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Abstract—Finger vein recognition deals with the identification
of subjects based on their venous pattern within the fingers.
There is a lot of prior work using hand crafted features, but
only little work using CNN based recognition systems. This
article proposes a new approach using CNNs that utilizes the
triplet loss function together with hard triplet online selection for
finger vein recognition. The CNNs are used for three different
use cases: (1) the classical recognition use case, where every
finger of a subject is considered as a separate class, (2) an
evaluation of the similarity of left and right hand fingers from
the same subject and (3) an evaluation of the similarity of
different fingers of the same subject. The results show that
the proposed nets achieve superior results compared to prior
work on finger vein recognition using the triplet loss function.
Furtherly, we show that different fingers of the same subject,
especially symmetric fingers (same finger type but from different
hand), show enough similarities to perform recognition. The last
statement contradicts the current understanding in the literature
for finger vein biometry, in which it is assumed that different
fingers of the same subject are unique identities.

I. INTRODUCTION

Vascular pattern based biometric systems, commonly de-
noted as vein biometrics, offer several advantages over other
well-established biometric recognition systems. In particular,
hand and finger vein systems have become a serious alternative
to e.g. fingerprint based ones for several applications. Vein
based systems use the structure of the blood vessels inside the
human body, which becomes visible under near-infrared (NIR)
light. As the vein structure is located inside the human body,
it is resistant to abrasion and external influences on the skin.
Furthermore, due to the bloodflow exhibited in NIR finger vein
videos, liveness detection techniques can be applied to prevent
presentation attacks [1], [2].

Most finger vein recognition systems use hand crafted
features which are based on the pattern of the vascular network
inside the finger. Classical correlation based systems, such
as Maximum Curvature (MC) [3], Principal Curvature (PC)
[4] or the Wide Line Detector (WLD) [5], use the binarized
vein pattern as template and determine the similarity between
two samples based on their correlation. More sophisticated
methods, e.g. Deformation Tolerant Feature Point Match-

ing [6] or Finger Vein Recognition with Anatomy Structure
Analysis [7] are still based on the vein pattern, but apply
matching schemes that are tolerant to misplacements of the
finger (e.g. longitudinal finger rotation) to a certain extent.
Other methods which utilize minutiae extracted from the vein
pattern (e.g. [8]), are based on the texture of the finger vein
image (e.g. LBP [9] or LDP [10]) or use keypoint based feature
extraction schemes (e.g. SIFT based [11]). Nowadays, finger
vein recognition systems using convolutional neural networks
(CNN), e.g. [12], [13], [14], are getting more attention.

The key objective of this work is to refine the usage of
the triplet loss function [15] in finger vein recognition. Xie
and Kumar [13] already successfully applied the triplet loss
using the Light CNN (LCNN) [16] architecture. They select the
training samples (triplets) randomly. Our proposed approach
improves on the approach in [13] by applying a more refined
triplet selection to improve the effectiveness of CNN training,
the so called hard triplet online selection [15], and by the
utilization of better suited network architectures (SqNet [17]
and ResNet [18]).

Another aim of this work is to examine if there are similari-
ties between finger vein images of different fingers of the same
subject. In finger vein recognition, each finger of each subject
is considered as a separate class and it is assumed that different
fingers of the same subject do not share many similarities
since they (indeed) have quite different vein structures. In this
work it is examined if this general understanding really holds
true. Although the finger vein structures are definitely different
for fingers of the same person, this not necessarily applies
for other characteristics visible in finger vein images as e.g.
thickness of the veins or the finger itself. Especially left and
right hand fingers of the same type and subject (e.g. left index
finger and right index finger, furtherly denoted as symmetric
fingers) may share sufficient similarities to be applied in finger
vein recognition systems where a subject can be identified
using a finger, even though only the same finger of the other
hand has been acquired during enrolment. It is not clear if vein
images from symmetric fingers share sufficient similarities to
apply recognition. For palm print identification, it was shown



in [19] that a subject can be recognized through his/her left
palm print even when only the other one has been enrolled. For
finger vein biometry there is only one prior work [20] on this
subject, with the outcome that there are hardly any similarities
between symmetric fingers using several hand-crafted state-of-
the-art approaches and one CNN approach. In this paper we
will show that our proposed approach is able to recognize
subjects using fingers that have not been enrolled.

The reminder of this paper is organized as follows: After
a short introduction on the usage of CNNs in finger vein
biometry (section II), the triplet loss function and hard triplet
online selection are presented in section III. The CNN archi-
tectures used for the experiments of this work are described in
section III-A. Section IV describes the experimental setup. The
results are shown in section V, followed by a short discussion
on the results (section VI) and the conclusion together with
an outlook on planned further work (section VII).

II. CNNS IN FINGER VEIN RECOGNITION

Convolutional neural networks (CNN) are gaining more and
more interest in computer vision. The increase in computa-
tional power based on GPUs has led to more sophisticated and
deeper architectures which have proven to be the state-of-the
art in image classification in various challenges. In biometric
applications like finger vein recognition, the problem with the
common CNNs is that the CNNs are only able to identify those
subjects which have been used for the training of the neural
network. If new subjects are added in a biometric application
system, then the nets need to be trained again or else a new
subject can only be classified as one of the subjects that were
used for training (the one that is most similar to the newly
added subject with respect to the CNN). This of course makes
the practical application of common CNNs impracticable
for biometric applications. Some previous publications using
CNNs for finger vein recognition just ignored this problem and
used common CNNs for finger vein identification (e.g. [21],
[22]). Other publications using CNNs used a more practicable
approach by training the CNNs to not directly classify images
but to compute a similarity measure between pairs of vein
images, which also allows the identification of subjects that
were not used for the training of the CNNs. For example
the authors of [23] use difference images of pairs of finger
vein images as inputs to train CNNs and the authors of [24]
create 2-channel input images by combining two finger vein
images (each channel is one image). Both approaches train
with positive (2 images from the same class) and negative
pairs (2 images from different classes) to enable the CNNs the
distinction between genuine and imposter attempts. A more
elegant approach to apply CNNs in practical applications is
applied in [13] using the triplet loss function [15]. By using
the triplet loss function, CNNs learn to quantify the similarity
between images. As input three images are required, two
images from identical classes and one of a different class. Then
the net is trained to minimize the distance between images
of same classes and maximize the distance between different
classes.
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Fig. 1: CNN training using the triplet loss

III. THE TRIPLET LOSS FUNCTION AND HARD TRIPLET
ONLINE SELECTION FOR CNNS

Contrary to more common loss functions like e.g. the Soft-
Max loss, the triplet loss does not directly learn the CNN to
classify images to their corresponding classes. The triplet loss
function does not even require to know the class affiliation of
the training images. Per training step the triplet loss requires
three input images at once (a so called triplet), where two
images belong to the same class (the anchor image and a
sample from the same class, further denoted as positive)
and the third belongs to a different class (further denoted as
negative). The triplet loss learns the network to minimize the
distance between the anchor and the positive and maximize
the distance between the anchor and the negative.

The triplet loss using the squared Euclidean distance is
defined as follows:

L(A,P,N) =max(||f(A)− f(P )||2

− ||f(A)− f(N)||2 + α, 0),
(1)

where A is the anchor, P the positive and N the negative. α is
a margin that is enforced between positive and negative pairs
and is set to α = 1. f(x) is an embedding (the CNN output of
an input image x). Figure 1 shows the scheme of learning a
CNN using the triplet loss. A triplet of training images (anchor,
positive and negative) is fed through the CNN resulting in an
embedding for each of the three images. The embeddings of
the three images are then used to compute the triplet loss to
update the CNN.

Summarized this means the CNN is trained to create an
embedding f(x), from an image to the feature space Rd, such
that the squared distances between all finger vein images of
the same class (finger) is small, whereas the squared distance
between any pairs of finger vein images from different classes
is large. The function of the margin α is that the finger vein
images of one class are not projected to only one single
point in the embedding space but to live in a manifold, while
still enforcing the distance and thus discriminability to other
classes.

An important point for the training of the CNNs is the
selection of the input triplets. Generating random triplets,



as proposed in [13], results in many triplets that are easily
satisfied (i.e. fulfill the constraint in Equation (1)). These
triplets do not contribute to the training and result in slower
convergence, as they would still be passed through the net-
work. It is crucial to select so called hard triplets, that are
active and can therefore contribute to improving the model.
For the proposed approach, the training triplets are randomly
selected to fulfill the following condition for a given anchor
and margin α within a batch of images (denoted as hard triplet
online selection [15]):

||f(A)− f(P )||2 + α > ||f(A)− f(N)||2. (2)

As image representation (feature vector) for the classifica-
tion of a finger vein image we employ the embedding f(x)
of a finger vein image x.

A. CNN Architectures

In this work, three different network architectures, SqNet
[17], Light CNN (LCNN) [16] and ResNet50 [18] are em-
ployed. SqNet and LCNN are both small neural networks that
were specifically created to have few parameters and only
small memory requirements. The size of the nets and their
memory requirements are essential for the training of CNNs
using the triplet loss with hard triplet online selection since
this kind of training requires big batch sizes as described later
in Section VI. ResNet is a network architecture that utilizes
skip connections, or shortcuts to jump over some layers. In that
way the ResNet deals with the problem of vanishing gradients,
a problem that occurs for deeper neural networks. This allows
the construction of deeper architectures with more layers.

The LCNN is learned from scratch (as in [13]) and the
two other nets are pre-trained on the ImageNet database
(http://www.image-net.org/). The input images are resized to
the required input sizes of the CNNs (SqNet and ResNet:
3×224×224 (each color channel is the same as the grey-scale
image), LCNN: 1×256×256). For each net, the size of the last
layers convolutional filter is adapted so that a 256-dimensional
output (embedding) is produced.

IV. EXPERIMENTAL SETUP

In this work, a 2-fold cross validation is employed. Each
fold consists of the images from half of the subjects. First,
one fold is used for CNN training and the other for evaluation.
In the second iteration the training and evaluation folds are
interchanged. We report the mean equal error rate (EER) over
the two EERs from the two folds.

The employed similarity metric to measure the similarity
between the 256 dimensional CNN outputs of different images
(genuine and imposter scores) is derived from the Euclidean
distance (which is a natural choice since the triplet loss
function is based on the Euclidean distance). To transform
the Euclidean distance to a similarity metric, the Euclidean
distances are inversed (d → 1/d) and normalized (for each
fold separately) so that the resulting similarity values range
from zero to one. For the computation of the EERs, we employ
all genuine and imposter scores instead of using only a subset

of the impostor scores like often done in other publications on
finger vein recognition.

The nets are trained with the triplet loss for 400 epochs,
starting with a learning rate of 0.001 that is divided by 10
every 120 epochs. Training is performed on batches of 128
images (images from 32 different classes with 4 images per
class) except for the ResNet, where the batch size is reduced to
32 (images from 8 different classes with 4 images per class)
because ResNet is the clearly biggest net and oversteps the
available GPU memory (12 GB) for bigger batch sizes. The
classes and the images per class in a batch are randomly se-
lected. The embeddings of the images of a batch are computed
and then 128 (32 for ResNet) hard triplets (triplets that fulfill
Equation (2)) are selected within this batch to train and update
the net. Each image of a batch is once employed as anchor
for a triplet, the positive and negative samples of each triplet
are randomly chosen within those samples of the batch that
generate hard triplets together with the chosen anchor image.

The CNNs are implemented using the PyTorch framework
[25].

The main experiment aims to find out how well suited the
triplet loss is for finger vein recognition. For this experiment,
the finger vein images of the data sets are grouped according
to the common standard in finger vein recognition: each finger
of a subject belongs to a separate class.

The other two experiments aim to investigate whether there
are similarities between different fingers of the same person.
For this, we change the class memberships of the finger vein
images for training as well as evaluation: for the analysis of
symmetric finger similarities (SFS), fingers of the same subject
and type (index, middle and ring finger) but different hand
(left, right) are grouped into one class (e.g. left and right index
finger), for the subject based finger similarities (SBFS), all
fingers of the same subject are grouped together, respectively.
In this way, the nets are trained to build features that are shared
by fingers of same subjects while still being able to distinguish
between different subjects.

For SFS and SBFS, the objective is to find out if the trained
nets are able to identify:

• the finger type and subject of a finger vein image even
though the considered finger was not enrolled but only
its symmetric counterpart on the other hand (SFS).

• the subject using finger vein images of a finger that was
not enrolled but only the other fingers of the subject
(SBFS).

For the computation of the EERs this means that we use the
changed class membership assignment and the genuine scores
consist of:

• only the similarity measures between symmetric fingers
(same finger type and subject, different hand side) but
not the similarity measures between images of identical
fingers (SFS).

• only the similarity measures between images of different
fingers from the same subject (SBFS).
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Fig. 2: Example images from the employed datasets

A. Databases

For the experiments, four publicly available finger vein
databases were used. The data sets under investigation are:

• SDUMLA [26] is a multimodal biometric database that
contains samples for face, gait, iris, fingerprint and fin-
ger veins from 106 individuals. The finger vein subset
contains six fingers (ring, middle and index finger from
both hands) per subject, captured in one session taking
six images of each finger.

• The University of Twente Finger Vascular Pattern
Database (UTFVP) [27] contains six fingers (ring, mid-
dle and index finger from both hands) from 60 volunteers
in two sessions. At each session two samples per finger
were captured.

• The third data set (PLUS) is a combination of the
PLUSVein-FV3 Finger Vein Data Set [28] and the PRO-
TECT Multimodal DB [29]. Both data sets contain palmar
and dorsal images from the ring, middle and index finger
of the left and right hand and have been acquired using
the same capturing devices [30]. In this paper only the
palmar images acquired by the LED version are used.

• The Hong Kong Polytechnic University Finger Image
Database (HKPU) [31] contains finger vein and finger
texture images of 156 subjects from two fingers (index
and middle finger of one hand) acquired in two separate
sessions.

Sample images of the vein images contained in the chosen
data sets are depicted in Fig. 2.

The finger detection, finger alignment and ROI extraction
for SDUMLA, PLUS and UTFVP is done as described in [32].
For HKPU, where the finger detection is more challenging, the
finger masks provided in [31] are used to align the images.
The ROI extraction was again carried out as described in [32].

The four examined data sets have different properties with
regard to the ease of their processing. UTFVP and PLUS
do not pose any major problems: in both, the NIR illumi-

nation and the positioning of the fingers are consistently good
over the entire data set. The HKPU contains some partially
overexposed images and therefore, the segmentation of the
fingers is more difficult. The SDUMLA suffers mainly from
finger misplacements, especially due to longitudinal finger
rotation (see [33]). This difficulties might be the reason why
the recognition results for UTFVP and PLUS are superior to
those of HKPU and especially SDUMLA in most publications,
especially if classical hand crafted features are used.

V. RESULTS

Table I depicts the recognition results (EER) for the exper-
iments carried out using the classical finger vein recognition
scenario (each finger of a subject is considered as a separate
class). The used CNN architectures are the ones described
in section III-A: Triplet-SqNet, Triplet-ResNet and Triplet-
LCNN. In order to be able to better assess the results, two
classic vein pattern-based methods, namely Maximum Curva-
ture (MC) [3] and Principal Curvature (PC) [4], a texture-
based method (local binary patterns, LBP [34]) and a SIFT
based approach [35] are applied to the same data sets.

Methods SDUMLA UTFVP PLUS HKPU
Triplet-SqNet 2.7 2.5 2.4 3.7
Triplet-ResNet 3.1 3.6 3.2 5.6
Triplet-LCNN 4.9 4.6 4.7 10.0

MC 4.0 0.2 0.5 1.0
PC 4.9 0.4 0.2 1.3

LBP 7.3 1.5 3.6 4.0
SIFT 5.4 1.5 0.8 1.8

TABLE I: Recognition performance (EER in [%]) of the
proposed method using three different CNN architectures, as
well as four approaches using classical hand crafted features,
on four publicly available finger vein databases.

As expected, the hand-crafted approaches perform best for
UTFVP and PLUS (consistently good vein images) followed
by HKPU (issues with overexposed images). The results for
SDUMLA (problem with finger misplacement) are noticeable
inferior. The same holds true for LBP and SIFT, although the
LBP results on PLUS are close to those on HKPU. For all four
data sets, the best recognition results of the proposed CNN
architectures are attained with SqNet followed by ResNet,
whose results are slightly worse. The LCNN results are clearly
inferior. In general, the recognition performance of the three
CNN architectures are quite similar for UTFVP, PLUS and
SDUMLA. For HKPU, the results are noticeable worse. The
overall best results for UTFVP, PLUS and HKPU are achieved
utilizing the classical vein pattern based methods MC and
PC. For SDUMLA, the most challenging data set, the best
results are attained using Triplet-SqNet. Both, Triplet-SqNet
and Triplet-ResNet outperform all hand-crafted systems, even
the vein pattern based approaches.

As mentioned in section II, there is one prior publication
[13] that applied the triplet loss for finger vein recognition
using the LCNN network. The experiments in [13] were
applied to the HKPU database using the enhanced and ROI



extracted images of the database (the HKPU data set provides
the original images, ROI masks (which are not always correct)
and ROI extracted images processed with image enhancement
methods), whereas for the experiments in this paper, the
ROIs as described in section IV-A are used. To have a fair
comparison of the results of both papers, the best performing
net (Triplet-SqNet) of this paper and the net used in [13]
(Triplet-LCNN) are applied to the same image database, the
enhanced images as provided in [31]. The results on the
enhanced images of the HKPU data set are presented in
Table II. The results from [13] are shown with and without
supervised discrete hashing (SDH). SDH was applied to the
CNN output in order to reduce the template/storage size. It
can be observed, that the results of the proposed approach
(triplet loss together with hard triplet online selection) are
clearly superior to those in [13].

[13] with SDH [13] without SDH Triplet-LCNN Triplet-SqNet
9.8 13.1 7.2 5.3

TABLE II: Recognition performance (EER in [%]) on the
HKPU database using the contrast enhanced ROIs provided
in [31]

Contrary to classical finger vein recognition, the second
part of the experiments examines if different fingers of the
same subject contain enough similarities to identify the correct
person. In detail, the similarity between symmetric fingers
(SFS) and between different fingers of the same person (SBFS)
in general is examined. Since the HKPU database consists only
of images from two different fingers of the same hand, it is
not possible to apply these experiments on this data set.

Table III presents the results for the experiments evaluating
SFS. The best recognition results are attained for the PLUS
database. The best performing net, Triplet-ResNet, achieves
an EER of 10%. Triplet-SqNet, reaching an EER of 11.3% is
only slightly worse. The evaluation on the SDUMLA data set
results in EERs just above 15%, and for UTFVP above 20%,
respectively. Again, Triplet-LCNN gives the worst results. This
results indicate, that there are indeed clear similarities between
symmetric fingers. If not, the resulting EERs would be close
to 50%.

Methods SDUMLA UTFVP PLUS
Triplet-SqNet 15.2 23.0 11.3
Triplet-ResNet 16.4 20.4 10.1
Triplet-LCNN 18.2 25.5 17.1

TABLE III: Recognition performance (EER in [%]) for sym-
metric finger similarity (SFS)

Piciucco et al [20] applied a similar experiment on the
SDUMLA database (Test-4 in [20]) using three hand-crafted
finger vein detection methods and a CNN (DenseNet) using the
cross-entropy loss. The experimental setup of Test-4 in [20]
is quite similar to the one for SFS in this work: Symmetric
fingers belong to the same class and for the genuine scores
only the similarity scores between symmetric fingers were

used. Since the CNN in [20] uses the cross-entropy loss, using
different subjects for training and evaluation is impossible and
a less practice-oriented approach had to be employed using
83% of the images per class for training and the remaining
images for evaluation.

The three hand-crafted methods in [20] achieved EERs
between 45 and 47%. These results are not surprising, since
the three methods are solely focusing on the vein structure,
which is clearly different for symmetric fingers. However, also
the CNN approach achieved an EER of only 32.6 %, although
specifically trained for symmetric finger recognition. Hence
the authors in [20] concluded that there are no significant
similarities between symmetric fingers. In our experiments
however we achieve EERs down to almost 15% on the
SDUMLA database and EERs down to 10% on the PLUS
database, which leads to a contrary conclusion.

The results for the subject based finger similarity (SBFS)
are listed in Table IV. The observed EERs, which are in the
range of 20% to 30%, are clearly worse than those for SFS.
Still, the results indicate that there are distinct subject specific
similarities in finger vein images. However, the similarities
between images from different fingers of the same subject
are not high enough to be used for a recognition systems
where the subject is identified using fingers that were not used
for enrolment. So, the similarities between symmetric fingers
are clearly higher as between random fingers of one subject.
This of course is not surprising since symmetric fingers are
supposed to share characteristics such as finger thickness, vein
visibility, vein width or finger shape, which clearly does not
hold true to the same extent for different finger types of the
same person.

Methods SDUMLA UTFVP PLUS
Triplet-SqNet 22.8 26.4 23.3
Triplet-ResNet 21.9 24.3 26.9
Triplet-LCNN 25.3 30.4 30.1

TABLE IV: Recognition performance (EER in [%]) for subject
based finger similarity (SBFS)

Fig. 3 depicts the distribution of the distances of the three
employed experiments, the classical finger vein recognition
scenario (recognition), symmetric finger similarity (SFS) and
subject based finger similarity (SBFS) for the best performing
net, Triplet-SqNet. For classical recognition, the two distri-
butions are nicely separated. For SFS, the two distributions
can still be clearly distinguished. However, the overlapping
area is already noticeable larger. For SBFS, the distributions
are getting closer to each other and the overlapping part is
distinctly larger than for SFS.

VI. DISCUSSION

From the results in Table I we can clearly observe that the
best results are achieved for the Triplet-SqNet. However, it is
not clear if the results of SqNet are better because it is the
best suited network architecture to identify finger vein images
using the triplet loss or if it is because of the different training
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Fig. 3: Distributions of the resulting distances for the three experiments (Recognition, SFS, SBFS) using the best performing
net (Triplet-SqNet)

configurations. There are two main differences between the
training configurations of the three nets. LCNN is the only
net that was not pre-trained on another database. SqNet and
ResNet have been pre-trained on the ImageNet database.
ResNet is the only net with a smaller batch size for training
(because of GPU memory issues). The smaller batch size has
an impact on the triplet selection since the hard triplets are
chosen within a batch of images. For a higher batch size,
there is a higher chance that hard triplets can be found which
still properly help to train a net especially on the later stages
of training, when nearly all possible combinations of images
as triplets does not produce a positive loss value (> 0) and
hence do not contribute to the training of the net.

To find out if the SqNet is really the best choice or if
the training configurations (batch size and pre-training) are
the reason for its superior results, the results of the SqNet
using three different training configurations are compared to
the results of ResNet and LCNN. SqNet is trained once with
the standard parameters (batch size 128, pre-trained) like in
Table I, once with a batch size of 32 using the pre-trained
version of the net (like ResNet) and once we train the net
without any pre-training (from scratch) with batch size 128
(like LCNN). The results on the four data sets are presented
in Table V.

Net Configuration SDUMLA UTFVP PLUS HKPU

SqNet
standard 2.7 2.5 2.4 3.7
batch size 32 3.6 4.0 4.1 5.9
no pre-training 3.0 3.7 3.2 7.5

ResNet batch size 32 3.1 3.6 3.2 5.6
LCNN no pre-training 4.9 4.6 4.7 10.0

TABLE V: Recognition performance (EER in [%]) for differ-
ent training configurations of the Triplet-SqNet compared to
the results of the other two nets. Standard configuration means
a batch size of 128 images and a pre-trained net.

As listed in Table V, pre-trained nets perform better than
nets without pre-training and a higher batch size leads to better
results. When applying the same training configuration (batch
size = 32, pre-trained net), then ResNet performs slightly better
than SqNet. That means that deeper net architectures seem to

achieve superior results. However, since higher batch sizes are
not possible for the ResNet using the triplet loss because of
limited GPU memory, the SqNet is the better choice if one
does not have access to very expensive, deep learning specific
hardware for the training of the nets. The LCNN is definitely
the worst performing net of the three employed nets.

VII. CONCLUSION

In the experiments we showed, that CNNs using the triplet
loss function combined with hard triplet online selection are
perfectly suited for finger vein recognition. Compared to
previously proposed CNNs using triplet loss function without
hard triplet online selection, i.e. proposed in [13], we could no-
ticeable improve the recognition results. We have also shown
that symmetrical fingers (same finger type but different hand,
e.g. left and right index finger) share enough similarities to
identify people. This disproves the results that were presented
in [20]. Furthermore, we showed that different fingers of the
same person also exhibit similarities, but these similarities
(at least in our experimental setup) are not sufficient for
recognition.

The results for the standard finger vein recognition use
case presented in Table I, especially those of SDUMLA,
indicate that CNN-based methods may be less prone to finger
misplacement, including longitudinal finger rotation. In our
future work we plan to examine the robustness of the proposed
CNN architectures (using the triplet less function together with
hard triplet online selection) to longitudinal finger rotation.
Furthermore, driven by the surprising results for symmetric
finger identification, we will investigate whether other simi-
larities, such as e.g. sex or age, can be predicted using CNNs
for finger vein input images.
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