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Abstract—The proof of origin of logs is becoming increasingly
important. In the context of Industry 4.0 and to prevent illegal
logging there is an increased interest to track each individual
log. In the near future more and more sawmills will be equipped
with a computed tomography (CT) scanner. In order to establish
wood log traceability from the forest to the sawmill this work
investigates log recognition based on RGB log end images
captured in the forest and CT log images captured in the sawmill.
The advantage of that approach is that CT scanners are already
applied in big saw mills to optimize the saw cut and so the logs
only have to be recorded once more in the forest which saves
time and cost. To bridge the domain shift between CT and RGB
images, we apply widely known domain adaption approaches and
present a novel filtering approach. Log recognition is done using
a convolutional neural network (CNN) based method using the
triplet loss for CNN training and a novel shape descriptor. The
results (equal error rate of 13%) show that the recognition of
logs using different imaging modalities (RGB and CT) is indeed
feasible, despite the challenging experimental setup.

Index Terms—log tracing, computerized tomography, deep
learning, domain adaption

I. INTRODUCTION

Wood log biometrics are a physically marking free approach
to establish log traceability, that would be easy as well as
cheap to implement. The motivation for wood log tracing is
that on the one hand, illegal logging can be better combated
and, on the other hand, the identification of each individual
log forms a basis for steps towards forest-based industry 4.0.
Other tracking technologies for wood logs (e.g. punching, col-
oring, barcoding log ends and Radio Frequency Identification
(RFID)) require the physical marking of each tree which costs
time and money. Wood log tracing based on digital log end
images only requires to install one camera at the harvesting
device (e.g. harvester) and another camera at the sawmill.

The basic assumption is that a single log can be identified
based on two different cross-section (CS) images of one log
end, the first being captured in the forest during harvesting,
the second being captured at the sawmill to facilitate log
traceability in the forest—sawmill supply chain. Previous works
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in this field investigated the general applicability of biometric
log identification using digital log end images. These works
only applied log tracking between images that were recorded
at the same place, at the same time and with the same device,
which is a much easier scenario as in a practical setup where
logs are recorded in the forest and later once again at the
sawmill. For a literature review we refer to [1] and to two
findings presented in [2], [3].

About a decade ago, the first fast (= 120 m/min) and
robust industrial CT-Scanner was developed within the CT-
Pro Project in 2010 [4], [5] and a few scanners are already
installed in Germany, France and Chile, for example. CT-
scanning in combination with an exact log positioning at the
saw intake increases the value of each log up to about 20% [6],
[7]. CT scanning will become state-of-the-art in the sawmill
industry, resulting in corresponding data availability that can
be potentially used for wood log tracing. This work elaborates
the question if logs can be identified by means of an RGB CS-
image captured at the forest site and an CT CS-image captured
in the sawmill. Hence, there would be no need to capture RGB
CS-images in the sawmill which further saves time and costs.

First, all the images are segmented to remove the back-
ground of the log images and then domain adaption is applied
to bridge the domain shift between CT and RGB images. We
apply well known CNN based domain adaption approaches as
well as a novel hand-crafted filtering approach. Finally, log
recognition is applied by CNNs that were trained with the
triplet loss function and a novel shape feature descriptor.

II. THE CT AND RGB LOG IMAGE DATASET

Our two employed datasets consist of images taken from
the same 100 logs. The images were acquired from both ends
of the logs and show the CS.

The first dataset shows images of discs that were cut off
from both ends of the logs. The discs were sanded and
recorded indoor using a Canon 70D camera. The camera
has been fixed so the images were all taken under the same
viewpoint and the same scale, but the discs were differently
rotated. Because of the sanded surface, the CS-Images offer
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Fig. 1. Example images of the same log from both datasets.

perfect visibility of the tree ring pattern (see Fig. 1.(a)). We
further denote this dataset as Sanded. The Sanded dataset
consists of 6-9 images per side of a log with 1321 images
in total.

For the second dataset, the 100 logs with the removed discs
from both ends of the logs are once again recorded using a
CT scanner. About all 4.5 mm along the length of a log a CT
image is taken from the CS. We only employ the first and the
last 15 images, those that are most close to one of the ends of
the log (in that way this dataset is acquired in a similar way
as the Sanded dataset). Thus, the CT dataset consists of 3000
images. The CT images of a log all have the exactly same
rotation, scale and perspective. Since the images were taken
at slightly different longitudinal positions of the log, images
of the same log can show different branches and hence there
are clear differences even between the images of one side of
a log. The CT images offer perfect visibility of the tree ring
patter for the heartwood (the inner area of a CS), but hardly
any visibility of the tree ring pattern for the sapwood (the
outer area of a CS) as can be seen in Fig. 1.(b). So for the
recognition of CT images based on RGB images, it may be
beneficial to only use the center area of the CS since the outer
area of a log in a CT image does not contain any useable
information except of the log shape.

III. CS SEGMENTATION

The CS-Images are segmented to remove the background
of the log images and to get segmentation masks which can
be used for log shape feature descriptors. For the images of
the Sanded dataset, we apply the Mask R-CNN framework
[8] to get a segmentation mask that separates the CS from
the background. As net architecture we employ the ResNet-50
architecture using a model pretrained on the COCO dataset.
The segmentation net is trained on the MVA log dataset, a
log dataset of 2270 log CS images with manually segmented
masks (see [9] for further information on the MVA log
dataset). For further information on the CNN-based segmenta-
tion see [10]. For the CT images, the CNN-based segmentation
does not work because of the lack of manually segmented CT
log images. However, the CT images already have a mostly
black background outside of the CS and so segmentation is a
rather easy task and has been applied using the active contour
method [11]. For both CT and RGB images, the background is
set to black and the images are reduced to the smallest possible
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Fig. 2. Segmentation, square image patch extraction (Segmented Logs) and
core image (Heartwood Logs) extraction of a log CS image

square shaped image section so that the CS is still completely
included in the image together with a five pixel thick black
border on each side of the image. We furtherly denote the log
images with black background as ’Segmented Logs’. Next, we
use an algorithm [12] that finds the middle point (pith) M P of
a log based on the tree ring pattern to extract a smaller image
patch that is centered at M P. If not mentioned otherwise, the
side length of the square shaped extracted image patch is half
the size of the side length of the Segmented Log image. In that
way, most parts of the sapwood (which does not contain any
information in CT images) are removed, while the images still
contain the perfectly visible tree ring pattern of the heartwood.
We further denote those images as "Heartwood’ images. For
our experiments, the RGB images are transformed to grayscale
to reduce the difference between CT and RGB images. A
schematic representation of the segmentation of a log image
and the extraction of the Segmented Logs and the Heartwood
is presented in Fig. 2.

IV. DOMAIN ADAPTION

There is a huge difference between the two imaging modal-
ities (i.e. domains) of CT and common RGB recorded images
that makes it difficult to directly compare them. To bridge an
image domain shift of this extent, typically domain adaptation
methods are applied in literature. Domain adaptation using
image-to-image translation is independent of the final task
to be performed on the images as only the image itself
is converted. Image-to-image translation gained popularity
during the last years generating highly attractive and realistic
output [13], [14]. In this work we apply three different deep
learning based domain adaption approaches:

1) Cycle-GAN (cG [13]): Generative adversarial networks
(GANS) that make use of the so-called cycle-consistency
loss.

2) pix2pix (p2p [14]): Applies conditional adversarial net-
works as a general-purpose solution to image-to-image
translation.

3) Style transfer (ST [15]): Uses neural representations to
separate and recombine content and style of arbitrary
images.

For all 3 approaches, we used the original code of the authors

provided on github. Domain adaption is applied in a 3-



fold cross validation setup. Fig. 3 illustrates a CT and RGB
(Sanded) CS-Image of the same log and the domain adapted
images using the three domain adaption approaches. As we can
observe, the outputs of the domain adaption approaches do not
really match the domain shift and include quite a lot of obvious
faults (especially p2p). Because of the rather disappointing
results of the employed domain adaption approaches we de-
veloped a novel filtering approach to bridge the gap between
CT and RGB images. The aim of that approach is to display
the tree ring pattern, the possibly most distinctive wood log
feature, in the same way for both imaging modalities while
simultaneously putting branches in the background. Branches
complicate the wood log recognition when comparing CS-
Images taken at different (longitudinal) positions of the log,
since then different wood knots may be visible on the CS-
Images.

We employ directional Gaussian 2D filters with zero mean.
The size of the filters is 5 x 5. The standard deviations to
build the filters in horizontal (x) and vertical (y) direction are
o, = 3 and o, = 1. In that way the Gaussian filters have
a clear direction and we can construct filters in 8 different
directions (0°, 22.5°, 45°, ...157.5°). The filters are shown
in Fig. 4 (a). To highlight the tree ring pattern, the direction
of the filters has to be the same as for the tree rings. In that
way the filter responses are high at the position of a tree ring
border. For this, we subdivide the log in 16 different sectors,
where each sector covers the part of the log within a range of
22.5° using M P as center point. Then each sector is filtered
separately with the filter that has the same direction as the
respective sector (see Fig. 4(b)). Finally, the filter responses
of the 16 different sectors are concatenated to form a filter
response image F'R(I) of the log image I. Since the direction
of wood knots is going from the center M P outwards (see
Fig. 1), image regions showing wood knots generate small
filter response values and therefore take a back seat in the
filter response images. For RGB and CT images, the tree
ring borders are shown in different ways (dark lines for RGB
images and white lines for CT images). Hence, the filtering has
to be applied slightly different for the two imaging modalities,
so that the high filter responses marking a tree ring border
occur at the same position for CT and RGB images. In case
of the CT images, we use the original filter response F'R([)
and for the RGB images we use the inverse filter response
—FR(I). We furthermore denote the filter response images
as ’Filtered’. Fig. 5 shows images of the same log but from
different datasets and their filter responses. As we can see, the
filtering does produce visually similar outcomes for CT and
RGB images.

V. WooD LOG RECOGNITION USING THE CNN TRIPLET
LOSS AND SHAPE FEATURES

The big advantage of the triplet loss [16] compared to
common loss functions (e.g. SoftMax loss) is that CNNs can
be applied to subjects that have not been used during training,
which is necessary for any biometric application. The triplet
loss requires three input images at once (a so called triplet),

where two images belong to the same class (the so called
Anchor image and a sample image from the same class, further
denoted as Positive) and the third image belongs to a different
class (further denoted as Negative). The triplet loss learns the
network to minimize the distance between the Anchor and
the Positive and maximize the distance between the Anchor
and the Negative. The triplet loss using the squared Euclidean
distance is defined as follows:

L(A, P,N) =max(||f(A) - f(P)|
= [I£(A4) = fF(N)I]* + ,0),

where A is the Anchor, P the Positive and N the Negative.
« is a margin that is enforced between positive and negative
pairs and is set to « = 1. f(I) is an embedding (the CNN
output) of an input image I.

Fig. 6 schematically shows the training of a CNN using the
triplet loss. To specifically train the net to recognize the log
shown in a CT image based on a gallery of Sanded log images,
the Anchor is set to be an CT image whereas the Positive and
the Negative are set to be images of the Sanded database.

Summarized this means the CNN is trained to create an
embedding f(I), such that the Euclidean distances between
embeddings of CS-Images from the same class (log) but
different image modality is small, whereas the Euclidean
distance between embeddings of any pairs of log images from
different logs and image modalities is large. We employ hard
triplet selection [16] (only those triplets are chosen for training
that actively contribute to improving the model) and the
Squeeze-Net (SqNet) architecture [17]. SqNet is a small neural
networks that is specifically created to have few parameters
and only small memory requirements.

The size of the CNN’s last layer convolutional filter is
adapted so that a 64-dimensional output vector (embedding)
is produced. To make the CNN more invariant to rotations
and increase the amount of training data, we employ data
augmentation for CNN training. The images are randomly
rotated in the range of 0-360 ° and random shifts in horizontal
and vertical directions are applied by first resizing the input
images to a size of 234 x 234 and then extracting a patch
of size 224 x 224 at a random position of the resized image
(£10 pixels in each direction). The CNNs are trained for 800
epochs.

Additional to the CNN method, we developed a novel
method to describe the shape of the log CS. The advantage
of shape features is that the shape of the log is the same for
log images of different imaging modalities (aside of slight
variations due to different longitudinal positions where the
CS-Images were recorded). The shape features are extracted
from the binary segmentation masks (see Sec. III). For our
shape feature, further denoted as ’LogShape’, we use the
length of the mayor and minor axis of the ellipse that has
the same normalized second central moment as the region
of the log from the segmented log mask. As third feature of
the LogShape descriptor, we employ the distance between the
centroid C' of the log and its M P. A schematic representation
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Fig. 3. Examplar outcomes of the domain adaption approaches
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Fig. 4. Division of the log in 16 sectors and the associated filters for each
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Fig. 5. Filter response (FR) images of images from the same log but different
datasets.

of the three features extacted by the LogShape descriptor is
given in Figure 7.

Since the images of the CT and Sanded dataset have
different resolutions, we normalize the shape feature vector
f of a log [ separately on the CT and Sanded dataset:
17 = (F(1) = F)/o(f). where [ is the mean and o(f)
the standard deviation over all feature vectors of a dataset. In
that way we balance the different resolutions and can directly
compare shape features from both datasets.

In an additional experiment, the shape feature is combined
with CNN features by concatenating the feature vectors of
both descriptors where the shape features are multiplied by a
factor of 5 (the shape descriptor only consists of 3 features
per image whereas the CNN feature vector consists of 64
features per image). The shape feature descriptor is combined
with the CNN descriptor applied to the Heartwood images
(those images contain no information on the shape of a

(e) RGB (f) RGB2CT ¢G (g) RGB2CT (h) RGB2CT ST
p2p
Anchor (CT) Embedding
CNN —
kShared
Positive (RGB) weights

Negative (RGB) Ishared

weights

Fig. 6. CNN training using the triplet loss

CNN

Fig. 7. The three features (minor and mayor axis length, distance d(C, M P)
between centroid C and middle point MP) extracted by the LogShape
descriptor (best watched in color)

log) and we further denote this combination of features as
’CNN+LogShape’.

We also experimented with other shape features like Zernike
moments, which were already utilized in a work about shape
features for wood log recognition [18] and performed best in
that study. However, Zernike moments do only work when
applied to a single dataset but not for our cross-dataset setup
recognizing CT images based on RGB images.

VI. EXPERIMENTAL SETUP

For the training and evaluation of the CNNs, we employ a 2-
fold cross validation. The CNN is trained two times, each time
using one fold for training and the other one for evaluation.
Each fold consists of 50 out of the 100 logs from both datasets,
where all images of a log (no matter which log side or which



dataset) are in the same fold. The evaluation of the LogShape
descriptor is also done separately on the same 2 folds (training
is not needed for the LogShape descriptor) . Distances between
feature vectors of log images are measured using the Euclidean
distance d.

As performance measures we employ the equal error rate
(EER). The similarity score between two log images is the
inverse distance (1/d) between the feature vectors of the log
images. We only employ the similarity scores between CT
and RGB images for the EER computation, but not between
images of the same imaging modality. In that way, a CT image
of a log can only be identified by the similarity of its feature
vector to the feature vectors of the RGB images. We have to
consider that the two CNNs (one per fold) per experiment have
a different mapping of the images to the CNN output feature
space. Thus, CNN feature vectors of different folds cannot be
compared in the evaluation and the EER has to be computed
separately for each of the two folds. We report the mean EER
over the two folds (also for the shape feature).

As already mentioned before, the datasets consist of images
from both ends of the logs. Since the logs have a length
of about 4 metres, there are no obvious visible similarities
between the two ends of a log. To be able to employ the
maximum number of images for CNN training, the two sides
of a log are considered as different classes thus resulting in
200 classes in total. To avoid any bias by assigning different
classes to the two sides of a log, we exclude those triplets
during training where the Anchor and the Negative are from
the same log but different sides. To avoid any bias in our
evaluation, we do not use the similarity scores between images
from different sides of the same log for EER computation (for
CNN as well as LogShape).

VII. RESULTS

First, we want to find out if it is more beneficial to apply the
cross-domain CNN recognition to the Segmented Logs (whole
logs) or to the Heartwood (only centers of the logs), without
any domain adaptation. It turned out that using the Heartwood
(EER=27.0%) performs better than using the Segmented Logs
(EER=29.6%).

Next, we want to to find out if domain adaption is able
to increase the performance of the CNNs. The domain adap-
tion approaches were applied to Heartwood images, which
provided better results in terms of the optical appearence of
the domain transformed images as well as the EER rates.
In Table I, we present the results for applying CNNs to the
domain adapted images as well as the Filtered images (the
filter responses (FR) of our proposed filtering approach). The
domain adaption approaches either transfer the domain from
CT to RGB (RGB in Table I) meaning that the CT images are
transfared to RGB and the RGB images are kept the same, or
the other way around where the RGB images are transfered
to CT ( CT in Table I).

As we can see in Table I, our proposed Filtered approach
clearly achieves the best recognition rate (EER=20.4%). The
domain adaption approaches mostly achieve better results than

Method Cycle-GAN pix2pix Style tr. Filtered

Domain | CT RGB | CT RGB | CT RGB FR

EER | 28.0 231 [ 258 253 [ 333 238 | 204
TABLE I

CNN RESULTS FOR THE THREE DOMAIN ADAPTION APPROACHES AND
THE FILTERING APPROACH (FILTERED)

for employing the original Heartwood images (EER=27.0%),
but the results are clearly worse than for using the hand-crafted
Filtered approach.

The results using filtered images can be furthermore im-
proved by reducing the Heartwood image patch that is ex-
tracted from the Segmented Log image. For a reduction of the
side length of the Heartwood image patch down to to 40%
of the side length from the Segmented Log image (instead of
50% as in Table I), we achieve a EER rate of 18.4%.

In Table II, we present the results of the LogShape descrip-
tor as well as the combination of the LogShape descriptor
with our best performing CNN feature (filtered Heartwood
with 40% side length).

Method CNN  Logshape = CNN+LogShape
EER 18.4 16.9 13.0
TABLE II

RECOGNITION PERFORMANCE (EER IN [%]) OF CNN, LOGSHAPE AND
THE COMBINATION OF BOTH FEATURES

We can observe that the proposed hand-crafted shape feature
performs better than our best performing CNN. But the clearly
best results is achieved by the combination of the two methods
with an EER of 13%.

VIII. CONCLUSION

In this work we investigated if log tracing is feasible in
a scenario where RGB images of logs are recorded and the
logs are later once again recorded at the sawmill using a
CT scanner. We were able to show that the recognition of
CT images based on a gallery of RGB images with high
quality, well visible tree ring pattern and constant image
recording conditions (Sanded dataset) is feasible, despite the
huge difference in the imaging modalities of CT and RGB
recorded log images. We further showed that hand-crafted
approaches (the proposed filtering approach and the proposed
shape descriptor) can outperform deep learning approaches
in this scenario. The best result (EER =13%) was achieved
using a combination of CNN features extracted from filtered
images of the heartwood and shape features extracted from
the segmentation masks of the logs. In future work, we aim to
find out if the same log tracing scenario is also possible using
RGB images directly recorded in the forest during harvesting
the wood.
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