male and female finger vein images.

2 Databases

In the experiments, three publicly available finger vein datasets are employed.
All of them provide - next to the vein images - also information on age and gender
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Database Subjects Instances Samples
PLUS-FV3 76 456 2268
UTFVP 60 360 1440
MMCBNU 100 600 6000

Table 1. The number of subjects, instances and samples of each of the three employed
finger vein image datasets.

(a) PLUS-FV3 (b) UTFVP (c) MMCBNU

(d) PLUS-FV3 ROI (e) UTFVP ROI (f) MMCBNU ROI

Fig. 1. Exemplar finger vein images of the three datasets. In the top row we show the
original finger vein image and in the bottom row the ROI extracted versions of the
images above.

of the acquired subjects. The first dataset is a combination of the PLUSVein-
FV3 [12] and the PROTECT Multimodal DB [8] further donated as PLUS-FV3.
Due to missing age and gender information, two out of the 78 subjects have
been omitted. The other datasets are the UTFVP [24] and the MMCBNU [16].
The number of subjects, instances and image samples are listed in Table 1. The
experiments are applied to the original finger vein images as well as to images
that are reduced to the region of interest (ROI) using a ROI extraction technique
based on [17]. In Figure 1, example images (original ones as well as ROI extracted
version of the images) are presented for each dataset.

3 Methods

Since age and gender recognition are quite different tasks to handle we employ
different CNN-based approaches with different loss functions for the two tasks
which also results in different performance measures for different approaches.
Since the datasets are mostly quite inbalanced with respect to the number of
images per gender (see Table 2) and the age distribution among the subjects (see
Figure 2, black bars), the CNN training is applied using balanced batch sampling
(each batch contains the same number of images per class) to mitigate the bias in
the data. For all experiments, the CNNs are trained using 2-fold cross validation.
The CNNs are trained on one fold and evaluation is applied on the other one
and then vice versa. The images of half of the subjects are in one fold and the
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images of the remaining subjects are in the other fold. All CNNs are trained
for 400 epochs using nets that were pretrained on the ImageNet database. Data
augmentation is applied by first resizing the input images to a size of 229× 229
and then extracting a patch of size 224×224 at a random position of the resized
image (±5 pixels in each direction). As performance measures we report the
mean accuracy over the two folds and partly also the mean Equal Error Rate
(EER) over the two folds.

3.1 Methods for gender recognition

To train a CNN to recognize the gender based on finger vein images, each image
of the training fold is assigned to the class (male or female) of the respective sub-
ject. In that way the CNN can learn similarities between images of the same class
(gender) and differences between images of different classes. For more meaning-
ful results and to see if different methods produce different results, two quite
different CNN approaches are applied with very different loss fuctions for CNN
training and also different CNN architectures:

1. Triplet loss: Same as in a previous publication on finger vein recognition [26],
we employ the triplet loss function for CNN training. Per training step, the
triplet loss requires three input images at once (a so called triplet), where two
images belong to the same class (the anchor image and a sample from the
same class, further denoted as positive) and the third belongs to a different
class (further denoted as negative). The triplet loss learns the network to
minimize the distance between the anchor and the positive and maximize
the distance between the anchor and the negative. The triplet loss using the
squared Euclidean distance is defined as follows:

L(A,P,N) = max(||f(A)− f(P )||2 − ||f(A)− f(N)||2 + α, 0), (1)

where A is the anchor, P the positive and N the negative. α is a margin that
is enforced between positive and negative pairs and is set to α = 1. f(x) is
an embedding (the CNN output of an input image x). So the CNN is trained
so that the squared distances between all embeddings of finger vein images
from the same class (gender) is small, whereas the squared distance between
embeddings of any pairs of finger vein images from different classes is large.
As CNN architecture we employ the SqueezeNet [10], a neural networks
with low memory requirements. The size of the last layers convolutional
filter is adapted so that a 256-dimensional output (embedding) is produced.
As first performance measure we compute the EER, where the similarity
score between two finger vein images is defined as the inversed euclidean
distances between the CNN outputs of two images. As second performance
measure we compute the (Rank-1) accuracy. Since CNNs that were trained
with the triplet loss produce an feature vector (embedding) for each input
image instead of a class prediction (like CNNs trained with the the SoftMax
loss), a classifier is required to obtain gender predictions. Ftor this we employ
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a linear SVM to predict the gender based on the CNN outputs. Same as the
CNNs, the SVM is trained on the training fold while evaluation is applied
on the images of the evaluation fold.

2. SoftMax loss: Another obvious choice for this 2-class gender classification
problem is to employ the widely known SoftMax loss function to train a
CNN. As net architecture we employ the DenseNet-161 [9]. Since the CNN
predicts gender directly without generating any feature vector output per
image, we only report the accuracy and not the EER, for which distances
between images would be required.

As can be observed in Table 2, only the PLUS-FV3 dataset is somehow
balanced with respect to the gender distribution of the subjects. The other two
datasets consist of distinctly more male subjects than female ones. So for a better
overview on the CNN classification outcomes, we not only report the accuracy
over the whole dataset but also the percentage of images from female subjects
that were correctly classified as female (ACC women) and the percentage of
images from male subjects that were correctly classified as male (ACC men).

The gender recognition experiments are applied to the original images as well
as to the ROI extracted images. The original images have the advantage that
the images contain information on the length and thickness of the fingers, while
the ROI extracted images have the advantage of a higher image resolution since
the images need to be resized to the required CNN input size (224 × 224) and
by downsizing only the part of the image containing the finger the resolution is
higher than by downsizing the whole image.

3.2 Methods for age recognition

For all age recognition experiments, we only employ the ROI extracted images.
This is done because the length and thickness of the fingers does not matter
for age recognition. Age recognition will probably be a more difficult task than
gender recognition, since there are no known differences in the vein structure
depending on the age of the subjects (see [14]). Because of that, we do not directly
start with a direct estimation of the age but firstly conduct an experiment to find
out if CNNs are at least able to discriminate between finger vein images of young
and old subjects. For this, we divide the datasets in two classes, with one class
consisting of all images of subjects under 25 years and the other class of all images
of subjects over 45 years. The images of all subjects with an age between 25 and
45 years are removed for this experiment. If the CNNs are not even capable
to differentiate between these two age groups, then all further experiments to
estimate the age of subjects based on finger vein images would probably be futile.
For this experiments we employ the same methods (SqueezeNet trained with
triplet loss and DenseNet trained with SoftMax loss) as in the gender recognition
experiment. Similar to the gender recognition experiment, the datasets are quite
unbalanced with respect to the number of images per class and hence we once
again not only report the overall accuracy but also the percentage of correctly
classified images of the class containing all subjects under 25 years age and of
the class containing all subjects above 45 years age.
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In a second and more difficult experiment, we aim to directly estimate the
age of the subjects using a CNN trained with the mean squared error (MSE)
loss function. For this experiment we use all images of the datasets contrary to
the previous one. As net architecture we employ ResNeXt101 [27]. For training,
each finger vein image of the training fold is assigned to the age of the according
subject so that the CNN can learn to estimate the age based on finger vein
images. For the images of the evaluation fold, an age estimation is made using
the trained CNN. Then the folds for training and validation are exchanged. In
this experiments we do not classify images like in the previous experiments but
directly estimate the age of the subjects from the images. Thus, we need to apply
different performance measures in this experiment and report the mean absolute
error (MAE) over all images:

MAE =
1

N

N∑

i=1

|yi − ŷi|, (2)

where N is the number of images of the dataset, ŷi the CNN’s age prediction
of image i and yi the actual age of the image’s subject. Furthermore, we divide
the images into several age groups with an age group having a range of 10 years.
Then we compare the actual number of images per age group with the number of
images that are correctly and incorrectly predicted to the considered age group.
Additionally, we present the mean over the CNN age predictions over all images
per age group.

4 Results

4.1 Gender recognition

In Table 2, we present the gender recognition results using the SoftMax loss
trained CNN (along with the number of images per gender) and in Table 3 the
results using the triplet loss trained CNN. For the triplet loss trained net we
report the EER additional to the accuracy. We can observe that on all three
datasets accuracies between about 79 and 93 % are achieved for both kinds of
CNNs. In general, the accuracies for the two kinds of CNNs are similar. For the
PLUS-FV3 and UTFVP dataset, the classification rates are between about 76%
and 87% for images from female subjects and between 84% and 97% for images
from male subjects. In case of the MMCBNU dataset, the inbalance between
the number of male and female subjects is huge (nearly 5 times as much men
as women) which probably leads to the fact that most images are predicted to
be male by the CNNs, even the images from women. For the ROI images of the
MMCBNU dataset, about 50% of the images from female subjects are classified
correctly but for the original images only 10-15% of the images from female
subjects are classified correctly. In the discussion we will analyze if the inbalance
between the number of images from male and female subjects is actually the
reason that most of the images of the MMCBNU dataset are predicted to be
male.



Age and Gender Recognition for Finger Vein Images 7

Databases Images per gender ACC
women men overall women men

PLUS-FV3 (ROI) 951 1317 81.7 76.4 86.0
MMCBNU (ROI) 1020 4980 87.5 49.3 93.4
UTFVP (ROI) 384 1056 90.5 78.8 96.3
PLUS-FV3 (Orig.) 951 1317 86.1 84.0 88.2
MMCBNU (Orig.) 1020 4980 79.3 10.1 93.5
UTFVP (Orig.) 384 1056 92.2 82.1 97.1

Table 2. Gender classification results (accuracy (ACC) in %) using SoftMax loss
trained CNNs

Databases EER ACC
all women men

PLUS-FV3 (ROI) 34.2 80.3 73.3 84.0
MMCBNU (ROI) 27.1 88.6 51.4 96.1
UTFVP (ROI) 18.3 92.1 83.6 96.4
PLUS-FV3 (Original) 29.4 84.4 78.3 89.5
MMCBNU (Original) 46.9 80.3 14.6 93.9
UTFVP (Original) 13.8 93.1 86.5 96.7

Table 3. Gender recognition (EER in %) and classification results (ACC in %) using
triplet loss trained CNNs

In general, it does not matter whether we use the original finger vein images
or the ROI extracted images with respect to the results, except for the MMCBNU
dataset.

4.2 Age recognition

2-class age recognition experiment: In Table 4 we present the results for
the 2-class age recognition experiment, where all images of subjects under 25
years of age are assigned to one class and all images of subjects over 45 years
are assigned to the other one. On all three datasets, the images from the class
with fewer images are misclassified clearly more often than the images from
the class with more images. The differences in the results of the two classes
are even more pronounced than in the gender recognition experiments. For the
MMCBNU dataset, nearly all images are predicted to belong to the class with
distinctly more samples (< 25). We can observe that at least for the PLUS-FV3
and the UTFVP dataset, the prediction of the age class is clearly better than
random assignment with classification rates of up to nearly 90% for the UTFVP
dataset and up to 76% for the PLUS-FV3 dataset.

Age estimation experiment: In Figure 2 we present the number of images
per age group for all three datasets as well as outcomes of the age recognition
experiment for images at different age groups. The age of the subjects is esti-
mated using the CNN trained with the MSE loss. Each age group except the first
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(b) UTFVP
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(c) MMCBNU

Fig. 2. Actual number of images per age group (black bars) compared to the number
of CNN age predictions that are correctly (green bar) and incorrectly (orange bar)
assigned to an age group

(till 20) and last one (over 60) has a range of 10 years. The black bar shows the
number of images per age group, the green bar the number of images that are
correctly predicted to the considered age group and the orange bar the number
of images that are incorrectly predicted to the considered age group. So if we add
up the numbers of the orange and green bar for an age group, then we get the
number of images whose CNN age estimate is within the range of the age group
under consideration. In Figure 2 we can observe that only the PLUS-FV3 dataset
has a at least somehow balanced distribution of subjects across the different age
groups. The other two datasets mainly consist of subjects at an age between 21
and 30. We can observe that most of the images on all datasets are predicted
to the age group that contains the mean age over a dataset. In case of the two
datasets UTFVP and MMCBNU, this is also the age group that contains the
majority of image samples. In case of the PLUS-FV3 dataset, where the images
are distributed over several different age groups, most images are predicted to
the wrong age group (31-40 years).

In Table 5, we present the CNN results on all three datasets using the Mean
Absolute Error (MAE) in years as performance measure. To get an understand-
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Database Nr. of images CNN results with Triplet loss CNN results with SoftMax
<25 >45 EER ACC overall ACC<25 ACC>45 ACC overall ACC<25 ACC>45

PLUS-FV3 297 657 40.3 76.0 63.3 83.9 74.0 58.9 85.1
MMCBNU 1440 240 51.0 83.6 97.2 6.7 85.1 99.4 0.0
UTFVP 672 167 26.4 89.7 99.4 59.7 87.4 98.8 50.7

Table 4. CNN results for grouping the images in two classes, where one class comprises
all images below an age of 25 years and the other one all images above 45 years. For the
triplet loss trained CNNs we present the accuracy and the EER in %, for the SoftMax
loss trained CNNs we only present the accuracy. Furthermore, we present the number
of images per class.

Databases Mean age MAE Mean CNN prediction per age group
CNN MP 0-20 21-30 31-40 41-50 51-60 >60

PLUS-FV3 38.5 11.4 11.5 33.4 36.2 38.8 37.2 41.6 44.7
MMCBNU 27.7 4.5 4.5 24.9 27.0 26.8 28.8 25.9 26.6
UTFVP 28.4 5.9 6.2 25.1 26.4 25.9 32.1 31.9 -

Table 5. CNN age prediction results using the MSE-loss. The left column shows the
mean age per dataset and the middle columns the Mean Absolute Error (MAE) of the
CNN and of the method that simply predicts the mean age for all samples (MP). The
right side columns present the mean over the CNN age predictions over all images per
age group

ing if the MAE results of the proposed CNN age prediction method are good or
rather not, we compare the MAE of the CNN with the MAE of a method denoted
as ’mean prediction’ (MP). This method simply assigns the mean age (average
age over the ages of all subjects from a dataset) to each image of the dataset.
In addition, we present the mean over the CNN age estimates separately for the
images of each age group. For example, if we consider the age group ’0-20’, it
means that we present the average over all CNN age estimates from images of
subjects between the ages of 0 and 20 years. We can observe in Table 5 that the
MAE of the CNN is only slightly better or equal as the MAE for predicting the
mean age for each image of the dataset (MP). So the age estimation using our
CNN does not work well.

When we observe the mean CNN predictions per age group on the PLUS-
FV3 dataset (the two other datasets mainly consist of images from subject with
an age between 21 and 30, which limits the information we can extract from the
results of these two datasets), then we can see that the CNN age predictions
on finger vein images from subjects of higher age are indeed higher as the age
predictions on images of subjects from lower age. However, the CNN predictions
are clearly too close to the mean age over the dataset (38.5) and hence too high
for images of younger subjects and too low for images of older subjects.

5 Discussion

In this section we aim to find out which features enable the CNNs to discriminate
between genders using a gradient based CNN visualization technique. Further-
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(a) Female Original (b) Male Original (c) Female ROI

Fig. 3. CNN visualizations using Vanilla backpropagation of male and female finger
vein images using original as well as ROI images. Top row: original image, bottom row:
saliency map

more, we want to find which differences actually do exist between male and
female finger vein images by analyzing segmentation masks of the fingers and
manual extracted segmentations of the finger vein structure. In addition, we
want to find the cause for the poor gender recognition result on the MMCBNU
dataset. Age recognition clearly did not work and hence there is no need to
discuss the results any further.

The idea behind gradient based CNN visualization techniques is to compute
the gradient of the network’s prediction with respect to the input, holding the
weights fixed. This determines which pixels of an input image need to be changed
the least to affect the prediction the most. In this work we employ gradient
visualization using Vanilla Backpropagation [20] to get the saliency maps of
images. With these saliency maps we can measure the relative importance of
each pixel to the ultimate prediction by the model. In Figure 3 we present the
saliency maps of three different finger vein images from the PLUS-FV3 dataset
(two original images and one ROI image) using a CNN that was trained to
predict the gender with the SoftMax loss function. From the saliency maps of
the two original images (one of a man’s finger and one of a woman’s finger) we
can observe that image regions from the background that are surrounding the
finger have an impact on the CNN predictions as high as image regions within
the finger. This indicates that the finger thickness and length are features used
by the CNN to determine the gender. By segmenting the fingers on the UTFVP
dataset (using the segmentation method for the ROI extraction) and computing
the finger thickness, we found that the fingers of male subjects are in average
15% thicker than those of female subjects. For the ROI image, the saliency
map is fairly uniform across the regions of the finger without any clear visible
correspondence to the vein pattern, so no conclusion can be drawn about what
features are important for the CNN to predict the gender.
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Fig. 4. Two example images of the UTFVP dataset (top row) and their manually
extracted segmentation masks (bottom row) from the UTFV Pseg dataset.

As already mentioned in the introduction, it was shown in a medical study
that the cross section area of veins is in general bigger for men as for women.
We now aim to verify if that is also the case for the finger veins using a dataset
containing manually segmented veins from finger vein images. This dataset [11],
further denotes as UTFVPseg, contains 388 segmentation masks from images
of the UTFVP dataset. 292 segmentation masks are from male subjects and 92
from female subjects. UTFVPseg includes at least one segmentation mask per
finger of the UTFVP dataset, for some fingers it includes two. In Figure 4 we
show two finger vein images of the UTFVP dataset and their segmentation masks
from the UTFVPseg dataset. We can observe that the segmentation masks only
cover the clearly visible finger veins but not the very fine ones that are hardly
visible. In addition, the segmentation masks do not perfectly match the finger
vein thickness, but the masks are still much better than for finger vein pattern
extraction techniques like Maximum Curvature (MC) and Principle Curvature
(PC), which do absolutely not reflect the actual vein thickness.

By analyzing the average vein thickness using the segmentation masks, we
can find out if there are differences in the vein thickness depending on the gender
of the subjects. This is done by first computing the size of the area of the finger
vein structure by counting the number of pixels in the segmentation masks that
are indicating a vein. Secondly, we compute the summed up length over all finger
veins by applying skeletonization to the segmentation mask and summing up the
number of pixels of the skeletonized finger vein segmentation mask. By dividing
the area of the finger vein structure by its lengths we get the average finger
vein thickness/diameter of a finger vein image. Now by averaging the average
finger vein thickness over all images per gender we can find out if there are truly
differences between men and women with respect to the finger vein thickness.
It turned out that the mean vein diameter for finger vein images of men is 8.6
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Fig. 5. Bar plot showing the distribution of the summed up length of the finger vein
structure on the images of the UTFVPseg database for the two genders

pixels whereas the mean vein diameter for finger vein images of women is 8.5
pixels. So there is hardly any difference between the genders.

However, we found out that the summed up length over all finger veins of
an image is for male subjects about 1.4 times higher in average than for female
subjects. That means that there are clearly more well visible finger veins for
men as for women. Figure 5 presents the distribution of the vein length on the
UTFVPseg database of male and female subjects, where the length of the vein
structure is defined as the sum of the pixels of the skeletonized segmentation
mask. The higher length of the vein structure in finger vein images of male
subjects could be one of the reasons that the CNNs were able to determine the
gender based on finger vein images.

Finally, we want to find out if the inbalance of the MMCBNU dataset data
with respect to the gender distribution (only 17% of the images are from female
subjects ) is the reason that so much images of female subjects were predicted
as male. For this we apply a gender recognition experiment to a subset of the
MMCBNU dataset consisting of all 17 female subjects but only 17 of the 83
male subjects (we simply chose the first 17 male subjects of the dataset). So, in
total the sub dataset consists of 1020 images of female subjects and 1020 images
from male subjects. The gender recognition experiments are employed exactly
the same as for the original dataset, except using the smaller but balanced subset
of the MMCBNU dataset. In Table 6 we present the results of this experiment.

As we can observe in Table 6, female images are predicted with about the
same accuracy as male images on the balanced MMCBNU sub dataset. So the
huge inbalance of the MMCBNU dataset with respect to the gender distribution
was actually the reason that so many female images were classified incorrectly
on the MMCBNU dataset.
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MMCBNU ACC triplet ACC SoftMax
all women men all women men

ROI 78.5 82.0 74.2 75.6 75.9 74.2
Original 53.4 50.4 57.1 51.5 49.8 54.3

Table 6. Gender classification results (ACC in %) on a balanced subset of the MM-
CBNU dataset (ROI as well as original images) using CNNs trained with the triplet
loss (SVM results) and CNNs trained with the SoftMax loss

6 Conclusion

In our experiments on three public finger vein image datasets we showed that
it is indeed feasible to predict the gender based on finger vein images. For the
UTFVP dataset we achieved accuracies of up to 93.1%, for the PLUS dataset
accuracies of up to 86.1% and for the MMCBNU dataset accuracies of up to
88.6%. However, it should be noted that the data sets used are rather small and
unbalanced in terms of the number of images from male and female subjects and
therefore predictions are more accurate for the larger group (male). In general,
it did not matter which CNN architecture or loss function was used. As the
results for original and ROI images (which contains no shape or background
information) are similar, one can conclude that the finger region itself contains
enough information to predict gender. However, we showed that the thickness
and length of the fingers are important features for the CNNs to discriminate
between the genders. Furthermore, there is a big difference between the genders
with respect to the length of the finger vein structure. In average, the summed
up length of the finger vein structure for male subjects is about 1.4 times higher
than for female subjects.

The experiments to estimate the age based on finger vein images did not
perform well. For two of the three datasets, it did work at least to some extent
to differentiate between young (> 25) and old subjects (> 45), but on the MM-
CBNU dataset nearly all images were predicted as male. The direct estimation
of the age using a MSE loss trained CNN did not work at all and only per-
formed slightly better than simply predicting the mean age over all subjects for
all images.
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