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Abstract. Traceability of round wood from the forest to the industry is
a crucial issue to secure sustainable material usage as well as to optimize
and control processes over the whole supply chain. There are previous
works on individual wood log tracing but there is no systematic and com-
plete technology to track individual logs from the forest to the industry.
In this work we analyze if it is beneficial to employ hyperspectral image
data from log ends instead of image data from standard RGB cameras.
First, we compare the hyperspectral log image data across the spectral
range using various well known image descriptors. In that way we an-
alyze differences in the image data across the spectral range and find
out which spectral ranges are best suited for log tracking. In a further
step we present a novel approach to combine information across different
spectra in order to gain valuable additional information on the annual
ring pattern, the most important feature for log tracking.
We will show that there are clear differences of the log images at different
spectra and that our proposed approach to combine the information of
log images at different spectra provides a clearly better visibility of the
annual ring pattern than single spectral images and also common RGB
images.
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1 Introduction

Traceability of roundwood from the forest to further processing companies is a
recent topic of research, as customers are getting more interested in the origin
of their products. This led to certificates like the one of the Forest Stewardship
Council [9] or the program for the Endorsement of Forest Certification [14] that
are documenting the sustainable production of wood. Even more legal actions
and agreements like the European timber regulation EUTR No. 995 2010 [7]
were developed. This was done to claim disclosure of the provenance of timber
? This project was partly funded by the Austrian Science Fund (FWF) under Project
Number I 3653.
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and timber products that are placed on the European market in order to stop
illegal deforestation and trading of timber.

This topic is in the view of recent research all over the world and even sci-
entific hackathons are organized (e.g. the Evergreen innovation camp 2019 in
Vienna [8]) to solve the question of traceability of wood from the forest to the
related industry. Common methods for log tracing are the application of bar-
codes and the usage of radio frequency identification (RFID) transponders (e.g.
[22] or [1]). However, these tracking systems are only used for relatively high
priced lumber up to now since they require physical markings of each tree which
is expensive. An alternative to physical marking is to use biometric characteris-
tics from log images to recognize each individual log as shown in [21, 19, 17, 20,
23, 24]. The usage of log image characteristics for tracking logs is not a new idea.
E.g. in [5] and [6], surface properties of wood logs were used for identification.

Hyperspectral images contain not only the visible spectra, but depending on
the technology also parts of the ultraviolet (UV)-spectra and near infrared (NIR)
spectra. Hence, this imaging technology has good chances to improve wood log
tracking compared to common RGB images. The usage of hyperspectral imaging
technologies ranges from large scale imaging down to lab scale sensors used in
food safety, pharmaceutical applications forensic etc. (examples are shown in [2]
or [15] ) and therefore is very common in use. Hyperspectral images have already
been employed to determine the transition between juvenile and mature wood
[16] and to predict the moisture content of wood [4]. In [18], hyperspectral log
images were analyzed for the use of log tracking. Using an approach developed
for fingerprint tracking based on Gabor filters, hyperspectral images of logs at
different spectra were compared in order to find out which spectra contain the
same or different information than other spectra. This knowledge can be used
to reduce the technical efforts and expenses for the collection of log image data
and to improve image acquisition.

So, in [18] one concrete method was employed to compare the images at dif-
ferent spectra. In this work we employ several well known methods, all analyzing
different image properties, to compare log images at different spectra. In that
way we aim to find out what are the specific differences of images at different
spectra.

The annual ring pattern is arguably the most important feature for log track-
ing using log end images, since it provides information about the shape of the
tree cross section over the entire lifespan of the tree (the annual rings) and also
the growth of the tree per year (annual ring thickness). Other features like wood
coloration, knots and the saw cut pattern that are visible in the log cross section
may totally change if a log is capped. Therefore, we run experiments to compare
the visibility of the annual ring pattern between spectral log images and common
RGB log images to find out if hyperspectral images are really better suited for
log tracking than common RGB images.

So far no attempt has been made to combine information on log images across
different spectra. In this work, we propose an approach to construct a new log
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(a) Scanning
system

(b) Wood disc storage (c) Hyperspectral cube
cropping

Fig. 1. The sensor system shows the line scanner which was mounted on a metal frame
and the slice is moved perpendicular to the scanned line manually. The stored samples
were closed airtight to avoid surface changes. Each hyperspectral cube was cropped to
reduce the massive amount of data.

image by combining the information on the annual ring pattern from images of
the same log at different spectra.

2 Materials

2.1 Wood samples

Initially, 100 different Norway (Picea Abies) spruce logs (4.5 m length) were
collected. For the experiments in this paper, a wood disc was cut from the lower
end of each log. The outside of each disc was sanded to reduce the influence of
manual chainsaw cuts at scanning. To avoid surface cracks due to wood shrinkage
and discoloration due to oxidation processes, the slices were packed individually
in plastic bags during transport and intermediate storage.

2.2 Scanning system

The samples were scanned using a FX17 multispectral line scanner, which pro-
vides scans between 990nm to 1665nm with a bandwidth of approx. 3 nm. The
Specim FX17 uses mainly parts of the NIR spectra. For the scanning setup a
resolution of 640x640 pixel was chosen. The scanning system is shown in Fig. 1.
Halogen light was used for lighting. Each disc was pushed through the system by
hand and the speed was synchronized with a trigger. The hyperspectral data, i.e.
the translation from line scanning data to a hyperspectral cube, was performed
by the acquisition software Perception Studio. For each hyperspectral cube the
grayscale images (PNG) for each band were extracted and show the cross section
(CS) of the disc. This results in 196 images per wood disc. This conversion en-
ables to apply standard image processing algorithms. From 13 discs, image data
was lost during acquisition and so hyperspectral data is only available from 87
discs. Unfortunately, the obtained spectral images from the FX17 scanner are a



4 G. Wimmer et al.

(a) 995nm (b) 1111nm (c) 1300nm (d) 1450nm (e) 1665nm

Fig. 2. Images of the same disc at different spectra.

(a) Original image (b) Preprocessed Image

Fig. 3. An example of an original image and its segmented, quadratic output after
preprocessing the image.

bit squeezed in height. This can be observed by comparing the spectral images
with the RGB image of the same log in Fig. 6. We assume that this is caused by
the acquisition software and an inaccurate trigger synchronization.

Exemplar images of one log at 5 different spectra are shown in Fig. 2. As
we can observe, the images at different spectra have clearly different brightness
distributions and also the contrast is different. The spectral image at 1111nm
is clearly the brightest and the image at 1450nm is clearly the darkest one,
so there is no constant change in one direction regarding the brightness of the
images along the spectral range.

Additionally, RGB images were taken from all 100 discs using a Canon 70D
camera. The camera has been fixed so that the images were all taken under the
same viewpoint and the same scale. In our experiments to compare RGB and
spectral image data, we employ one RGB image from each of the 87 discs for
which hyperspectral data is available. An example of an RGB image together
with examples of spectral images from the same disc can be observed in Fig. 6.

2.3 Image segmentation

The spectral images are rather easy to segment since they have a nearly black
background outside of the CS. Like in a previous publication on log tracing [24],
we apply the active contour method [3] for the segmentation of the log images.
The image is reduced to the smallest possible box shaped size so that the log is
still fully included in the image and those parts of the image that have been found
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to be part of the background are set to black. To be able to extract information
from the images using a variety of different feature extraction methods and to
be able to compare the extracted features of different images, we decided to
turn the box shaped segmented images into squares of equal size for all log
images. This is done by making the images quadratic by padding the images
with black background on the smaller side of the box shaped image so that the
log is centered in the now quadratic image. Then a five pixel thick black border
is added on each side of the image and the images are resized to the size of
352×352. In Fig. 3 we can see an example of an original image and its quadratic
segmented output. All experiments are applied to these preprocessed images.

The 87 RGB images are processed in the same way as the spectral images
with the only difference that the segmentation is applied using CNNs (see [23]).

3 Methods

3.1 Differences of spectral images along the spectral range

In this work we employ various feature extraction methods that analyze differ-
ent features of the spectral images along the spectral range. We employ image
histograms that analyze the brightness distribution of the images, features ex-
tracted by CNNs, an LBP method that basically compares the brightness be-
tween pixels and their neighbored pixels, and the Gabor wavelet transform, that
analyzes the frequency distribution of images along different directions. For all
these methods, feature vectors are computed for each image of a log end along
the spectral range. Distances between feature vectors of a log at different spectra
are computed using the Euclidean distance.

Additionally to the feature extraction methods we compute the average pixel
difference between images at different spectra. We further denote this method
as ’Image Difference’ or ’ImDiff’. Furthermore, we apply the edge metric LEG
that analyzes changes in the edge information between images.

Image Histogram: Histograms of the images are build where the number
of pixels for each pixels brightness value between 0 and 255 is counted. So the
resulting histogram of an image has 256 bins.

CNN Transfer Learning: For CNN feature extraction, we use a DenseNet161
[11] convolutional neural network (CNN) that has been trained on the ImageNet
database. As features we extract the CNN activations of an intermediate layer
by simply removing the final layer of the CNN. The log images are normalized
and resized to the size of 224 × 224 and then fed to the CNN resulting in 2208
dimensional feature vectors.

LBP: Based on a grayscale image, the LBP operator generates a binary se-
quence for each pixel by thresholding the neighbors of the pixel by the center
pixel value. The binary sequences are then treated as numbers (i.e. the LBP
numbers). Once all LBP numbers for an image are computed, a histogram based
on these numbers is generated and used as feature vector. We employ the mul-
tiscale block binary patterns (MB-LBP) operator [13] with three different block
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sizes (3,9,15). The uniform LBP histograms of the 3 scales (block sizes) are
concatenated resulting in a feature vector with 3 × 59 = 177 features per image.

Gabor Wavelets: The Gabor Wavelets transform (GWT) [12] is a multi-
scale and multi-orientation wavelet transform that decomposes an image in sub-
bands that contain information at different frequency bands (scales) and orien-
tations of an image. The GWT is applied using 3 decomposition levels and 6
orientations. The feature vector of an image consists of the statistical features
mean and standard deviation of the absolute values of the subband coefficients
from each of the 18 (3x6) subbands.

Local Edge Gradients (LEG) The LEG [10] analyses changes in the edge
information between two images. LEG combines the edge change, based on the
local binary pattern concept, and the edge gradient change. The edge change
is calculated in the low frequency band and the gradient change in the high
frequency band of a wavelet decomposition of the images. The LEG is a quality
metric, a high metric score reflects a high similarity between two images, with a
normalized score in [0, 1].

3.2 Combination of spectral images

The most important feature to trace logs is the annual ring pattern. In [24], a
filtering approach was proposed for log end images that highlights the annual
ring pattern and widely ignores all other features of the image. Using this filtering
approach as preprocessing for a CNN-based log recognition clearly improved the
results for the difficult scenario of log tracing from the forest to the sawmill using
image data acquired from totally different sources (see [24]). The images were
first recorded using a Canon 70D camera (the RGB data that is also used in this
work) and later at the sawmill using a CT scanner.

The advantage of the filtering approach is that the filter response images offer
a very good visibility of the annual ring pattern but mostly ignore features that
are problematic for wood log tracing like knots that either completely change or
even disappear or reappear in the log cross section after the log is capped, which
is regularly done at sawmills before processing the log.

The filtering approach [24] is applied using directional Gaussian 2D filters at
8 different directions (0°, 22.5°, 45°, . . . 157.5°). The filters are shown in Fig. 4 on
the left side. To specifically highlight the annual ring pattern, the direction of the
filters has to be similar to the direction of the annual year rings at each position
of the log. This is ensured by subdividing the log into 16 different sectors, where
each sector covers the part of the log within a range of 22.5° using the pith as
center point. Then each sector is filtered separately with the filter that has the
same direction as the annual year rings in the respective sector (see Fig. 4, right
side). To ensure that mainly filter responses of the annual ring pattern remain,
all filter response values that are smaller than zero are set to zero. For a better
visibility of the annual ring pattern, the brightness values are normalized so that
the maximum brightness value of a filter response image is 255 and the minimum
is 0, followed by the application of adaptive histogram equalization. For more
details on the filtering process see [24]. In Fig. 6 (a-c), we can observe spectral
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Fig. 4. Division of the log in 16 sectors and the associated filters for each sector.

images (top row) and their corresponding filter responses (middle row).
A further advantage of the filter response images compared to the original

spectral images is that the information on the annual ring pattern of a log
across different spectra can be combined in a simple way. Our proposed approach
constructs an image from the filter response images of the 196 spectral images of
a log by taking the maximum pixel brightness value across the 196 filter resposes
at each pixel position.

This is possible because the log cross section is always positioned exactly
the same for the 196 spectral images of one log. We denote this approach as
Maximum Filter approach (MF). Some of the annual rings are only clearly visible
under certain spectra and by taking the maximum filter response of all images
along the spectral range for each pixel position separately, we aim to gain the
best possible visibility of the annual ring pattern for the MF image among the
spectral images at each position of the log. In Fig. 6 (d) in the middle row we
show an example of an MF image along with three of the 196 spectral images
(Fig. 6 (a-c)) from which it was constructed.

Now we need a way to be able to quantify the visibility of the annual ring
pattern and to compare it between the spectral images, MF images and RGB
images. For this, we first binarize the filter response images and the MF image
using adaptive thresholding by calculating locally adaptive image thresholds
which are chosen using local first-order image statistics around each pixel (using
the Matlab function “imbinarize(I, ’adaptive’)”). Then, skeletonization is applied
to the binarized filter response images. To remove noise and components that are
too small to properly indicate the annual rings, all connected components that
have less than 20 pixels are removed from the skeletonized images. Examples of
skeletonized filter response images can be seen in Fig. 6 in the bottom row. Now
by counting the white pixels in the skeletonized images (which indicate annual
rings), we get an estimation of the visibility of the annual ring pattern in the
filter response images and the original images itself. The higher the number of
white pixels, the better the visibility of the annual ring pattern.
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4 Experimental Setup

Since we are mainly interested in the general differences between log images
at different spectra and not in the differences for specific logs, we average the
outcomes of the employed methods from Section 3.1, that are applied to each
log separately, over all 87 logs.

In case of the methods extracting feature vectors (Image Histogram, CNN,
LBP and Gabor Wavelets) we compute the Euclidean distances between the
feature vectors of all 196 spectral images from each log separately. For LEG, we
compute distances d by inverting the metric scores s between the 196 images
per log ( d = |1 − s|). Hence, for each of the methods we get a distance matrix
of 196 × 196 for each of the 87 logs. Then each of the 87 distance matrices is
normalized separately by dividing all its entries by the highest occurring distance
in the matrix so that the values in each matrix are exactly between 0 and 1.
Finally, the 87 normalized distance matrices are averaged by taking the average
value over the 87 different distance values for each position in the matrices, so
that we gain the average distances between the images at different spectra over
the 87 logs in the form of a 196× 196 distance matrix for each of the methods.

For the method Image Difference we proceed similar, but here we are more
interested in the absolute values of the differences between images and hence we
do not normalize the differences for each log. Also here we get a 196×196 matrix
that shows the differences between the images per log that is averaged over the
87 logs.

The two methods ’Image Difference’ and ’Image histogram’ are not only
applied to the original spectral images but also to images that are normalized
with regard to the average pixel brightness and the image contrast. Once again,
the normalization is applied separately for the images of different logs, First,
the mean and the standard deviation are computed for each spectral image
of a log, then the average over the 196 means (M) and standard deviations
(SD) is computed per log. Finally, each spectral image I of a log is normalized
by setting the standard deviation of the image to SD (I = I × SD/std(I))
followed by setting the mean value to M (I = I +M −mean(I)). In that way,
the normalized spectral images of one log all have the same mean brightness
and at least similar contrast. So, by additionally applying the two methods to
the normaized images, we can analyze the differences of log images at different
spectra apart from the two factors average image brightness and contrast.

5 Results

In Fig. 5 (a,b) we present the results of the method Image Difference, where the
mean pixel difference between images at different spectra is averaged over the
87 logs. We can observe that the differences between the normalized spectral
images are about 4 times lower than the differences of the original image for
all comparisons between images at different spectra. So, alone the normalization
of the images eliminates about 3 quarters of the differences between images at
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(a) ImDiff Orig. (b) ImDiff Norm. (c) Hist. Orig. (d) Hist. Norm.

(e) CNN (f) LBP (g) Gabor (h) LEG

Fig. 5. Heatmaps showing the differences (a-b) and distances (c-h) between spectral
images in the range of 990-1665, averaged over the 87 logs. The Image Difference
method (a,b) and the Image Histogram method (c,d) show the differences respectively
distances for original and normalized images. (e), (f), (g) and (h) show the distances
for the methods CNN, LBP, Gabor Wavelets respectively LEG.

different spectra. Generally, the differences between images at spectra between
990nm and about 1350nm are rather small and the same applies for images at
spectra between about 1400 and 1665nm. The highest differences are between
images in the spectral range of 990-1150nm and images in the spectral range of
about 1400-1600nm.

In Fig. 5 (c-h) we compare the distances between images at different spectra
using 5 different methods. We can observe that for the Image Histogram method
(Fig. 5 (c) and (d)), which shows the distribution of the brightness values in an
image, the distances between images are quite different for original and normal-
ized images. In case of the original images, the distances between different spectra
behave similar as for the Image Difference method, but with bigger differences
between images in the spectral range of 990-1150nm and images in the spectral
range of 1150-1350nm. The distances between the normalized images at different
spectra are totally different. Here, the distances are quite low between images in
the spectral range of 990-1350nm. For nearly all other comparisons of images at
different spectra, the distances are high, even for rather small differences in the
spectrum (>30-50nm difference).

For the LBP method, which basically compares the brightness between pixels
and their neighbored pixels, the distances are different than for the results of the
previously analyzed methods. Here, the distances between images at the wide
spectrum from about 1150-1665nm are rather low. The highest difference occur
between images in the spectrum of 990-1130 and images at spectra higher than
1400nm. The distances between the CNN features are similar to those of the
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(a) 995nm (b) 1300nm (c) 1665nm (d) MF (e) RGB

Fig. 6. Original images (top row), filter response images (middle row) and skeletonized
filter responses (bottom row) of images from the same log. The three columns on
the left side (a-c) show spectral images at different spectra and their filter responses
and skeletonization. The fourth column (d) shows the output of the Maximum Filter
approach and its skeletonization. The right column (e) shows an RGB image and its
filter response and skeletonization.

LBP approach and the Image Histogram method using the original images, kind
of a mixture between the distances of the two methods.

The distances between images using Gabor Wavelets, which analyzes the
frequency distribution of images along different directions, are quite similar in
behaviour as for the Image Difference method.

The distances between images using LEG, which compares the edge infor-
mation between images, are kind of similar to the results of the methods Image
Histogram with the original images and CNN. Also the results in [18] on the
differences between spectral log images from the FX17 scanner were similar to
the outcomes of these three methods.

Summed up, the different methods produce different results regarding the
difference of log images at different spectra, but the results of the methods
are kind of similar with the exception of the method Image Histogram using
normalized images. For all methods there are low distances between spectral
images in the spectrum of 990-1150nm and for all methods except the Image
Histogram using normalized images, the same applies to images in the spectrum
of about 1150-1370nm and images in the spektrum of about 1380-1655.
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In Fig. 6 we show five different images from the same log (three examples
of spectral images at different spectra, the combined filter response MF and an
RGB image) together with their filter response images and their skeletonization
of the filter responses. When comparing the filter response images (middle row in
Fig. 6) with each other, we can observe that the combined filter response image
(MF) offers a better visibility of the annual ring pattern than the filter responses
of images from only a single spectral image. The same can be observed for the
images showing the skeletonization of the filter responses (bottom row in Fig.
6). For the shown skeletonized images, the number of white pixels indicating an
annual ring is 9932 for the spectral image at 995nm, 9921 for the spectral image
at 1300nm, 10528 for the spectral image at 1665nm and 11052 for MF. However,
the skeletonization of the RGB image even outperforms MF with 12048 pixels.
However, as can be clearly observed in Fig. 6, the cross section area of the log
in the RGB image is clearly bigger than the cross section area of the spectral
images. This is because the spectral images were squeezed in height during the
image acquisition process (see Section 2.2) and hence their cross section areas
are smaller in the square images. So that comparison is clearly not fair. A much
fairer approach is to compare the percentage of white pixels in the cross section
area of the log (dividing the number of white pixels by the total number of pixels
in the log cross section multiplied by 100). Using this fair comparison, 15.13% of
the cross section area are white pixels indicating annual ring pattern for the MF
image compared to 13.78% for the RGB image, whose cross section area is about
1.197 times bigger than the cross section area of the spectral images shown in
Fig. 6. So, the visibility of the annual ring pattern is actually better for the MF
image than for the RGB image for the exemplar images of one log shown in Fig.
6.

In Fig. 7 we present the percentage of white pixels from the skeletonized
filter responses in the cross section area. This percentage is computed for each log
seperately and then the outcomes are averaged over the 87 logs. This performance
measure indicates the visibility of the annual ring pattern of the log images and
is presented for each of the 196 spectral images along the spectral range as well
as for the MF and RGB images. Here we can clearly observe that MF offers a
better visibility of the annual ring pattern than single spectral images. When we
compare the spectral images with the RGB images, we can see that the spectral
images only show a better visibility of the annual ring pattern in the range of
about 1390nm-1490nm. MF images offer a clearly better visibility of the annual
ring pattern than the filtered RGB images.

6 Conclusion

In this work we analyzed hyperspectral log images with respect to their applica-
tion on wood log tracking. First we applied experiments to find the differences
between the images at different spectra (990-1665nm). We showed that for most
or even all methods there are only small differences between spectral images in
the spectral ranges of 990-1150nm, 1150-1370nm and 1380-1655nm. The high-
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Fig. 7. The percentage of white pixels in the skeletonized filter responses in the cross
section (CS) area averaged over all 87 logs. This performance measure indicates the
visibility of the annual ring pattern and is shown for the spectral images along the
spectral range as well as for the combination of spectral images (MF) and for RGB
images.

est differences occured between images in the spectral range of 990-1150nm and
images in the spectral range of 1400-1600nm. Second, we combined the images
across the spectral range in order to maximize the image information. This was
done using the proposed method MF, which combines filter response images
that highlight the annual ring patter. We showed that MF offers a clearly better
visibility of the annual ring pattern than single spectral images. Third, we com-
pared the visibility of the annual ring pattern, the most important feature for
log tracking, between spectral images and RGB images. We showed that only
spectral images in the spectral range of about 1390nm-1490nm offer a better
visibility of the annual ring pattern than RGB images of the same logs. The
clearly best visibility of the annual ring pattern was achieved using MF.
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