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Abstract In this work, convolutional neural networks (CNNs) are applied for
the computer assisted diagnosis of celiac disease based on endoscopic images
of the duodenum. To evaluate which network configurations are best suited for
the classification of celiac disease, several different CNN networks were trained
using different numbers of layers and filters and different filter dimensions. The
results of the CNNs are compared with the results of popular general purpose
image representations such as Improved Fisher Vectors and LBP-based meth-
ods as well as a feature representations especially designed for the classification
of celiac disease. We will show that the deeper CNN architectures outperform
these comparison approaches and that combining CNNs with linear support vec-
tor machines furtherly improves the classification rates for about 3-7% leading to
distinctly better results (up to 97%) than those of the comparison methods.
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1 Introduction

Convolutional neural networks (CNN) are gaining more and more interest in computer
vision. The increase in computational power based on GPUs has led to more sophisti-
cated and deeper architectures which have proven in various challenges to be the state-
of-the art in image classification. Generally thousands or millions of images are used
and required as data corpus to achieve well generalizing deep architectures. In endo-
scopic image classification however the available amount of data usable as training
corpus is often much more limited to a few hundreds or thousands of images or even
less. Another difference to datasets such as used in ILSVRC or Places is however that
image classification problems in medical scenarios are often reduced to a few categories
instead of thousands in the former. Consequently, deep architectures designed for recog-
nizing images from thousands of categories could be too complex for the classification
of celiac disease.

CNNs are already widely used for the computer aided diagnosis in medical scenar-
ios [10], however not so in the computer aided diagnosis using endoscopic imagery. We
found only three publications in this area, 2 about the classification of digestive organs
using wireless capsule endoscopy images [21,19] and one about lesion detection [20] in
endoscopic images. Since the classification of celiac disease can be considered as a tex-
ture classification problem and CNNs are state-of-the-art in texture recognition, CNNs
are promising image representations for the automated classification of celiac disease.



In this experimental study we apply CNNs for the classification of celiac disease
using a experimental setup especially adapted for endoscopic imagery and we try to
answer the following open questions:

1. Are deep-architectures suited to classify celiac disease or are simpler and more
shallow architectures more suited in such a scenario because of the low amount of
training data and categories

2. What are the best network configurations like e.g. the number or filters and their
dimensions

3. How well do CNNs perform compared to other state-of-the-art approaches
4. Are linear support vector machines (SVMs) able to furtherly improve the results

when applied on the activations of the nets.

2 Celiac Disease

Celiac disease is a complex autoimmune disorder in genetically predisposed individu-
als of all age groups after introduction of gluten containing food. The gastrointestinal
manifestations invariably comprise an inflammatory reaction within the mucosa of the
small intestine caused by a dysregulated immune response triggered by ingested gluten
protein. During the course of the disease, hyperplasia of the enteric crypts occurs and
the mucosa eventually looses its absorptive villi thus leading to a diminished ability to
absorb nutrients. [5] state that more than 2 million people in the United States, this is
about one in 133, have the disease. People with untreated celiac disease are at risk for
developing various complications like osteoporosis, infertility and other autoimmune
diseases including type 1 diabetes, autoimmune thyroid disease and autoimmune liver
disease. So an early diagnosis is of highest importance.

Endoscopy with biopsy is currently considered the gold standard for the diagnosis
of celiac disease. Computer-assisted systems for the diagnosis of CD have potential
to improve the whole diagnostic work-up, by saving costs, time and manpower and at
the same time increase the safety of the procedure. A motivation for such a system
is furthermore given as the inter-observer variability is reported to be high [1,12]. A
survey on computer aided decision support for the diagnosis of celiac disease can be
found in [9].

Besides standard upper endoscopy, several new endoscopic approaches for diag-
nosing CD have been evaluated and found their way into clinical practice [2]. The most
notable techniques include the modified immersion technique (MIT [7]) under tradi-
tional white-light illumination (denoted as WLMIT), as well as MIT under narrow band
imaging [3,17] (denoted as NBIMIT). These specialized endoscopic techniques were
specifically designed for improving the visual confirmation of CD during endoscopy.

In this work we differentiate between healthy mucosa and mucosa affected by celiac
disease using images gathered by NBIMIT as well as WLMIT endoscopy. Examples of
the two classes for both endoscopy types are shown in Figure 1. In [6] it was shown that
using NBIMIT or WLMIT as imaging modality has a significant impact on the underly-
ing feature distribution of general purpose image representations. However, it was also
shown that systems trained on images from both modalities generalize well without
requiring additional domain adaption techniques and that combining both modalities



(a) NBIMIT, healthy (b) NBIMIT, healthy (c) NBIMIT, CD (d) NBIMIT, CD

(e) WLMIT, healthy (f) WLMIT, healthy (g) WLMIT, CD (h) WLMIT, CD

Figure 1. Example images for the two classes healthy and celiac disease (CD) using NBIMIT as
well as WLMIT endoscopy

improves the accuracies in case of an insufficient amount of data for training (as is
probably the case for CNNs).

3 CNN Architectures

All our networks share the same basic principal architecture. They consist of a variable
number of convolutional blocks (CONV) using rectified linear units (RELU) for non-
linearity, local response normalization (LRN) [11] and max-pooling (POOL), two fully
connected blocks (FC) using RELU and dropout and a last fully connected block acting
as soft-max classifier: [CONV, RELU, LRN, POOL]n→ [FC, RELU, DROPOUT]2→
[FC, SOFTMAXLOSS]. We only vary the number of convolutional blocks, the filter
dimensions and the number of filters. To provide a systematic analysis, we trained net-
works with n = 1, 2, 3 and 4 convolutional blocks using different filter dimensions and
different numbers of filters in each layer.We follow the general approach of employing
large filter dimensions in lower layers and subsequently smaller filters in higher layers.

A high number of filters per layer allows the training process to adapt to highly
abstract features. However, it is unclear in the context of celiac disease and endoscopic
imagery in general if such abstract features are visible or even useful for prediction.
Consequently, we analyze the impact of the number of filters per layer by training mul-
tiple nets of the same architecture with varying numbers of filters. We generally rely on
the concept of increasing the number of filters from the lower to the higher layers by a
factor of two per layer.

All our models are initialized and trained using the same set of techniques. The
coefficients of the nets are randomly initialized based on He et al. [8] and the bias terms
are initialized as 0. All architectures rely on using max-pooling with a windows size



of three and stride two. Stochastic gradient descent (SGD) with weight decay (λ =
0.0005) and momentum (µ = 0.9) is used for the training of the models. Regularization
is achieved using drop-out (p = 0.5) during training. Training is performed on batches
of 128 images each, which are for each iteration randomly chosen from the training data
and subsequently augmented (see Section 4.1). The learning rate is initialized at 0.01
and four times divided by three whenever the training-loss stopped improving with the
current learning rate. For this, each 250th iteration we compute the average loss of the
previous 250 iterations. If the currently computed average loss is greater than 0.99 times
the previously computed average loss and if the current learning rate is in use for at least
1000 iterations, then the learning rate is divided by three. Due to the differing number
of parameters among the architectures, optimization is continued until the training-loss
shows no improvement over 2500 iterations but at least until the learning rate has been
reduced the fourth time. The model of the iteration achieving the lowest training-loss is
then used for validation.

Our learning rate configurations and break off condition are especially adapted on
our celiac disease image data to achieve high results without needing too much time
for training (the nets were trained for ≈ 10000 iterations in average). Since we train 36
different nets (4 (different numbers of convolutional blocks) × 3 (different filter sizes)
× 3 (different filter numbers)) on 10 different training splits (see Section 4.1), we had
to choose such configurations that enable a limited time of training per network.

3.1 Very-Shallow Networks

We start off with a very uncommon variation of CNNs using only one single convolu-
tional block. By analyzing different architectures growing from very shallow to deep
we hope to gain some insight on the problem. Although this sort of architecture is quite
uncommon and might not fit into the general CNN schemes, the lower abstraction of
features in endoscopic images and the small number of categories (two) make it neces-
sary to start with such shallow architectures. The Very-Shallow networks (see Table 1)
are trained with N = 10, 48 and 96 filters to analyze the impact of the number of filters
on the results.

Filter size CONV1 FC1 FC2 FC3

Large 11× 11×N 512 512 2
st. 3, pad 0 drop-out drop-out soft-max

Medium 7× 7×N 512 512 2
st. 3, pad 0 drop-out drop-out soft-max

Small 5× 5×N 512 512 2
st. 2, pad 0 drop-out drop-out soft-max

Table 1. Architecture of the Very-Shallow networks. The first row in a convolutional block
(CONV) specifies the receptive field size of the convolutional filters and their number (N ). The
second row indicates the stride (st.) and padding (pad). Furtherly we indicate the dimensionality
of the fully connected (FC) blocks.



3.2 Shallow Networks

The next generation of architectures is based on the Very-Shallow networks but the
number of convolutional blocks is increased to two. Like in the previous and also in
the following deeper network architectures, the network is trained with different num-
bers of filters (N = 10, 48 and 96 filters in the first convolutional layer). The network
architecture of the Shallow nets is shown in Table 2.

Filter size CONV1 CONV2 FC1 FC2 FC3

Large 11× 11×N 7× 7× 2N 512 512 2
st. 3, pad 0 st. 3, pad 0 drop-out drop-out soft-max

Medium 7× 7×N 5× 5× 2N 512 512 2
st. 4, pad 0 st. 2, pad 0 drop-out drop-out soft-max

Small 5× 5×N 3× 3× 2N 512 512 2
st. 3, pad 0 st. 2, pad 0 drop-out drop-out soft-max

Table 2. Architecture of the Shallow networks.

3.3 Deep Networks

The third generation of nets use 3 convolutional blocks and can therefore be considered
as our first deep architecture. The network architecture of the Deep nets is shown in
Table 3.

Filter size CONV1 CONV2 CONV3 FC1 FC2 FC3

Large 11× 11×N 7× 7×m128
2N 5× 5×m256

4N 512 512 2
st. 2, pad 0 st. 1, pad 0 st. 1 pad 0 drop-out drop-out soft-max

Medium 7× 7×N 5× 5×m128
2N 3× 3×m256

4N 512 512 2
st. 2, pad 0 st. 1, pad 0 st. 1, pad 0 drop-out drop-out soft-max

Small 5× 5×N 3× 3×m128
2N 3× 3×m256

4N 512 512 2
st. 2, pad 0 st. 1, pad 0 st. 1, pad 0 drop-out drop-out soft-max

Table 3. Architecture of the Deep networks, where ma
b = max(a, b) and denotes the number of

convolutional filters.

3.4 Very-Deep Networks

In our last generation of nets we use 4 convolutional blocks (see Table 4). Although the
term Very-Deep is not quite true considering the number of layers of other very-deep
architectures, we use the term to easily distinguish between our four basic architectures.



Filter size CONV1 CONV2 CONV3 CONV4 FC1 FC2 FC3

Large 11x11xN 7x7xm192
2N 5x5xm256

4N 3x3xm256
8N 1024 1024 2

st. 1, pad 2 st. 1, pad 0 st. 1, pad 0 st. 1, pad 0 drop-out drop-out soft-max
Medium 7x7xN 5x5xm192

2N 3x3xm256
4N 3x3xm256

8N 1024 1024 2
st. 2, pad 0 st. 1, pad 0 st. 1, pad 0 st. 1, pad 0 drop-out drop-out soft-max

Small 5x5xN 3x3xm192
2N 3x3xm256

4N 3x3xm256
8N 1024 1024 2

st. 2, pad 0 st. 1, pad 0 st. 1, pad 0 st. 1, pad 0 drop-out drop-out soft-max

Table 4. Architecture of the Very-Deep networks, where ma
b = max(a, b).

4 Experimental Setup and Results

4.1 Experimental Setup

Our celiac disease image database consists of 1661 RGB image patches of size 128 ×
128 pixels that are gathered by means of flexible endoscopes using NBIMIT as well
as WLMIT. The database consists of 1045 images gathered by WLMIT endoscopy (587
healthy images and 458 affected by celiac disease) and 616 images gathered by NBIMIT
endoscopy (399 healthy images and 217 affected by celiac disease). So in total 986
image patches show healthy mucosa and the remaining 675 image patches show mucosa
affected by celiac disease. The images were captured from 353 patients.

Due to the relatively small amount of data, we perform cross-validation to achieve a
stable estimation of the generalization error. We generated 10 (fixed) splits for training
and validation (80% training and 20% validation) and took care that images of a single
patient are never in training and evaluation sets. All nets are trained using the training
portion of our data corpus. The final validation was performed on the left-out part.

The image data is normalized by subtracting the mean image of the training por-
tion. We then linearly scale each image within [−1, 1]. Due to the small amount of
available data we use data augmentation to increase the number of images for training.
Augmentation is applied to the batches of images extracted for training. The augmen-
tation is based on cropping one sub-image (112× 112 pixels) from each training image
with randomly chosen position. Subsequently, the sub-image is randomly rotated (0°,
90°, 180° or 270°) and randomly either horizontally reflected or not. Validation is per-
formed using a majority voting of five crops from the validation image using the upper
left, upper right, lower left, lower right and center part.

In our experiments, we compute the overall classification rate (OCR) for each split
and report the mean OCR over all 10 splits with the respective standard deviation.

The CNNs are implemented using the MatConvNet framework [18]. Additionally
to the CNN soft-max-classifier we employ linear SVMs as provided by the LIBLINEAR
library [4]. For this, the training and test samples are fed through the CNNs and the
output of the second fully connected layer is extracted as feature for further SVM clas-
sification. The size of the extracted feature vector per image is 1024 × 1 in case of the
very-deep architectures and 512 × 1 for the other architectures. Augmentation is also
applied for the extraction of features from the nets for further for SVM classification.
The augmentation is basically the same as for the training of the nets with only one dif-



ference. The patches of the training images are extracted from the fixed center position
instead from random positions (8 patches per image with 4 different rotations, either
horizontally flipped or not). The SVM cost factor (C) is found using cross validation on
the training data.

Additionally, we combine CNNs, principle component analysis (PCA) and SVMs
by applying PCA to the CNN features resulting in 100 principal components which are
furtherly classified using SVMs.

We compare the CNNs against three popular general purpose image representations
and one feature representations especially developed for the classification of celiac dis-
ease. As general purpose image representations we use multi-resolution local binary
patterns (LBP [13]) and multi-resolution local ternary patterns (LTP [15]), both with
3 scales, 8 neighbors and uniform patterns. As third general purpose method we em-
ploy the improved fisher vectors (IFV [14]) computed from SIFT descriptors on a dense
6 × 6 pixel grid. The fourth method, further denoted as fractal analysis based method
(FRAC [16]), was especially developed for the classification of celiac disease and is
based on pre-filtering images using the rotation invariant MR8 filterbank, followed by
computing the local fractal dimension (see [16]) of the resulting filter responses and
applying the bag-of-visual words (BoW) approach to them. We rely on in-house MAT-
LAB implementations for LBP, LTP and FRAC and use the implementation of IFV as
provided by VLFeat. The comparison methods are classified using SVMs in an analo-
gous manner as for the CNN features.

4.2 Results

The results of our experiments are presented in Table 5. The standard deviations are
given in brackets. The best result of each network architecture and classification strategy
is given in bold face numbers.

As we can seen in Table 5, the highest CNN results are achieved using the Deep and
Very-Deep network architectures combined with large or medium sized filters. Using
only 10 filters in the first convolutional layer is insufficient for the classification of
celiac disease, but using 48 filters achieves similar results as using 96. The two deeper
CNN architectures with large or medium sized filters achieve classification rates of
≈ 90% and hence outperform the comparison methods, whose highest classification
rate is 89.5% (LTP). Combining CNNs and SVMs furtherly improves the results for
about 3-7%. Additionally applying PCA to the CNN features has only a minimal effect
to the results. The best results (≈ 97%) are achieved using SVM classification (with or
without PCA) applied to the CNN features of the Very-Deep net with 96 filters of size
11× 11× 3 in the first convolutional layer.

5 Conclusion

In this work we showed that deep CNN architectures are very suited for the classifi-
cation of celiac disease based on endoscopic image data. These CNN networks outper-
form other state-of-the-art image representation approaches. Simpler and more shallow-
architectures cannot compete with the deeper architectures. Using large or medium filter
dimensions generally leads to higher results than using smaller filter dimensions.



Very-shallow networks

Nr. of filters \ Size
CNN CNN & SVM CNN & SVM & PCA

large medium small large medium small large medium small
10 85.8(2.3) 85.9(1.7) 86.0(2.0) 89.5(1.9) 88.6(1.9) 91.1(2.9) 89.1(2.1) 88.7(1.6) 91.0(2.7)
48 88.0(1.1) 87.4(1.6) 87.6(1.6) 92.5(2.4) 93.3(3.0) 94.4(2.9) 92.7(2.7) 93.3(2.7) 94.3(3.1)
96 87.5(1.3) 86.8(1.7) 87.9(2.0) 92.1(2.2) 92.8(2.4) 93.3(2.2) 92.2(2.5) 92.6(2.5) 93.3(2.5)

Shallow networks

Nr. of filters \ Size
CNN CNN & SVM CNN & SVM & PCA

large medium small large medium small large medium small
10 82.6(4.2) 86.1(2.7) 86.3(1.5) 87.2(2.3) 88.9(1.6) 88.2(2.1) 86.9(2.4) 88.8(1.6) 87.9(2.2)
48 88.5(2.6) 89.9(1.3) 89.1(1.3) 92.1(2.1) 93.3(2.3) 93.2(1.6) 92.0(2.1) 93.3(2.4) 92.9(1.8)
96 88.5(1.4) 90.0(1.8) 89.6(1.4) 92.3(2.4) 94.1(2.6) 92.9(2.1) 92.4(2.4) 94.1(2.4) 93.1(2.2)

Deep networks

Nr. of filters \ Size
CNN CNN & SVM CNN & SVM & PCA

large medium small large medium small large medium small
10 87.9(1.4) 89.6(1.4) 88.9(1.2) 93.2(2.6) 92.9(2.1) 92.4(2.1) 93.3(2.6) 93.0(2.2) 92.2(2.2)
48 89.8(1.6) 90.5(1.6) 89.8(1.3) 96.7(3.0) 96.4(2.8) 95.9(2.4) 96.6(3.0) 96.4(2.9) 95.7(2.3)
96 89.1(1.7) 89.9(1.3) 89.4(1.7) 96.5(3.2) 96.4(2.7) 95.4(3.3) 96.5(3.2) 96.6(2.6) 95.5(3.0)

Very-deep networks

Nr. of filters \ Size
CNN CNN & SVM CNN & SVM & PCA

large medium small large medium small large medium small
10 88.7(1.4) 88.2(2.2) 88.0(1.6) 94.6(2.6) 93.0(2.2) 91.6(2.2) 94.7(2.7) 93.0(2.3) 91.8(2.3)
48 89.5(1.8) 89.3(2.0) 89.2(1.9) 96.5(3.7) 95.7(3.1) 95.6(2.6) 96.5(3.7) 95.7(3.1) 95.5(2.5)
96 90.3(1.7) 89.8(1.6) 89.4(1.3) 97.0(3.1) 96.5(2.6) 95.4(3.3) 97.1(3.4) 96.5(2.6) 95.3(3.1)

Comparison methods
LBP LTP IFV FRAC

86.4(2.7) 89.5(1.8) 84.7(2.8) 80.1(3.9)

Table 5. Results of the CNNs and comparison methods

Applying SVMs on the activations of the nets furtherly improves the results of the
CNNs for about 3-7% up to a maximum of ≈ 97%. The highest result was achieved
using SVM classification, the deepest architecture (Very-Deep), the largest filter di-
mension and the highest number of filters (96 filters of size 11 × 11 × 3 in the first
convolutional layer).
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