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Abstract—In this work, four well known convolutional neural
networks (CNNs) that were pretrained on the ImageNet database
are applied for the computer assisted diagnosis of celiac disease
based on endoscopic images of the duodenum. The images are
classified using three different transfer learning strategies and a
experimental setup specifically adapted for the classification of
endoscopic imagery. The CNNs are either used as fixed feature
extractors without any fine-tuning to our endoscopic celiac
disease image database or they are fine-tuned by training either
all layers of the CNN or by fine-tuning only the fully connected
layers. Classification is performed by the CNN SoftMax classifier
as well as linear support vector machines. The CNN results
are compared with the results of four state-of-the-art image
representations. We will show that fine-tuning all the layers of the
nets achieves the best results and outperforms the comparison
approaches.

Convolutional neural networks, Transfer learning, Celiac
Disease, Automated diagnois, Endoscopy.

I. INTRODUCTION

Convolutional neural networks (CNN) are gaining more and
more interest in computer vision. The increase in computa-
tional power based on GPUs has led to more sophisticated and
deeper architectures which have proven in various challenges
to be the state-of-the art in image classification. Generally
thousands or millions of images are used and required as
data corpus to achieve well generalizing deep architectures.
Such datasets are often constructed using crowd-sourcing and
are often based on queries of image-search engines such as
Google.

In endoscopic image classification however the available
amount of data usable as training corpus is often much more
limited to a few hundreds or thousands of images or even less.
Consequently it is hard to achieve generalization with existing
deep architectures on such endoscopic data. Another difference
to datasets such as used in ILSVRC or Places is however that
image classification problems in medical scenarios are often
reduced to a few categories instead of thousands in the former.

CNNs have already been widely used for the computer aided
diagnosis in medical scenarios [1], however not for endoscopic
imagery. We found only three publications in this area, 2 about
the classification of digestive organs using wireless capsule
endoscopy images [2], [3] and one about lesion detection
[4] in endoscopic images. Since CNNs are now one of the

dominant approach for feature extraction from texture data and
the automated diagnosis of celiac disease is usually considered
as a texture classification problem, CNNs could be promising
image representations for the classification of celiac disease.

However, because of the limited amount of endoscopic
celiac disease images (1661 images), CNNs that are trained on
those images would almost certainly be overfitted to the train-
ing data. One way to avoid overfitting on small databases is to
use CNNs that were pre-trained on huge databases, a process
known as transfer learning. In our experimental study we use
four well known CNNs, the AlexNet [5] and three VGG nets
[6]. All these nets were trained on the ImageNet ILSVRC chal-
lenge data (http://www.image-net.org/challenges/LSVRC/).

It has been observed that the features of earlier layers of
a CNN contain more generic features (e.g. edge detectors or
color blob detectors) that should be useful to many tasks, but
later layers of the CNN become progressively more specific
to the details of the classes contained in the original dataset
[7]. Thus the CNN parameters from earlier layers may require
less or entirely no fine-tuning to the target data. In [8], features
were extracted from pre-trained CNNs without any fine-tuning
to the target database. The features were extracted from the
first fully connected layer of the CNNs and were classified
using linear support vector machines (SVMs). This approach
outperformed other state-of-the-art image representations on
several different image databases.

Based on these findings of [7] and [8], we perform three
transfer learning scenarios:

1) We use CNNs as fixed feature extractors without any
fine-tuning to our dataset. Features are extracted from
the first fully connected layer and classification is done
using a linear SVM.

2) We fine-tune the fully connected layers (the layers spe-
cific to the classes contained in the original dataset) and
keep the previous layers (the convolutional layers) fixed.
Classification is done using the CNN-built in SoftMax
classifier as well as a SVM using features of the last
fully connected layer.

3) We fine tune all layers of the CNN. For the Classification
we use the CNN SoftMax classifier and SVMs using the
features of the first and the last fully connected layer.



In this way we want to find out which transfer learning
strategy is most suited for the classification of our celiac
disease database. That means we want to find out how much
training should be performed for the classification of celiac
disease. Is it best to perform no training to avoid overfitting, or
is it better to only train the more data specific layers (the fully
connected layers) or is it best to train all layers. We also want
to find out which nets are best suited to classify celiac disease
and how well does our CNN transfer learning approaches
perform compared to state-of-the-art image representations.

II. CELIAC DISEASE

Celiac disease (CD) is a multisystemic immune-mediated
disease, which is associated with considerable morbidity and
mortality [9]. In untreated or inappropriately treated CD the
inflammation caused by the dysregulated immune response can
disrupt the intestinal mucosa thus leading to a total atrophy of
the villi (finger-like projections of the mucosa) which causes
a diminished ability to absorb nutrients. After embarking on
a strict gluten-free diet, which is the CD treatment modality
of first choice, the inflammation gradually subsides allowing
for mucosal healing. To avoid the most severe complications
of CD, an early diagnosis for commencing a strict gluten-free
diet is of vital importance.

[10] state that more than 2 million people in the United
States, this is about one in 133, have the disease. People with
untreated celiac disease are at risk for developing various com-
plications like osteoporosis, infertility and other autoimmune
diseases including type 1 diabetes, autoimmune thyroid disease
and autoimmune liver disease.

Endoscopy with biopsy is currently considered the gold
standard for the diagnosis of celiac disease. Computer-assisted
systems for the diagnosis of CD have potential to improve
the whole diagnostic work-up, by saving costs, time and
manpower and at the same time increase the safety of the
procedure. A motivation for such a system is furthermore given
as the inter-observer variability is reported to be high [11],
[12].

Besides standard upper endoscopy, several new endoscopic
approaches for diagnosing CD have been evaluated and found
their way into clinical practice [13]. The most notable tech-
niques include the modified immersion technique (MIT [14])
under traditional white-light illumination (denoted as WLMIT),
as well as MIT under narrow band imaging [15], [16] (denoted
as NBIMIT). These specialized endoscopic techniques were
specifically designed for improving the visual confirmation of
CD during endoscopy.

In this work we differentiate between healthy mucosa and
mucosa affected by celiac disease using images gathered by
NBIMIT as well as WLMIT endoscopy. Examples of the two
classes for both endoscopy types are shown in Figure 1. In [17]
it was shown that using NBIMIT or WLMIT as imaging modality
has a significant impact on the underlying feature distribution
of general purpose image representations. However, it was also

(a) NBIMIT, healthy (b) NBIMIT, healthy

(c) NBIMIT, CD (d) NBIMIT, CD

(e) WLMIT, healthy (f) WLMIT, healthy

(g) WLMIT, CD (h) WLMIT, CD

Figure 1. Example images for the two classes healthy and celiac disease (CD)
using NBIMIT as well as WLMIT endoscopy

shown that systems trained on images from both modalities
generalize well without requiring additional domain adaption
techniques and that combining both modalities improves the
accuracies in case of an insufficient amount of data for training
(as is probably the case for CNNs).



III. CNN TRANSFER LEARNING

This section gives the implementation details for applying
transfer learning to our celiac disease image database.

A. AlexNet and the VGG nets

The first work that popularized CNNs in Computer Vision
was about the AlexNet [5]. AlexNet consists of 5 convolutional
layers and three fully connected layers with a final SoftMax
classifier (see Figure 2).

Also the VGG nets [6] consist of 5 convolutional layers
and three fully connected layers with a final SoftMax classifier.
There are three versions of these nets. The VGG-f architecture
is the fastest of the three nets and is similar to the AlexNet,
however with a dense connectivity between convolutionaly
layers instead of sparse connections as in case of the AlexNet.
The medium fast VGG-m net and the slow VGG-s net have
decreased strides and smaller receptive fields which was shown
to be beneficial on the ILSVRC dataset but also slows downs
the nets.

B. Training of the nets

Our 4 CNNs are initialized and trained using the same set
of techniques. As initialization for the convolutional layers we
use the parameters that were learned on the ImageNet ILSVRC
challenge data. Since the fully connected layers are more
specific to the details of the classes contained in the ILSVRC
challenge data, we randomly initialize the coefficients of these
layers based on He et al. [18] instead of the parameters that
were learned on the ImageNet ILSVRC challenge data. The
bias terms of the fully connected layers are initialized as 0.
The size of the last fully connected layer is adapted to our
2-class classification scheme which means that the size of the
convolutional filters are changed from 1× 1× 4096× 1000 to
1 × 1 × 4096 × 2. The last fully connected block is acting
as soft-max classifier and computes the training loss (log-
loss). Training is performed on batches of 128 images each,
which are for each iteration randomly chosen from the training
data and subsequently augmented. Stochastic gradient descent
(SGD) with weight decay (λ = 0.0005) and momentum
(µ = 0.9) is used for the training of the models.

As already mentioned in the introduction, we follow two
learning strategies. In one strategy all the layers of the nets
are fine-tuned and in the other strategy only the fully connected
layers are fine-tuned by setting the learning rate to 0 for
the convolutional layers. In case of the fully fine-tuned nets,
training is performed for 5000 iterations on our celiac disease
image database. We begin training with a learning rate of 0.01
and every 250 iterations the learning rate is decreased by a
factor of f ≈ 1.27 down to a learning rate of 0.0001 for the
last 250 iterations.

For the second learning strategy, where only the fully
connected layers are fine-tuned, we have seen in experiments
that more iterations are required to train the nets We start with
5000 iterations with learning rate 0.01 followed by 10 0000

iterations with stepwise decreasing learning rates ( similar to
the fully fine-tuned nets, we begin with a learning rate of 0.01
and each 500 iterations the learning rate is decreased by a
factor of f ≈ 1.27 down to a learning rate of 0.0001 for the
last 500 iterations).

On the left side of Figure 3 we see the convolutional kernels
of the first convolutional layer of the four nets learned on the
ImageNet ILSVRC challenge data and on the right side we see
the kernels after fine-tuning on our celiac disease database.
We can observe that fine-tuning only slightly changed the
filter kernels. However, thats exactly what we want to have
for the earlier layers since we could not achieve such nice and
smooth filters by exclusively train them on our small database.
Only in case of the AlexNet some of the filter kernels changed
completely. Some of the filters of the AlexNet changed their
colors (e.g. the filter on the right side of the third row in Figure
3(a,b)) some others loose their entire structure and turned into
simple averaging filters (e.g. the left filter in the first row in
Figure 3(a,b)). In case of the three VGG nets, the filter kernels
undergo only very minor changes.

C. Feature extraction for SVM classification

Additionally to the CNN SoftMax classifier, the images are
classified by SVMs using features extracted from the CNNs.
For this, the training and test samples are fed through the
CNNs and the input of the first fully connected layer (further
denoted as ’fc1’) respectively the last fully connected layer
(further denoted as ’fcL’) is extracted as feature for further
SVM classification. In case of an extraction of the input of
the first fully connected layer, the size of the extracted features
per image is 6×6×256 (resulting in a feature vector of length
9216 per image) and in case of an extraction of the input of
the last fully connected layer the size of the extracted features
is 4096× 1.

IV. COMPARISON METHODS

We compare the CNNs against three popular general pur-
pose image representations and one feature representations
especially developed for the classification of celiac disease. As
general purpose image representations we apply a multiscale
block binary patterns (MB-LBP) operator [19] with three
different block sizes (3,9,15) and uniform patterns. As second
general purpose method we employ the dual-tree complex
wavelet transform (DT-CWT [20]) using 4 decomposition
levels and we extract the means and standard deviations of
the subbands as features. As third general purpose method
we employ the improved fisher vectors (IFV [21]) computed
from SIFT descriptors on a dense 6× 6 pixel grid. The fourth
method, further denoted as fractal analysis based method
(FRAC [22]), was especially developed for the classification
of celiac disease and is based on pre-filtering images using
the rotation invariant MR8 filterbank, followed by computing
the local fractal dimension (see [22]) of the resulting filter re-
sponses and applying the bag-of-visual words (BoW) approach
to them. We rely on in-house MATLAB implementations for



Figure 2. Illustration of the of the AlexNet architecture [5]

MB-LBP, DT-CWT and FRAC and use the implementations
of IFV as provided by VLFeat.

V. EXPERIMENTAL SETUP AND RESULTS

A. Experimental Setup

The 1661 RGB image patches of size 128× 128 pixels are
gathered by means of flexible endoscopes using NBIMIT as
well as WLMIT. The celiac disease image database consists
of 1045 images gathered by WLMIT endoscopy (587 healthy
images and 458 affected by celiac disease) and 616 images
gathered by NBIMIT endoscopy (399 healthy images and 217
affected by celiac disease). So in total 986 image patches show
healthy mucosa and the remaining 675 image patches show
mucosa affected by celiac disease. The images were captured
from 353 patients.

Since our used nets require input image sizes of 227×227×
3 (AlexNet) respectively 224×224×3 (VGG nets), the image
patches are bicubic upscaled to a size of 256×256×3. The data
is normalized by subtracting the mean image of the training
portion. We then linearly scale each image within [−1, 1].

Due to the small amount of available data we use data aug-
mentation to increase the number of images for training and
validation. Augmentation is applied to the batches of images
extracted for training. The augmentation is based on cropping
one sub-images (227×227 respectively 224×224 pixels) from
each image with randomly chosen position. Subsequently, the
sub-image is randomly rotated (0°, 90°, 180° or 270°) and
randomly either flipped or not flipped around the horizontal
axis. Validation is performed using a majority voting of five
crops from the validation image using the upper left, upper
right, lower left, lower right and center part.

Augmentation is also applied for the extraction of features
from the nets for further for SVM classification. The augmen-
tation is basically the same as for the training of the nets with
only one difference. The patches of the training images are
extracted from the fixed center position instead from random

positions (8 patches per image with 4 different rotations and
either horizontally flipped or not).

Due to the relatively small amount of data, we perform
5-fold cross-validation to achieve a stable estimation of the
generalization error. For each of the 5 folds we took care that
images of a single patient are never in training and evaluation
sets. All nets are trained using the training portion of our data
corpus. The final validation was performed on the left-out part.
That means beginning with a net, we train five different nets,
one for each of the 5 folds (except for the case where we
use the CNNs as fixed feature extractor, where no training
is performed). In our experiments, we compute the overall
classification rate (OCR) for each fold and report the mean
OCR over all 5 folds with the respective standard deviation.

The CNNs are implemented using the MatConvNet frame-
work [23]. Additionally to the CNN soft-max-classifier we
employ SVMs as provided by the LIBLINEAR library [24].
The SVM cost factor (C) is found using cross validation on
the training data.

The comparison methods are also classified using SVMs in
an analogous manner (5-fold cross validation) as for the CNN
features.

B. Experimental Results

The results of our transfer learning experiments are pre-
sented in Table I. The standard deviations are given in brackets.
For each CNN, the best result over the different learning
and classification strategies is given in bold face numbers.
The 3 columns titled as ’none’, ’fully connected layers’ and
’all layers’ in Table I indicate which of our three transfer
learning strategies are used. ’none’ indicates that no learning
is performed, ’fully connected layers’ that only the fully
connected layers are trained (further denoted as partly fine-
tuning) and ’all layers’ that each layer of the network is trained
(further denoted as fully fine-tuning). ’SVM fc1’ indicates that
the CNN features for the SVM classification are extracted
from the first fully connected layer and ’SVM fcL’ that the



(a) AlexNet ImageNet (b) AlexNet CDB

(c) VGG-f ImageNet (d) VGG-f CDB

(e) VGG-m ImageNet (f) VGG-m CDB

(g) VGG-s ImageNet (h) VGG-s CDB

Figure 3. Convolutional kernels of the first convolutional layer learned on
the ImageNet database or learned on our celiac disease database (CDB) using
the parameters learned from the ImageNet ddatabase as initialization

CNN features are extracted from the last fully connected layer.
’SoftMax’ means that the CNN SoftMax classifier is used for
classification.

As we can see in Table I, the clearly best CNN results are
achieved using the fully fine-tuned nets. For these fully fine-
tuned CNNs it turrned out to be irrelevant to the outcomes if

CNNs
Training layers

none fully connected layers all layers
SVM fc1 SVM fcL SoftMax SVM fc1 SVM fcL SoftMax

AlexNet 81.1(1.7) 80.7(1.4) 78.5(2.8) 86.9(2.1) 86.2(1.9) 86.6 (0.9)
VGG-f 84.9(1.5) 85.7(1.3) 84.4(1.1) 90.4(1.9) 90.4(0.7) 90.5(0.7)
VGG-m 85.0(1.8) 85.4(0.6) 83.5(1.3) 89.8(1.7) 90.0(1.9) 88.4(1.5)
VGG-s 84.3(2.9) 84.8(3.4) 82.5(1.5) 89.2(2.1) 88.6(1.8) 89.2(1.7)

MB-LBP 87.0 (2.4)
DT-CWT 77.3 (1.0)

IFV 84.4 (2.9)
Frac 79.2 (2.3)

Table I
RESULTS OF THE CNNS AND COMPARISON METHODS IN %.

the classification is done using SoftMax or SVM classifiers.
It also does not really make a difference if the features for
the SVM classification are extracted from the first or the last
convolutional layer. In case of the partly fine-tuned CNNs, the
SVM results are higher than the SoftMax results. The SVM
results for the CNNs without any fine-tuning are similar to the
SVM results of the partly fine-tuned CNNs.

When we compare the results of the four CNNs, then we
can see that the VGG-f net achieves the best results and that
AlexNet achieves the worst results. The best result (90.5%) is
achieved with the fully fine-tuned VGG-f net using SoftMax
classification.

When we compare the CNN results with those of the com-
parison methods, we see that the fully fine-tuned VGG nets
achieve clearly higher results than the comparison methods.

In Figure 4 we see two plots comparing the results on the
validation data with the results on the training data during
training of the nets (each 500th iteration). The nets where
all trained on the 5th fold of the 5-fold cross validation.
The upper plot shows the results of the fully fine-tuned nets
during training and the bottom plot shows the results of the
partly fine-tuned nets. In the upper plot we can see that the
classification results of the four nets on the training data are
all 100% or very close to 100%, whereat the results on the
validation data are all close to 90 %. This shows that the
fully fine-tuned nets are overfitted to the training data. We
can observe that the differences between the results on the
training and validation data are in general lower in case of the
partly fine-tuned nets. This indicates that training only the fully
connected layers leads to less overfitting than training all the
layers of the nets. We can also observe that partly fine-tuning
the nets requires more training iterations and leads to distinctly
lower accuracies on the training data as for the fully fine-tuned
nets. However, even though fully fine-tuning the nets leads to
overfitting, the resulting nets are still better adapted to the the
classification of celiac disease than the partly fine-tuned nets.

VI. CONCLUSION

In this work we showed that CNN transfer learning is
very suited for the classification of celiac disease based on
endoscopic image data. We used four CNNs that were pre-
trained on the ImageNet database and used three different
transfer learning strategies to classify the image patches of the
celiac disease database. It turned out that fully fine-tuning the
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Figure 4. Training and Validation accuracies of the nets while training

CNNs clearly achieves the highest classification accuracies,
although the small amount of available training data leads to
overfitting. The VGG-f net turned out to be the most suited
network for the classification of celiac disease. The fully fine-
tuned VGG nets outperformed the four state-of-the-art image
representations.
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