
Multimedia Systems manuscript No.
(will be inserted by the editor)

Building a Post-Compression Region-of-Interest Encryption Framework
for Existing Video Surveillance Systems
Challenges, obstacles and practical concerns

Andreas Unterweger · Kevin Van Ryckegem · Dominik Engel · Andreas Uhl

Received: November 13, 2014 / Accepted: (will be entered by the editor)

Abstract We propose an encryption framework design and
implementation which add region of interest encryption func-
tionality to existing video surveillance systems with minimal
integration and deployment effort. Apart from region of inter-
est detection, all operations take place at bit stream level and
require no re-compression whatsoever. This allows for very
fast encryption and decryption speed at negligible space over-
head. Furthermore, we provide both, objective and subjective
security evaluations of our proposed encryption framework.
Furthermore, we address design- and implementation-related
challenges and practical concerns. These include modularity,
parallelization and, most notably, the performance of state-of-
the-art face detectors. We find that their performance, despite
their frequent use in surveillance systems, is not insufficient
for practical purposes, both, in terms of speed and detection
accuracy.

Keywords Face Detection · Encryption · JPEG · Region of
interest · Parallelization · Subjective evaluation

Mathematics Subject Classification (2000) 68W10 ·
68W27 · 68W40 · 94A08 · 94A60 · 94A62

Andreas Unterweger and Andreas Uhl
University of Salzburg
Department of Computer Sciences
Jakob-Haringer-Straße 2
5020 Salzburg, Austria
Tel.: +43-662-8044-6334
E-mail: aunterweg@cosy.sbg.ac.at

Kevin Van Ryckegem and Dominik Engel
Josef Ressel Center for User-Centric Smart Grid Privacy, Security, and
Control
Salzburg University of Applied Sciences
Urstein Süd 1
5412 Puch/Hallein, Austria

1 Introduction

The purpose of most video surveillance systems is to cap-
ture people and their actions as well as to store the captured
footage with the ability to view it, either on-line or off-line.
This is done to achieve two main goals: First, abnormal be-
havior (e.g., a fight between two people) can be detected
on-line by a camera operator. Second, after an incident (e.g.,
a robbery), the authorities can use the captured footage off-
line to identify some or all of the people involved.
In either case, the privacy of those people who are not in-
volved is invaded. This does not only include people who are
bystanders in the scenarios described above, but to a greater
extent uninvolved people who are captured at all other points
in time, i.e., when no incidents occur.
One solution to protect the privacy of these people is to en-
crypt the video footage. However, most existing approaches
have either one or both of the following two disadvantages:

– Full-picture encryption: Approaches which encrypt the
whole picture (e.g., [18,21,27] for the Joint Photographic
Experts Group (JPEG) format and [7,2,20] for H.264, the
two most commonly used compression standards in video
surveillance) require full decryption for on-line viewing,
i.e., the camera operator sees everyone involved, reviving
the privacy issue for bystanders.

– Surveillance system modification: Most encryption ap-
proaches in the literature operate either before (e.g., [4,
3,32]) or during (e.g., [39,8,19]) video compression,
i.e., they are pre- or in-compression encryption algo-
rithms which require one of the following two modi-
fications to the surveillance infrastructure when the lat-
ter has to be extended for privacy protection: a) The
video encoder within the cameras is modified so that
it performs the encryption. However, modifying cam-
era hardware or firmware is often impossible due to
manufacturer-imposed limitations or very expensive; b)

2 Andreas Unterweger et al.

Fig. 2 Black-box encryption: The compressed video stream captured
by a camera (left) is encrypted by the black box (middle) before being
stored in a database (right)

The compressed video streams from the cameras are
transcoded by an additional hardware or software compo-
nent. The encryption takes place within this component
since it allows for full control over the encoder and its
input data. However, transcoding is computationally very
expensive and often increases bit rate and/or decreases
quality, which is unacceptable.

Both of these disadvantages can be avoided by using post-
compression Region of Interest (RoI) encryption. In RoI
encryption, typically, the faces of all captured people are
encrypted, while the rest of the picture stays intact (which
requires format-compliant encryption). While this protects
the privacy of those people, (encrypted) on-line viewing is
still possible, since all actions can be followed and analyzed
by the camera operator while not revealing people’s faces.
For off-line viewing, only authorized decryption-key owners
(e.g., the authorities) have access to the unencrypted footage
for the purpose of legal investigations.
Fig. 1 depicts a schematic of a typical surveillance system
which is capable of post-compression RoI encryption. For
simplicity, only the encryption side, i.e., without any de-
cryption options, is shown. The main components of such a
system are face (RoI) detection as well as encryption with
integrated signalling so that the encrypted regions can be
located during decryption (not depicted).
A regular surveillance system without encryption capabilities
lacks these two components (face detection and encryption
plus signalling). The framework described in this paper pro-
vides them as well as the corresponding decryption counter-
parts (not depicted). It operates on compressed video data
from a non-encrypting surveillance system. As described
above, the compression step is typically performed within
the surveillance camera.
Post-compression RoI encryption allows extending existing
surveillance systems without having to interfere with the
camera hardware or firmware. At the same time, no transcod-
ing whatsoever is required. Since all encryption operations
are performed after video compression, the encryption can
be added to the surveillance system in form of a black box,
which is put in place between the unencrypted camera output
and the storage system, as illustrated in Fig. 2.
An (authorized) operator is still able to look at the partially
encrypted content with the surveillance system’s unmodified
on-line viewing software, as long as the encryption is format-
compliant. This additionally saves costs by not requiring any

Fig. 3 Black-box decryption: The compressed video stream retrieved
from a database (right) is decrypted by the black box (middle) before
being decoded and displayed on a screen (left)

changes to the on-line viewing software’s video decoder.
For authorized off-line viewing, a second black box has to
be put in place, which decrypts the faces before they are
displayed, as illustrated in Fig. 3. Again, no changes to the
viewing software are required, since all involved bit streams,
i.e., both, encrypted and unencrypted, are format-compliant.
In this paper, we present a post-compression RoI encryption
framework which can be used to effortlessly extend exist-
ing surveillance systems as described above. We describe its
algorithms and evaluate its performance in detail, thereby
providing insights into the practical challenges of extending
existing surveillance systems. Before doing so, we describe
related work as well as the paper’s structure and contributions
in the following two sections.

1.1 Related work

Related work on encryption frameworks for video surveil-
lance can be divided into three categories: encryption sys-
tems, post-compression RoI encryption approaches (without
a surrounding encryption system) and other related work. We
discuss the relevant literature for each category below.

1.1.1 Encryption systems

Encryption systems typically perform RoI detection, encryp-
tion and RoI signalling, i.e., storing the RoI coordinates in
order to have them available during decryption. We discuss
relevant encryption systems which perform at least two of
these three steps and explicitly exclude those systems which
do not encrypt reversibly, but only obscure the captured im-
ages (e.g., through black boxes or blurring) to achieve privacy,
since they do not allow to recover the original, unobfuscated
images.
Chattopadhyay and Boult [5] propose an in-compression en-
cryption system, which requires changing the JPEG encoder
within the cameras, as opposed to our system, which does
not require modifications of any surveillance equipment. For
face detection, they use a background subtraction algorithm
with thresholding, which requires capturing the background
(a picture without any RoI) for each camera. In contrast, our
system uses a dedicated face detector, which does not require
capturing additional background images, thus being faster
and cheaper to deploy. The RoI coordinates in Chattopad-
hyay’s and Boult’s approach are stored as comments in the

Building a Post-Compression Region-of-Interest Encryption Framework for Existing Video Surveillance Systems 3

Fig. 1 Video surveillance system with post-compression RoI encryption functionality: Captured images are compressed, faces are detected,
encrypted and signalled, and the encrypted images are stored in a data base. The focus of this paper are those components which are not present in
regular, i.e., non-encrypting, video surveillance systems (components outside the illustrated scope).

JPEG file for decryption, similar to our approach. However,
they do not specify how the RoI coordinates are represented
and encoded, while we provide a detailed description of our
RoI coordinate encoding.
Sohn et al. [36] describe an in-compression encryption sys-
tem for Scalable Video Coding (SVC), where the camera
images are transcoded using an additional transcoding server.
As described in Section 1, this is undesirable due to the high
computational complexity of the transcoding process, which
is why our approach does not perform any transcoding oper-
ations. For face detection, Sohn et al. use the algorithm by
Viola and Jones [42], which we use as well. Their approach
supports only one RoI, which is impractical for real-world
surveillance camera footage. In contrast, our approach sup-
ports an arbitrary number of RoI.
Dufaux et al. [11] as well as Martı́nez-Ponte et al. [24] and
others propose encryption systems for JPEG 2000, which
are implemented as in-compression encryption approaches,
but could be implemented as a post-compression encryption
approach like ours. While cameras delivering JPEG 2000 bit
streams exist, JPEG is much more common, which is why
our encryption system is based on JPEG. For face detection,
Dufaux et al. as well as Martı́nez-Ponte et al. use the algo-
rithm by Viola and Jones [42] which we use as well. While
their discussions on signalling RoI remain theoretical with
some JPEG-2000-specific suggestions, but without concrete
implementations, we provide a detailed description and im-
plementation of our RoI signalling algorithm.
Boult [3] describes a pre-compression encryption system for
JPEG which requires modifications to the cameras or a sepa-
rate encoding or transcoding server. Similar to the approaches
described above, this is impractical. In addition, as any pre-
compression approach, Boult’s requires additional commu-
nication with the encoder in order to avoid compressing the
encrypted RoI so that they remain decryptable. This yields
a significant bit rate overhead as opposed to our approach,
which has a negligibly small overhead. For face detection,
Boult uses an unspecified face detection software, as opposed
to the common algorithm by Viola and Jones [42] that we
use. Similar to Chattopadhyay’s and Boult’s approach, RoI
coordinates in Boult’s approach are stored as comments in
the JPEG file, although there is no description on the coordi-
nate encoding, as opposed to our approach.
Iqbal et al. [14] propose an encryption system for H.264,

which requires transcoding after RoI detection and addi-
tionally performs post-compression encryption when nec-
essary. Besides the computational complexity of the required
transcoding step, the format compliance of their encryption
approach is questionable, likely requiring changes to the
video decoder of the surveillance system. In contrast, our
encryption approach is completely format-compliant and
therefore works with off-the-shelf decoders. For face de-
tection, we use the common algorithm by Viola and Jones
[42], while Iqbal et al. have no explicit RoI detection mech-
anism, but assume that all relevant RoI information is pro-
vided, which is impractical. They use Motion Picture Experts
Group (MPEG)-21 to store meta data from which the RoI co-
ordinates can be derived. As MPEG-21 is Extensible Markup
Language (XML)-based, it introduces a significant bit rate
overhead, as opposed to our RoI signalling approach, which
has a negligibly small overhead.
Senior et al. [34] give an abstract description of their privacy-
preserving video surveillance system. Since they do not pro-
vide any implementation details or results whatsoever, a com-
parison with our encryption system is not possible.

1.1.2 Post-compression RoI encryption approaches

Although some post-compression RoI encryption approaches
have been proposed, literature on the topic is sparse. Since
JPEG and H.264 are the most common compression stan-
dards used in surveillance cameras, we limit this overview to
these two. Furthermore, we limit approaches to those which
are format-compliant, apart from a few notable exceptions.
As JPEG does not use intra prediction apart from Direct Cur-
rent (DC) coefficients, the blocks a JPEG image consists of
are basically independent from an encryption point of view.
This means that almost every full encryption approach for
JPEG can be trivially extended to be a RoI encryption ap-
proach.
Tang [38] proposes permuting the zig-zag scan order of Dis-
crete Cosine Transform (DCT) coefficients, which requires
bit-stream-level entropy- and run-length-transcoding. While
this approach is of relatively low computational complexity,
it decreases the compression performance and therefore in-
creases the file size significantly. In contrast, our approach
has a negligibly small overhead, i.e., virtually no impact on
the compression performance.

4 Andreas Unterweger et al.

Wu and Kuo [44] describe an encryption method which
generates multiple Huffman tables and switches between
them pseudo-randomly for each code word. Although this
method is fast, it is not format-compliant, as opposed to ours
(or MPEG-4 Intellectual Property Management and Protec-
tion (IPMP) by Wen et al. [43], since the generated bit stream
cannot be parsed with an off-the-shelf JPEG encoder due to
the incompatible Huffman code words. Note that Wu’s and
Kuo’s method is technically no RoI encryption approach,
but could be extended accordingly. However, this would not
solve the problem of non-format-compliance.
DC and/or Alternating Current (AC) coefficient sign scram-
bling is a common encryption technique used for many DCT-
based compression formats, including JPEG, e.g., the works
of Zeng and Lei [47] as well as Lian et al. [22]. However,
when only encrypting few and/or small RoI, the key space
can be small enough to allow for practical attacks. Since
our approach encrypts multiple bits per coefficient instead
of only the sign bit, the key space and therefore the attack
complexity are significantly higher.
Puech and Rodrigues [30,31] describe two methods where a
number of bits at bit-stream level are encrypted starting from
the DC coefficient [30] or the AC coefficient with the highest
spatial frequency of each block [31], respectively. Similar to
the coefficient sign encryption approaches described above,
these methods have a lower attack complexity than our ap-
proach, since we encrypt all coefficients at bit-stream level.
Ye et al. [46], Lian et al. [22] as well as Niu et al. [27] pro-
pose encryption through block shuffling. Although we use
a similar method in one step of our approach, our method
is spatially limited and therefore allows for RoI encryption.
Although the approaches by Ye et al., Lian et al. as well as
Niu et al. could be extended to support RoI encryption, this
would significantly reduce their key space and their attack
complexity, as opposed to our approach, which uses addi-
tional encryption steps to assure a larger key space.
Yang et al. [45] describe an encryption method which swaps
code words of equal length between blocks. Again, the key
space of this method is very small when used for RoI encryp-
tion, as the number of code words with equal length within a
RoI is typically much lower than the number of code words
within a block, which our approach uses for swapping. Thus,
the attack complexity of our approach is significantly higher
than the complexity of the approach proposed by Yang et al.
For H.264, no post-compression RoI encryption algorithms
have been proposed so far. However, Dufaux and Ebrahimi
[9] describe an approach for MPEG-4 Part 2, which can
be adapted for H.264. Although their encryption step is per-
formed at bit-stream level, their method of avoiding prediction-
related artifacts outside the RoI requires selective re-encoding
of the video. This is impractical due to the necessary transcod-
ing step and its associated computation time and bit rate over-

head. In contrast, our approach requires no transcoding and
has a negligibly small overhead.

1.1.3 Other related work

Privacy protection in video surveillance systems is an active
research topic. Apart from the literature described above, we
discuss other notable related papers. For the sake of concise-
ness, we do not aim at providing an exhaustive list, but focus
on closely related work.
Cheung et al. [6] propose an alternative to RoI encryption
by removing RoI from the video (by background pixel re-
placement) and embedding them back into the video using
reversible data hiding. Although their approach could theo-
retically be implemented at bit-stream level, its large bit rate
overhead and quality degradation when using off-the-shelf
decoders are unacceptable for practical applications. In con-
trast, our approach has a negligibly small overhead and no
quality degradation outside the RoI.
Dufaux and Ebrahimi [10], Newton et al. [26] and Melle
and Dugelay [25] describe frameworks for assessing privacy
protection solutions by applying face recognition algorithms
to the obfuscated and/or encrypted images. The recognition
rates are used as objective measures for determining the de-
gree of RoI obfuscation. In our paper, we use the same (or
comparable in the case of Melle’s and Dugelay’s assessment
[25]) face databases for testing as they do, but provide both,
objective and subjective evaluation. This way, the detection
and recognition rates of human viewers can be compared and
added to other objective measures.

1.2 Structure and contributions

This paper is structured as follows: In Section 2, we describe
our encryption framework. In Section 3, we evaluate its per-
formance and practical usefulness, before concluding the
paper in Section 4.
This paper contributes an implementation of an encryption
framework for surveillance systems which combines and
extends existing algorithms for face detection, RoI encryp-
tion and RoI signalling. As opposed to previous frameworks,
ours can be easily integrated into existing surveillance sys-
tems without the need to modify any surveillance equipment,
making it very easy to deploy. Furthermore, this paper con-
tributes an evaluation of the implemented framework in terms
of both, objective and subjective measurements, pointing out
challenges when extending existing surveillance systems.

2 Encryption framework

As described in Section 1, our encryption framework can be
thought of as two black boxes – one for encryption and one

Building a Post-Compression Region-of-Interest Encryption Framework for Existing Video Surveillance Systems 5

Fig. 4 Components of the encryption black box: An unencrypted input picture is parsed and decoded for face detection. The obtained face
coordinates are used for limiting the encryption to said regions and written to the encrypted output file as they are required later for decryption

Fig. 5 Components of the decryption black box: An encrypted input picture is parsed, but not decoded. The RoI coordinates are extracted from the
input file and used for limiting the decryption to said regions, resulting in an unencrypted output picture

for decryption. An abstract view of the components of both
is depicted in Figures 4 and 5, respectively. Each of the main
components and their interconnections are described in detail
below.

2.1 Face detection

The first main component of our encryption framework de-
picted in Fig. 4 is face detection which is used to find the
RoI locations and pass them to the RoI encryption algorithm.
Since face detection is carried out in the image domain, it
is necessary to decode the image for this step, which we
do by using OpenCV1. As all other components operate at
bit-stream level, i.e., without the necessity to decode image
data, the decoding process for face detection can be simpli-
fied to processing gray-scale (luminance) data only. Since
the chrominance channels are ignored for the actual face
detection, a gray-scale version of the input image yields the
same results at lower decoding complexity.
If the surveillance system itself provides face detection func-
tionality, e.g., through the camera firmware or other existing
components, this information can be used directly, e.g. as
shown in the approach by Unterweger and Uhl [41]. This al-
lows replacing the face detection step by communication with
the existing face detection component. Our implementation
supports this, but assumes no such component is available by
default.
We use the OpenCV implementation of the common face de-
tection approach by Viola and Jones [42] with the extended
feature set from [23]. This is one of the best face detection
approaches and implementations in terms of detection per-
formance that is available for free at the time of writing [16,
33]. It uses a cascade of detectors in a sliding window on

1 http://opencv.org/

Fig. 6 Multi-scale face detection: The input image is scaled in the image
domain. On each scale, an integral image (II) is calculated, followed by
face detection using a detector cascade

the image. Each detector rejects non-face regions with high
probability by thresholding sums of Haar-like features which
are calculated efficiently by using integral images. This ap-
proach is used on multiple scales of the original input image,
as illustrated in Fig. 6 to find faces of different size.
The speed and detection rate of the described implementa-
tion depends on two parameters: On the one hand, the scale
factor parameter specifies the ratio r of image widths/heights
between two adjacent scales, where r > 1. Higher values
yield higher speed at a lower detection rate due to the smaller
number of scales, while lower values yield lower speed at a
higher detection rate.
On the other hand, the min. neighbors parameter defines the
number of neighboring windows n with respect to the sliding

http://opencv.org/

6 Andreas Unterweger et al.

window which have to report detections as well so that one
actual detection is returned. Higher values of n yield fewer
detections with higher confidence, while lower values of n
yield more detections with lower confidence.
For on-line processing in video surveillance, high speed and
high detection rates would be desirable. However, since there
is no straight-forward way to get both at the same time, a
trade-off has to be found. Thus, we define three different
parameter configurations for evaluation so that they cover
about an order of magnitude in execution time around the
OpenCV defaults:

– Good: r = 1.05,n = 1
– Default: r = 1.1,n = 3 (OpenCV defaults)
– Fast: r = 1.25,n = 1

We set the min. neighbors parameter to 1 (default value 3)
in order to increase the number of detected faces. Although
the confidence for each detected face is lower this way, the
algorithm is less likely to miss faces, which would be un-
desirable in our use case. For all other parameters, we use
default values.
Since the approach by Viola and Jones is not suitable to detect
faces in a high number of different poses, we use two separate
cascades – one for frontal and for profile face detection – and
combine the results. As our encryption approach processes
units of 16 · 16-pixel-sized blocks, all face coordinates are
additionally rounded to the nearest block borders.

2.2 Encryption

For RoI encryption, we modify the full encryption approach
proposed by Auer et al. [1]. Thus, in the following sections,
we describe the original approach and our modifications,
respectively.

2.2.1 Encryption approach by Auer et al.

The encryption approach proposed in [1] processes four
8 · 8-pixel-sized blocks (for typical 4:2:0 YCbCr subsam-
pling [17]) at a time, i.e., it operates on 16 · 16-pixel-sized
units. It encrypts AC and DC coefficients separately, i.e., a
different key is used for each coefficient type. Both keys
are initialization vectors for Advanced Encryption Standard
(AES) encoders operating in Cipher Feedback (CFB) mode
which generate pseudo-random bit sequences for encryption.
DC coefficient encryption is applied to DC coefficient differ-
ences (relative to the DC coefficient of the preceding block)
in the bit stream, since the JPEG format stores them instead
of the actual full coefficient values. The actual encryption
approach is based on the work of Niu et al. [27] and scram-
bles all DC value difference bits (not the preceding Huffman
code words with length information) by xor-ing them with
the pseudo-random bit sequence described above.

Fig. 7 Block order permutation by Auer et al. [1]: Blocks of the same
color use the same Huffman code words. Their order is changed pseudo-
randomly in the first AC coefficient encryption step

Fig. 8 Combined code-word-value order permutation and value scram-
bling adopted from Auer et al. [1]: The order of Huffman code words
(black) representing run-length/value information and their associated
values (grey) is changed pseudo-randomly in the second AC coefficient
encryption step; the value bits (grey) are scrambled in the third AC
coefficient encryption step.

AC coefficient encryption uses a different key and consists
of three steps:

– Block order permutation: Those 8·8-pixel-sized blocks
within a 16 ·16-pixel-sized unit which use the same Huff-
man code words are swapped pseudo-randomly so that
their order is changed as depicted in Fig. 7.

– Code-word-value order permutation: For each block,
all Huffman code words and their associated coefficient
values are swapped pseudo-randomly so that their order
is changed as depicted by the arrows and framed code-
word-value pairs in Fig. 8.

– Value scrambling: The value bits associated with each
Huffman code word are scrambled as depicted in Fig. 8.

In the second and third steps, the End Of Block (EOB) marker
remains unchanged. A more detailed description of all en-
cryption steps as well as a thorough security analysis can be
found in [40,1]. Note that, although Auer et al. [1] describe
a full-picture encryption approach, their security analysis is
limited to single blocks, so it can be used for our modified
approach as well.
All described operations perform format-compliant changes
at bit-stream level. They don’t increase the bit stream length
with the notable exception of encryption-induced FF bytes
at whole byte positions, which require escaping. Conversely,
previously escaped FF bytes may be changed through encryp-
tion, decreasing the bit stream length. This way, on average,
the file size is expected to remain unchanged.

2.2.2 Proposed encryption approach

We extend the approach of Auer et al. described in the pre-
vious section so that it supports RoI encryption. Both, AC

Building a Post-Compression Region-of-Interest Encryption Framework for Existing Video Surveillance Systems 7

Fig. 9 DC coefficient errors through difference value discrepancies:
Limiting the approach of Auer et al. [1] to a RoI without modifications
yields incorrect DC coefficient values outside the RoI. Original image
from the LIVE reference picture set [35]

and DC coefficient encryption can be enabled or disabled
for each 16 ·16-pixel-sized block based on the coordinates
returned by the face detection algorithm. Although this works
trivially for AC coefficients without any modifications, DC
coefficient encryption requires two modifications in order to
function properly.
First, since DC coefficient differences are encrypted, limiting
the DC coefficient difference encryption to a RoI modifies
the sum of all differences within the RoI. This yields a dis-
crepancy between the unencrypted and the encrypted DC
coefficients outside the RoI. In the online viewing case, this
would result in significant distortions of the image, as de-
picted in Fig. 9.
To solve this, the discrepancy between the encrypted and
unencrypted coefficients is summed up during encryption
within the RoI and added to the first DC coefficient differ-
ence outside the RoI to restore the original DC coefficient
value. In case the DC coefficient difference exceeds the min-
imum (−2047) or maximum (2047) limit, it is distributed

Fig. 10 AC (left) vs. AC and DC encryption (right): When DC encryp-
tion is used, the RoI is extended visually on the right in some cases
to compensate for the encryption-induced DC difference discrepancy.
Original (uncropped) image from the LIVE reference picture set [35]

among as many blocks as necessary, visually extending the
RoI as depicted in Fig. 10 (rightmost encrypted blocks in the
right image). Practically, one or two extra blocks outside the
actual RoI suffice for this compensation in most cases.
Second, if more than one block outside the RoI is required
for the DC coefficient difference compensation described
above, visual degradation may occur after decryption. In case
n blocks are required for compensation, the DC coefficient
difference of the nth block is restored successfully. However,
the other n− 1 blocks still exhibit a discrepancy between
their original DC coefficient differences and those which
have been adjusted for partial compensation. Thus, the DC
coefficient values of these blocks could not be restored to
their original values.
To solve this, the maximum (accumulated) compensation
value within the RoI during encryption is limited to the range
between −1023 and 1023, respectively. If these limits are
exceeded, none of the DC coefficients in the same block row
are encrypted (but other RoI or rows are not affected by this).
The decoder can detect this analogously and skip the decryp-
tion of the remaining coefficients.
In addition, the encryption per DC coefficient difference is
limited to the 7 Least Significant Bits (LSB) (representing the
value range of−127 to 127). In total, this limits the maximum
(summed) compensation value to±1023±254=±1277, i.e.,
even in the worst case, more than one block is only required
for compensation if the first DC coefficient difference outside
the RoI is outside the range ±2047∓1277 =±770.
As shown in Table 1, this only occurs in very few blocks at
very high quality levels over all pictures from the LIVE ref-
erence picture set when using the JPEG reference software.
Even in those affected blocks, it is highly unlikely that the
(summed) compensation value is actually large enough to re-
quire further blocks for compensation. One exception occurs
at 100% quality levels: One block in one of the compressed
pictures contains a high DC coefficient difference (1847). For
such rare cases, the limits can be reduced further if necessary.

8 Andreas Unterweger et al.

Quality [%] Critical blocks per picture Max. DC diff.
0 0 2
5 0 11
10 0 23
15 0 35
20 0 47
25 0 58
30 0 68
35 0 81
40 0 92
45 0 103
50 0 115
55 0 132
60 0 142
65 0 168
70 0 184
75 0 231
80 0 308
85 0 370
90 0 615
95 0.2 924
100 30.7 1847

Table 1 DC coefficient difference statistics when compressing the LIVE
reference picture set [35]: The average number of blocks for which the
difference exceeds 770 is zero for all quality levels but 100%, except
for very few blocks at 95% quality levels; the maximum difference in
all pictures only exceeds 770 for 95 and 100% quality levels

However, for almost all other cases (quality levels of 95%
and below), no modifications are required.
Our implementation is based on the one from Auer et al. [1]
which itself is based on NanoJPEG2 that is written in C. Our
modifications to the original implementation are as described
above. Due to these modifications, an updated security analy-
sis as presented in the next section is required.

2.2.3 Security analysis

Although a detailed security analysis of the original encryp-
tion approach of Auer et al. [1] is given in their paper, our
modified approach described in Section 2.2.2 requires addi-
tional analysis. Since the AC coefficient encryption is the
same as in [1], their results, which are per block and thus ap-
ply to RoI encryption as well, do not need to be re-analyzed.
Since the DC coefficient encryption is independent from
the AC coefficient encryption, attacks to the DC coefficient
encryption do not affect the AC coefficient encryption. As
our modified encryption algorithm does not encrypt some
DC coefficient difference Most Significant Bits (MSB), an
analysis of the number of unencrypted bits and its potential
consequences is necessary.
Table 2 shows the average number of unencrypted DC coef-
ficient difference bits in percent over all pictures from the
LIVE reference picture set when using the JPEG reference
software. All bits are encrypted up to quality levels of 55%.
The number of unencrypted bits increases with quality levels

2 http://keyj.emphy.de/nanojpeg/

Quality [%] Unencrypted DC coeff. bits per picture [%]
0 0
5 0
10 0
15 0
20 0
25 0
30 0
35 0
40 0
45 0
50 0
55 0
60 0.01
65 0.03
70 0.04
75 0.12
80 0.34
85 0.54
90 1.56
95 2.93
100 6.31

Table 2 DC coefficient bit statistics when encrypting the LIVE refer-
ence picture set [35]: The average number of DC coefficient difference
bits which remain unencrypted increases with quality levels

of 60% and above, reaching more than 5% at 100% quality
levels. Since encryption is critical at these quality levels, as
explained in Section 2.2.2, it is not advisable to use our ap-
proach at 100% quality levels. For quality levels between
60% and 95%, replacement attacks for the encrypted bits
have to be taken into consideration.

2.2.4 Effect of replacement attacks

A straight-forward replacement attack for any selective en-
cryption approach is to set all encrypted values to zero while
keeping the unencrypted values. In our case, since AC en-
cryption is performed separately, all AC coefficients are set
to zero. DC coefficient differences which are encrypted en-
tirely are also set to zero. In contrast, for those DC coefficient
differences of which only the k LSB out of n are encrypted,
the k LSB are set to zero, while the n− k unencrypted MSB
are kept as they are.
We use this replacement attack on our proposed approach
and the one by Unterweger and Uhl [40]. The latter performs
AC encryption in the same way as the approach by Auer et
al. [1], but does not encrypt DC coefficient differences, i.e.,
they remain intact after the attack. Fig. 11 shows the results
of the attack on a worst-case example image for JPEG quality
levels of 90 (a) and b)) and 95% (c) and d)), respectively for
our (a) and c)) and their approach (b) and d)), respectively.
It is clear that the DC coefficients carry enough informa-
tion to reconstruct a rough version of the image when using
the encryption approach by Unterweger and Uhl, i.e., their
approach can be attacked by setting the AC coefficients to

http://keyj.emphy.de/nanojpeg/

Building a Post-Compression Region-of-Interest Encryption Framework for Existing Video Surveillance Systems 9

a) b)

c) d)

Fig. 11 Effects of a replacement attack on our proposed encryption approach (a) and c)) vs. the encryption approach by Unterweger and Uhl [40]
(b) and d)). a) and b) use JPEG quality levels of 90%, c) and d) quality levels of 95%. Original image from the LIVE reference picture set [35]

10 Andreas Unterweger et al.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 60 65 70 75 80 85 90 95 100

LE
G

 s
co

re

JPEG quality level

Unterweger and Uhl
Proposed approach

Fig. 12 LEG scores for the LIVE reference picture set [35] after a re-
placement attack on our proposed encryption approach vs. the approach
by Unterweger and Uhl [40]. Error bars denote standard deviation

zero. In contrast, our approach reveals significantly less in-
formation of the original image, even when all encrypted DC
coefficient difference bits are set to zero.
For quality levels of 95%, one could argue that the silhouette
of the woman can still be reconstructed partially. However,
at 90% and lower (not depicted), basically no relevant visual
information can be extracted through a replacement attack in
this worst-case example.
Fig. 12 visualizes the results of the attack for all relevant
quality levels on all images from the LIVE data base. We use
LEG [13] as a similarity metric to compare the unencrypted
(original) images and their attacked counterparts since Peak
Signal-to-Noise Ratio (PSNR) does not reflect subjective
quality well. An LEG score of 1 means perfect similarity,
while a score of 0 means total dissimilarity.
It can be seen that the attack on our approach yields sig-
nificantly lower scores than the attack on the approach by
Unterweger and Uhl. Although the LEG scores are relatively
low in both cases, the scores for attacked images encrypted
with our approach is close to zero, i.e., very dissimilar to the
unencrypted images. This means that the two images have
little in common and that our proposed encryption approach
is not vulnerable to replacement attacks in practice.
Summarizing all security- and attack-related results, our ap-
proach is secure due to the additional DC coefficient encryp-
tion which is not present in the approach by Unterweger
and Uhl (and therefore in the AC encryption portion of the
approach by Auer et al.). However, it is recommended to
use our approach only for JPEG quality levels of 90% and
below to avoid the potential reconstruction of small amounts
of image information due to unencrypted bits required for
format-compliant decryption.

2.3 Signalling

In order for the decryption process to only decrypt RoI, the
locations of the latter have to be signalled. This is done after

encryption and consists of two basic steps: First, the loca-
tion information for all RoI is encoded; second, the encoded
information is embedded into the JPEG file. The following
sections describe the encoding and the embedding process,
respectively.

2.3.1 Coordinate encoding

We slightly modify the RoI encoding approach proposed
by Engel et al. [12]. Due to the high similarity of the two
approaches, we give a basic overview of the coordinate en-
coding steps and highlight the differences.
The coordinate encoding process consists of the following
steps:

– Indexing: Each 16 ·16-pixel-sized block is assigned an
index as depicted in Fig. 13. The top-left-most block is
assigned index zero; the blocks to its right are assigned
ascending indices in increments of one. This is continued
for all blocks in the remaining rows up until the bottom-
right-most block.

– Initial representation: Each RoI is represented by a tu-
ple containing its first and its last block index. The RoI in
Fig. 13 yield the representation (8,16),(11,27),(30,30).

– Size calculation: Since the last block index is always
larger than the first, it can be represented relative to the
first in order to save bits. This is nearly equivalent to
calculation the size (length) of the RoI, but takes into
consideration that the size of a RoI cannot be zero. The
RoI in Fig. 13 yield (8,8),(11,16),(30,0). Note that the
approach by Engel et al. uses the actual size of the RoI
and reserves the value zero for signalling the end of the
list of RoI.

– Differential representation: Each RoI but the first is
represented relative to its predecessor, i.e., the two ele-
ments of the tuple it is represented by are subtracted from
the two corresponding tuple elements its predecessor is
represented by. The RoI in Fig. 13 yield the differential
representation (8,8),(3,8),(19,−8).

– Variable length coding: Each tuple element is encoded
by a zeroth order signed Exponential Golomb code word
[12,15]. The encoded tuple elements are concatenated to
a bit string. No additional delimiters are required since
the code words can be separated from one another by
design.

The approach by Engel et al. consists of two additional steps
that we omitted. The first additional step is entropy coding
using adaptive arithmetic coding, which we found to yield rel-
atively little reduction in bit string length given the required
computation time. The second additional step is optimizing
the bit string size by changing the order of the RoI. Since
this requires an exhaustive search which has a higher than
exponential time complexity, it is practically infeasible when
encoding ten or more RoI. Thus, we omit this step.

Building a Post-Compression Region-of-Interest Encryption Framework for Existing Video Surveillance Systems 11

Fig. 13 Block indices for RoI signalling with three exemplary RoI:
Block indices increase from left to right and top to bottom

Fig. 14 COM segment payload extension: If the length n of the actual
payload is not a multiple of a byte, stuffing bits are added. Their number
is signalled before the start of the actual payload

2.3.2 Coordinate embedding

Engel et al. [12] evaluate multiple methods to embed the
encoded RoI locations into a JPEG file. While their lossy
approach provides sufficient embedding capacity, it cannot
be used in the context of video surveillance since the inability
to restore the original images after decryption is undesirable
and may violate legal regulations.
For lossless embedding with unlimited capacity, they suggest
inserting COM segments into the JPEG file. A decoder may
skip these segments, if they are placed correctly, for example
before the SOI marker. Thus, an off-the-shelf decoder ignores
the COM segments, but our decryption system can use them to
extract the RoI locations for decryption.
A COM segment consist of a marker, a length field and the
payload. In our use case, the payload is basically the encoded
bit string. However, since a COM segment has no means of
signalling lengths with bit granularity, we extend our payload
as depicted in Fig. 14.
Consider a payload (denoted as actual payload in Fig. 14)
of size n (bits). If the length of the actual payload is not a
multiple of a byte, adding 8− n%8 bits (stuffing bits),
where % denotes the modulo operator, extends the payload
so that its length becomes a multiple of a byte. Thus, the total
payload length can be specified by the length field of the COM
segment (not depicted).
In addition, the number of the inserted stuffing bits has
to be signalled so that the decoder knows which bits be-
long to the actual payload. This information, denoted as
num stuffing bits, is added before the actual payload
and is a binary representation of the value 8−n%8 in case
the length of the actual payload is not a multiple of a byte,

or zero otherwise. Although three bits would suffice to sig-
nal this information, it is easier, i.e., computationally less
complex, for the decoder to parse if it is one byte, i.e., 8 bits,
long.
In summary, the RoI location embedding induces an over-
head by inserting the encoded bit string into the JPEG file,
together with additional components required for decod-
ing. These components yield a small overhead as follows:
First, the COM marker adds two bytes. Second, the length
field of the COM segment adds another two bytes. Third,
num stuffing bits adds one more byte. Finally, between
0 and 7 stuffing bits are required.
Our implementation is based on the one from Engel et al. [12].
Our modifications to the original implementation are as de-
scribed above.

2.4 Decryption system

As depicted in Fig. 5, the decryption systems works analo-
gously to the encryption system, but all operations are re-
versed. First, the RoI locations are extracted from the JPEG
file. Second, the extracted locations are used by the RoI de-
cryption algorithm to decide which blocks to decrypt. Finally,
the decrypted JPEG file can be processed further, e.g., by
decoding and displaying it. A face detection step is no longer
required since all RoI locations are extracted from the sig-
nalling information.

2.5 Common auxiliary components

Fig.s 4 and 5 give an abstract view of the main components
of the encryption and decryption black box, respectively.
However, a number of common auxiliary components are
not depicted therein to keep the figures clear. Due to their
practical relevance, we describe these auxiliary components
below.

2.5.1 Input/output modules

Since different surveillance systems deliver compressed im-
ages in different ways, our system uses a modular architecture
for the input and output interfaces for both, the encryption
and the decryption black box. This way, input and output
modules can be combined as needed, supporting nearly arbi-
trary ways of compressed-image delivery.
The most common way for compressed-image delivery in
state-of-the-art surveillance systems as of the time of writing
is network-based file storage. Cameras are connected to a
central file server over a network and upload the compressed
images as files onto the server, e.g., using File Transfer Pro-
tocol (FTP). From there, they can be viewed or moved for

12 Andreas Unterweger et al.

the purpose of archiving.
Our default input module reads files from an input folder and
passes them one by one for further processing. Similarly, our
default output module collects the processed files one by one
and writes them an output folder. This is one of the simplest
ways to encrypt and decrypt images as needed.
More complex and transparent ways of deployment, like
direct network traffic interception, where the images are en-
crypted or decrypted on the fly, are possible as well. Due to
the modular architecture of our framework, corresponding
input and output modules can be written without changing
any other parts of our software. Furthermore, input and out-
put modules can be combined arbitrarily, depending on the
needs for deployment in the surveillance system at hand.

2.5.2 Parallel processing

Depending on the hardware that our encryption framework is
running on, likely not all the available computational power
is used when processing images one by one. Thus, we use
the Python multiprocessing module to parallelize encryption
and decryption. Note that we do not use the similar thread
and threading modules due to their inferior performance.
During initialization, n encryption or decryption processes
(bold rectangles in the middle of Fig. 15) are created by the
main process (bold rectangle on the left). The latter reads
the data of the images to be encrypted or decrypted from the
input module and puts them into a synchronized input queue.
Each encryption or decryption process takes the data for one
image from the input queue, processes it and puts the data for
the corresponding processed image into a synchronized out-
put queue. The main process takes the data of the processed
images from the output queue and passes them to the out-
put module. A special marker inserted by the main process
into the input queue indicates that no more files should be
processed, causing the encryption or decryption processes to
terminate.

3 Evaluation

We evaluate our framework in terms of runtime, space over-
head and face detection rate. In addition, we perform a sub-
jective evaluation of images encrypted with our proposed
encryption method.

3.1 Runtime

To evaluate the runtime of our framework, we use a total of
six test sequences: akiyo, foreman and crew (all in Common
Intermediate Format (CIF) resolution) serve as standard se-
quences with known characteristics and a varying amount of
faces; hall (CIF) and ice (4CIF) serve as surveillance footage

with easy and hard to detect faces, respectively; vidyo1 (720p)
serves as surveillance-like footage with high resolution.
In the following sections, we explain our test methodology
and give the results of encoding (face detection plus encryp-
tion and signalling) and decoding times (signal extraction
plus decryption), respectively. In addition, we provide an
analysis of the time spent in each component of our frame-
work.

3.1.1 Test methodology

To minimize measurement errors, each sequence is encoded
and decoded separately for a total of eight times each – three
times for cache warming and five times for actual processing.
These five times are averaged and the standard deviation
is calculated to determine the degree of fluctuation of the
averaged results.
To simulate surveillance camera output, the input sequences
are pre-encoded as JPEG files with avconv3 with a quality
parameter of 1, which roughly corresponds to a JPEG quality
level of 90%. The files are placed on a Random Access
Memory (RAM) drive (ramfs mount) and processed directly
thereon in order to minimize input/output-related variations.
We use a virtual server with 8 cores (on two physical 6-core
Intel Xeon E5-2620 Central Processing Units (CPU)) and 8
GB of RAM running CentOS 6.4. The reason for using such
powerful hardware to evaluate our framework is explained in
Section 3.1.4.

3.1.2 Encoding time

The encoding time strongly depends on the face detection
parameters. Fig. 16 shows the encoding times for the three
parameter configurations described in Section 2.1. Note that
the good configuration (bottom) uses a different y axis offset
as it is about a power of ten slower than the fast configuration
(top).
The total runtimes are clearly dependent on image resolu-
tion, with only small variations between sequences of the
same resolution. For example, the foreman sequence (filled
rectangles) with only one face requires only slightly lower
processing time than the crew sequence (filled upside trian-
gles) with about a dozen faces. The standard deviation is very
small, indicating negligible measurement errors.
The vidyo1 (720p) sequence (empty circles) requires about a
factor of ten more processing power than the CIF sequences
(filled geometric forms) in all configurations. The ice se-
quence (empty squares) are between the two in terms of
runtime.
Parallelization decreases the runtimes of all sequences in all
configurations when using up to the number of physically
available cores (8 in our setup). Using more threads than

3 https://libav.org/avconv.html

https://libav.org/avconv.html

Building a Post-Compression Region-of-Interest Encryption Framework for Existing Video Surveillance Systems 13

Fig. 15 Parallelization: The main process puts the data of images to be processed (dashed) into an input queue, from which the worker processes
take one at the time. The processed data of each encoded or decoded image is put into an output queue, from which it is retrieved by the main process

Fast

 10

 100

 1000

 10000

 0 2 4 6 8 10 12 14 16

P
ro

ce
ss

in
g

 t
im

e
 p

e
r

p
ic

tu
re

 [
m

s]

Number of threads

foreman (CIF)
akiyo (CIF)
crew (CIF)
hall (CIF)
ice (4CIF)

vidyo1 (720p)

Default

 10

 100

 1000

 10000

 0 2 4 6 8 10 12 14 16

P
ro

ce
ss

in
g

 t
im

e
 p

e
r

p
ic

tu
re

 [
m

s]

Number of threads

foreman (CIF)
akiyo (CIF)
crew (CIF)
hall (CIF)
ice (4CIF)

vidyo1 (720p)

Good

 100

 1000

 10000

 100000

 0 2 4 6 8 10 12 14 16

P
ro

ce
ss

in
g

 t
im

e
 p

e
r

p
ic

tu
re

 [
m

s]

Number of threads

foreman (CIF)
akiyo (CIF)
crew (CIF)
hall (CIF)
ice (4CIF)

vidyo1 (720p)

Fig. 16 Encoding times with different face detection configurations:
Fast (top), default (middle), good (bottom). The y axis of the good
configuration uses a different offset than the other two, illustrating that
it is approximately a power of ten slower than the fast configuration

 0.1

 1

 10

 100

 0 2 4 6 8 10 12 14 16

P
ro

ce
ss

in
g

 t
im

e
 p

e
r

p
ic

tu
re

 [
m

s]

Number of threads

foreman (CIF)
akiyo (CIF)
crew (CIF)
hall (CIF)
ice (4CIF)

vidyo1 (720p)

Fig. 17 Decoding times of different encoded sequences, i.e., encrypted
files with signalling information: All sequences can be decoded in
real-time

physical cores does not decrease the runtimes further. It is
thus recommended to use an amount of threads which is
equal to the number of physical cores to minimize runtimes.
Real-time processing is only possible when using 8 threads
and the fast face detection configuration for CIF sequences
(filled geometric forms). With their 30 frames per second,
the average execution time of about 30 ms is barely low
enough for real-time encoding. However, as described in Sec-
tion 3.1.4, this is mainly due to face detection and can be
significantly improved when using different face detection
algorithms.

3.1.3 Decoding time

Decoding the encoded files, i.e., extracting the signalling
information and decrypting the RoI, is theoretically not de-
pendent on face detection parameter configurations since no
face detection is taking place – the locations of the faces
are extracted from the signalling information. However, if
more faces have been detected during encoding, more extrac-
tion and decryption operations are required during decoding.
Thus, we use the images encoded with the good parameter
configuration as a worst-case scenario. The decoding run-
times of the encoded files is shown in Fig. 17.
Again, the runtimes depend on the image resolution, but
not as much as during encoding. Conversely, the variation
between sequences of the same resolution is larger since
the operations carried out during decoding depend on the

14 Andreas Unterweger et al.

number and size of the RoI. Hence, a sequence like akiyo
(filled squares) with one small face is decoded faster than a
sequence like foreman (filled rectangles) with one larger face.
Similarly, the crew sequence (filled upside triangles) with
about a dozen of small faces requires more processing time
than the foreman and akiyo sequences.
As during encoding, decoding benefits from parallelization
up to the number of physical cores (8). Using a higher number
of threads decreases performance slightly. Real-time process-
ing is possible for all sequences of all resolutions, so on-line
viewing is possible even with much less powerful hardware.
For example, CIF sequences require less than one millisec-
ond per frame for decoding when using 8 threads.

3.1.4 Breakdown of encoding time per component

Due to the significant differences in runtime between encod-
ing and decoding, it is necessary to analyze the runtimes of
each component of our framework individually. Since encryp-
tion and decryption as well as signalling and signal extraction
are symmetric operations, it is sufficient to break down only
the components of the encoding process for this – the compo-
nents of the decoding process are practically identical, apart
from the face detection component, which is only required
for encoding.
Table 3 breaks down the runtime per component. The results
have been obtained from the first of five runs (as described
above) per sequence using one thread. The results when us-
ing multiple threads do not differ significantly. All values are
rounded to two decimal places.
It is clear that face detection, in all configurations, requires
by far the biggest portion of the total runtime. It includes the
time for decoding the image since it is the only operation
which requires the decoded picture data. The face detection
time percentage increases with resolution since the number
of scales at which the cascades have to be evaluated increases
exponentially with the input resolution. Small variations be-
tween sequences of the same resolution can be observed
depending on the image content due to the earlier (or later)
rejection of false positives in the cascades. In nearly all sce-
narios, face detection requires more than 99% of the total
runtime.
The remaining time is spent on encryption and signalling as
well as on the intermediate time measurements themselves
(denoted as miscellaneous). Encryption generally requires
more time than signalling, which is not surprising given that
signalling is a relatively simple operation. It accounts for
about the same percentage of runtime as the measurement
overhead (miscellaneous), which contributes only an insignif-
icantly small amount to the total runtime.
In the good face detection parameter configuration, encryp-
tion, signalling and the measurement overhead combined
account for between 4.8 (0.37 + 0.05 + 0.06 = 0.48% of

1000 ms for the foreman sequence from 16) and 18 ms
(0.12+0.03+0.03 = 0.18% of 10000 ms for the vidyo1 se-
quence), respectively, which is consistent (apart from round-
ing errors and slight timing variations) with the symmetric
decoding operations whose runtime is depicted in Fig. 17.
This shows that the face detection component of our system
is the bottle neck and that all other components are suffi-
ciently fast for real-time processing, even on less powerful
hardware.

3.2 Space overhead and face detection rate

The rate of detected faces and the space overhead induced by
RoI signalling are inherently coupled. Since a higher num-
ber of detected faces increases the number of RoI which
need to be encrypted and signalled, face detection rates and
signalling-induced space overhead are analyzed together. The
same sequences as in Section 3.1 are used.

3.2.1 Test methodology

A ground truth for the faces in the used sequences is obtained
through manual segmentation. The segmentation shape is
rectangular since the automatic face detection implementa-
tion we use also returns rectangular regions. The coordinates
of the segmented faces are rounded to the nearest 16 · 16
block border to minimize the influence of small segmenta-
tion variations on the one hand and, on the other hand, to
ensure fairness as encryption and signalling of the automat-
ically detected faces in our system only work with 16 · 16
pixel granularity as explained in Section 2.3.1.
We compare the automatically detected faces against the
ground truth by processing each frame fi of a sequence sep-
arately. Let G be the set of pixels in frame fi which belong
to at least one face from the ground truth, i.e., a pixel is an
element of G if and only if it is contained in a face rectangle.
Analogously, let D be the set of pixels in frame fi which
belong to at least one automatically detected face.
We evaluate the detection rate of the automatic face detec-
tion algorithm by calculating precision and recall. Precision
specifies the percentage of actual face pixels returned by the
automatic detector (relative to all pixels returned by the detec-
tor), while recall specifies the percentage of returned ground
truth face pixels (relative to all available ground truth face
pixels). Precision pi and recall ri are calculated as follows:

pi =
|G∩D|

D
(1)

ri =
|G∩D|

G
, (2)

where || denotes the operator which returns the number of
elements in a set, i.e., the area (number of pixels) in our case.

Building a Post-Compression Region-of-Interest Encryption Framework for Existing Video Surveillance Systems 15

Fast Sequence Face detection time [%] Encryption time [%] Signalling time [%] Miscellaneous time [%]
foreman (CIF) 97.36 2.21 0.12 0.31
akiyo (CIF) 97.58 1.90 0.29 0.23
crew (CIF) 98.24 1.27 0.23 0.26
hall (CIF) 99.31 0.36 0.09 0.24
ice (4CIF) 99.64 0.25 0.03 0.08
vidyo1 (720p) 99.42 0.46 0.07 0.05

Default Sequence Face detection time [%] Encryption time [%] Signalling time [%] Miscellaneous time [%]
foreman (CIF) 99.38 0.45 0.05 0.12
akiyo (CIF) 98.88 0.87 0.13 0.12
crew (CIF) 99.13 0.65 0.10 0.12
hall (CIF) 99.80 0.07 0.01 0.12
ice (4CIF) 99.83 0.11 0.01 0.05
vidyo1 (720p) 99.70 0.24 0.04 0.02

Good Sequence Face detection time [%] Encryption time [%] Signalling time [%] Miscellaneous time [%]
foreman (CIF) 99.52 0.37 0.05 0.06
akiyo (CIF) 99.38 0.48 0.07 0.07
crew (CIF) 99.37 0.44 0.11 0.08
hall (CIF) 99.70 0.20 0.03 0.07
ice (4CIF) 99.77 0.18 0.01 0.04
vidyo1 (720p) 99.82 0.12 0.03 0.03

Table 3 Encoding time breakdown for different face detection configurations: Fast (top), default (middle), good (bottom). In all configurations, face
detection is the component which requires the biggest portion of the runtime

For the special case that both, G and D, are empty, i.e., when
there are no faces in frame fi, we define pi and ri to be 1.
The final precision and recall values p and r are calculated
by averaging the values pi and ri, respectively.
For the space overhead calculations, each JPEG file (repre-
senting fi) of the unencrypted input sequence, with size sui

is compared to the corresponding encrypted output file, with
size sei . The latter contains all required signalling informa-
tion for RoI decryption as described in Section 2.3. The space
overhead oi for the JPEG file representing fi is calculated as:

oi =
sei − sui

sui

(3)

The final overhead value o is calculated by averaging the
values oi.

3.2.2 Overhead values and detection rates for OpenCV

The overhead values and detection rates for our proposed
implementation described in Section 2 are listed in Table
4. Since the numbers are based on the face detector results,
which depend on the latter’s configuration, the results for the
three parameter configurations described in Section 2.1 are
listed separately.
It is clear that the space overhead is negligibly small (below
0.3% for all but the crew sequence). In general, sequences
with more faces (e.g. crew) yield higher overhead values than
sequences with fewer faces (e.g., hall) due to the higher sig-
nalling overhead. For sequences with a similar amount of
faces (e.g., foreman and akiyo), the face size is an important
factor influencing the overhead, since larger RoI dimensions
inherently require more signalling bits.
Somewhat surprisingly, the face detection rates do not differ

Fast
Sequence Overhead [%] Precision [%] Recall [%]
foreman (CIF) 0.136 51.9 82.1
akiyo (CIF) 0.243 53.2 99.5
crew (CIF) 0.355 33.2 53.3
hall (CIF) 0.102 62.7 28.2
ice (4CIF) 0.083 36.6 20.6
vidyo1 (720p) 0.161 18.1 70.8

Default
Sequence Overhead [%] Precision [%] Recall [%]
foreman (CIF) 0.106 76.1 77.0
akiyo (CIF) 0.220 55.8 99.3
crew (CIF) 0.195 65.5 32.5
hall (CIF) 0.069 96.7 24.2
ice (4CIF) 0.045 82.9 8.8
vidyo1 (720p) 0.079 46.1 58.6

Good
Sequence Overhead [%] Precision [%] Recall [%]
foreman (CIF) 0.137 50.3 82.4
akiyo (CIF) 0.242 53.2 99.5
crew (CIF) 0.353 33.2 53.3
hall (CIF) 0.102 62.3 28.3
ice (4CIF) 0.083 36.1 20.7
vidyo1 (720p) 0.163 18.0 70.6

Table 4 Overheads and detection rates for different face detection con-
figurations: Fast (top), default (middle), good (bottom). All values are
in percent.

by a large amounts. In particular, the fast and good config-
urations, which differ by about one order of magnitude in
terms of execution time (compare Section 3.1.2), yield nearly
identical precision and recall values. This allows for two
conclusions: First, the fast configuration is typically to be
preferred over the good configuration due to its speed; sec-
ond, the default configuration, which has lower recall values
than both, the good and the fast configuration, is not recom-
mended for this use case. From this and the configuration

16 Andreas Unterweger et al.

parameters it is clear that a smaller value of the min. neigh-
bors parameter has a much more significant impact on the
detection rate than the scale factor parameter.
However, the detection rates for some sequences are not
optimal in either of the three configurations. For the video
surveillance use case it is essential to encrypt as many face
pixels as possible, i.e., to achieve a recall of 1 (100%). The
precision is secondary since encrypting non-faces (false posi-
tives) returned by the face detector is much less of an issue
than “forgetting” to encrypt an actual face. Such “forgotten”
faces are typically very small in size or they are in a pose
between frontal and profile, which is nearly impossible to
detect with the used cascades [42].
This phenomenon reflects in the recall values of all configu-
rations. For example, the recall for the akiyo sequence which
contains one frontal face is near-perfect (above 99%), while
the recall for the ice sequence with up to 8 small faces in
different poses barely exceeds 20% in the good and fast con-
figurations. The recall values for the remaining sequences
range from slightly below 30% (hall) to slightly above 80%
(foreman).
This is clearly unacceptable for privacy preservation in a
video surveillance system. It is also quite surprising, given
the wide-spread usage of the OpenCV face detector in gen-
eral, and in face encryption literature in particular. Due to
these results, we additionally assessed the performance of
two other face detectors – one free and one commercial – for
comparison in the following sections.

3.2.3 Detection rates for Sun et al.’s approach

Sun et al. [37] propose a face detector based on deep con-
volutional network cascades. It is supposed to outperform
the state of the apart as of 2013 and therefore the approach
by Viola and Jones. We apply the same test methodology as
described in Section 3.2.1, but with only one configuration,
since there are no face detection parameters that can be con-
figured.
Overhead measurements are omitted as explained below. Run-
times cannot be measured accurately since the only available
implementation is a closed-source Windows executable. This
additional evaluation therefore purely focuses on detection
rates, which are shown in Table 5.
Although the precision values are significantly higher than
those of OpenCV, the recall values are lower. The differences
are significant for almost all sequences. Most notably, the
crew and ice sequences have recall values of below 2.5 and
1.5%, respectively, which is not only surprising, but also
clearly infeasible for face detection in surveillance systems.
Since the OpenCV face detector outperforms the one by Sun
et al. in terms of recall, which is the main relevant metric
for the video surveillance use case, we omit the overhead
measurements. For the sake of comparison, we assess the

Sequence Precision [%] Recall [%]
foreman (CIF) 75.3 80.7
akiyo (CIF) 100.0 60.2
crew (CIF) 70.2 2.3
hall (CIF) 100.0 77.3
ice (4CIF) 93.9 1.3
vidyo1 (720p) 88.7 58.4

Table 5 Detection rates for the face detector by Sun et al.: All recall
values are lower than those of OpenCV

Sequence Precision [%] Recall [%]
foreman (CIF) 88.9 50.4
akiyo (CIF) 100.0 59.1
crew (CIF) 97.7 21.3
hall (CIF) 95.5 77.3
ice (4CIF) 88.1 1.5
vidyo1 (720p) 93.5 49.3

Table 6 Detection rates for the KeyLemon face detector: With the ex-
ception of the hall sequence, the recall values are significantly lower
than those of OpenCV

performance of another face detector in comparison to the
one from OpenCV in the following section in order to draw
more general conclusions.

3.2.4 Detection rates for KeyLemon

KeyLemon4 is a Web service for face detection and recog-
nition, which can be used for free with limitations on the
amount of data processed per time unit. We use KeyLemon’s
Python Application Programming Interface (API) to send
input sequences image by image and receive coordinates of
detected faces from the Web service. We apply the same test
methodology as described in Section 3.2.1, but with only one
configuration, since there are no face detection parameters
that can be configured.
Overhead measurements are omitted as for the approach by
Sun et al. Runtimes cannot be measured accurately due to
network-induced API call delay and are therefore omitted as
well. This additional evaluation therefore purely focuses on
detection rates, which are shown in Table 6.
While the precision values are significantly higher (between
80 and 100%) than those of OpenCV, the recall values are
significantly lower for all but one sequence (which is why we
omit additional overhead measurements). The hall sequence
yields a recall value of 77%, while the latter is below 30%
when using OpenCV. Conversely, for all other sequences, the
recall values are between approximately 40 and 90% lower
(relative to the OpenCV results) than the OpenCV results.
This allows to draw three conclusions: First, commercial
face detection solutions do not necessarily outperform freely
available state-of-the-art face detectors. Second, the state-of-
the-art face detection algorithm proposed by Viola and Jones
[42] and its implementation in OpenCV (as well the one by

4 https://www.keylemon.com/

https://www.keylemon.com/

Building a Post-Compression Region-of-Interest Encryption Framework for Existing Video Surveillance Systems 17

Fig. 18 A (cropped) screenshot of our survey system: The user has to
select the encrypted picture which depicts the same person whose face
is displayed unencrypted. This example shows DC-only encryption

Sun et al. [37]) are not suitable for use in surveillance sys-
tems due to their low recall values. Third, the face detection
algorithm in our encryption framework should be replaced.
This can be done easily due to the modular design of our
framework. It is planned to update our software as soon as a
more suitable approach is published.

3.3 Subjective evaluation

In order to assess the security of our proposed encryption
approach from a practical point of view, we perform a sub-
jective evaluation. We use the Color FERET database [29,
28] for this.

3.3.1 Test methodology

We implemented a survey platform in PHP. It displays a page
with an image of a face from the Color FERET database,
together with five encrypted faces, as depicted in Fig. 18. One
of these five faces is of the same person whose unencrypted
face is shown. The user has to decide which one it is and is
forced to choose randomly when unsure. The encrypted and
unencrypted image are not identical, as described in detail
below, since this would not be realistic in a surveillance
scenario.
We limit the amount of faces by only using the first frontal
image (filename postfix fa) of each person photographed on
April 22, 1994 in the Color FERET database as reference
(unencrypted) image and the last alternative frontal image
(filename postfix fb) of the same person as the basis for an
encrypted version. If there are not both versions of frontal

face images for a person from the database, this person is
excluded from our image set. In total, images of 187 different
people are used.
We create JPEG files from all images as described in Section
3.1.1 and use an automatic face detector to extract the face
areas, which are shown in the survey. As the dimensions of
the detected faces vary slightly, we resize them to 200 ·200
pixels for display in the Web browser so that the image size
cannot be used as a clue to identify a person. Although this
changes the aspect ratio of some images, the difference is
very small (a few pixels in one dimension) and therefore
negligible.
We assess the security of three encryption methods:

– AC-only encryption by Unterweger and Uhl [40] (which
is identical to the AC encryption part of Auer et al. [1]
and our proposed approach)

– Our encryption approach as described in Section 2.2.2
– DC-only encryption as a variant of our encryption ap-

proach which omits the AC encryption part from Auer et
al. [1]

Users of our survey system see images encrypted with al-
ternating encryption approaches following the pattern AB-
CABC. . . , where A stands for AC-only, B for DC-only and
C for our proposed encryption approach. Each user sees a
total of 30 pages as depicted in Fig. 18, i.e., 10 per encryption
method. Examples for AC-only encryption and our proposed
encryption method can be found in Fig. 10; an example of
DC-only encryption is depicted in Fig.18.
Let ci be the number of correctly recognized faces by a user
when encryption method i is used. Correct in this context
means that the user selected one and only one image and that
the selected image actually shows the same person that is dis-
played in the unencrypted image. Analogously, let ni be the
number of incorrectly recognized faces. Incorrect recognition
is defined as the opposite of correct recognition, i.e., partially
correct selections (where multiple faces are selected and one
of them is the correct one) are interpreted as incorrect.
We determine the recognition rate rri per encryption method,
which is calculated for each encryption method i as:

rri =
ci

di
(4)

3.3.2 Recognition rates

The recognition rates for the different encryption methods
are listed in Table 7, based on 460 recognition tasks (46
participants) per encryption method in total. For AC-only
encryption, nearly all faces have been successfully recog-
nized. This demonstrates that the theoretical attack described
in Section 2.2.4 is of practical relevance. It also shows that
the encryption approach by Unterweger and Uhl by itself is
not sufficient to protect faces in a surveillance use case.
DC-only encryption exhibits lower recognition rates than

18 Andreas Unterweger et al.

Encryption method Recognition rate [%]
AC-only (Unterweger and Uhl [40]) 93.92
DC-only 58.47
Proposed method (AC plus DC) 40.08

Table 7 Recognition rates for different encryption methods: AC-only
and DC-only encryption are relatively insecure, while the proposed
encryption approach makes recognition significantly harder

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

N
u
m

b
e
r

o
f

p
a
rt

ic
ip

a
n
ts

 [
%

]

Recognition rate [%]

Fig. 19 Distribution of recognition rates for the proposed encryption
approach: Most participants achieve recognition rates between 30 and
50%

AC-only encryption, but must still be considered relatively
insecure due to the fact that more than half of the faces
can still be recognized. Conversely, the proposed encryption
approach, which combines AC and DC encryption, has sig-
nificantly lower recognition rates.
However, the rates are still higher than the probability of
guessing, which is 20% (one out of five). It is therefore nec-
essary to analyze the results for this method in detail. Fig. 19
breaks down the participants by recognition rate. It is clear
that a large amount of participants score around 30%, which
is slightly above the probability of guessing. In addition, a
few participants are able to score around 50%.
Although it would seem like there are two groups of par-
ticipants – experts and non-experts –, we refrain from this
particular distinction because our data does not support this
assumption. Rather, a number of participants which we would
consider to be non-experts scored relatively high, while a
number of experts scored relatively low.
To inquire potential reasons for above-average recognition
rates, we asked some of the participants who scored 50%
or higher how they were able to recognize faces despite the
encryption (as illustrated in Fig. 10). From this inquiry, the
following results have been obtained:

– Face borders: The background of all images is white,
leaving nearly no AC or DC differences to encrypt out-
side the faces, as opposed to inside the faces (which can
also be seen for DC-only encryption in Fig. 18). Thus, the
face borders are visible with block granularity due to the
sudden change between weakly and strongly encrypted

image regions. This information suffices to exclude at
least some face candidates in the recognition process.

– Head form: The face detector returns rectangular regions
which sometimes include hair, ears or both. Depending
on whether these parts of the head are included, the form
of the encrypted region is influenced. In combination
with the face borders mentioned above, it is possible to
exclude face candidates based on the head form, e.g., due
to short vs. long hair.

This allows to draw two conclusions: First, a face detector
returning more consistent face regions would be preferred
in order to avoid clues about the head form. Second, solid-
colored backgrounds make perceptually consistent encryp-
tion hard. In practice, however, this is not a problem since
backgrounds vary and potential attackers typically cannot
rely on the simple case of a uniform test set like in our as-
sessment. Thus, our encryption approach is expected to yield
lower recognition rates for non-uniform sets of faces.
Still, faces encrypted with our proposed encryption approach
are already significantly harder to recognize than faces en-
crypted with similar encryption approaches, as shown above.
While the recognition rates for our approach are, on average,
higher than the probability of guessing, there is still a 6-in-10
chance that the wrong face is chosen. This may or may not
extend to the variety of possible practical video surveillance
scenarios.
Regardless, it is hard to judge whether the performance of
our approach is sufficient in practice despite its theoretical
security, mostly due to the lack of subjective evaluations of
other encryption approaches. To our knowledge, no compara-
ble evaluation of encryption approaches has been performed
in the literature. It is possible that there are no other encryp-
tion approaches which achieve probability-of-guessing per-
formance in subjective evaluations. The evaluation of more
encryption methods for comparable results therefore remains
future work.

3.3.3 Notes on evaluation design

Before concluding this paper, we would like to point out
traps and pitfalls in evaluation design that lead us to perform
the subjective evaluation a total of three times. We hope
that the following suggestions help other researchers who
evaluate encryption approaches in the future to avoid these
traps and pitfalls, some of which are quite surprising and
show unexpected creativity:

– Image sizes: If the encrypted images that the user can
choose from differ in size, e.g., due to different face sizes,
the size of the unencrypted images may suffice to guess
the correct encrypted image with high probability. We
therefore recommend to resize the images so that they all
have the same size.

Building a Post-Compression Region-of-Interest Encryption Framework for Existing Video Surveillance Systems 19

– Face variations: When using the exact same image of a
person to create an encrypted and an unencrypted version,
the average luminance as well as high-contrast borders
in both versions may give enough clues to recognize the
encrypted face with high accuracy. We therefore recom-
mend to use slightly different pictures of the same person
for the encrypted and unencrypted version, respectively.

– File names: The naming convention of the files displayed
in the Web browser allows associating encrypted files
with their unencrypted counterparts when examining the
image properties in the browser. We therefore recom-
mend using either random file names or at least a naming
scheme from which no association between the encrypted
and unencrypted images is possible.

– File sizes: Similar to file names, the size of a file allows
excluding some encrypted images of significantly differ-
ent sizes. This makes a correct guess more likely and
increases recognition accuracy. We therefore recommend
converting the files to be displayed to a lossless format
first (like Portable Network Graphics (PNG)) to make
recognition by exclusion of file sizes harder.

In summary, beware of meta data and the clues that they give.
Otherwise, repeating evaluations may be a time consuming
endeavor for both, the evaluation designers and the users.

4 Conclusion

We presented a full-featured post-compression encryption
framework for video surveillance systems. It detects, encrypts
and signals faces with negligibly low space overhead. Due to
its modular design and parallelization efforts, our encryption
framework is able to operate in real time and with minimal
integration effort, allowing for easy deployment in existing
surveillance systems. Our evaluations show that the perfor-
mance of state-of-the-art face detectors are the main limi-
tation of our proposed framework. Despite requiring about
99% of the total runtime, the tested face detectors only find a
fraction of the faces in our evaluation sequences. This shows
that these detectors are not suitable for video surveillance
use cases. Moreover, we performed a subjective evaluation of
our proposed encryption approach which shows that it makes
face recognition harder than comparable approaches.

Acknowledgements The authors would like to thank Stefan Auer and
Alexander Bliem for their initial involvement in the region of interest
encryption implementation and their ideas for DC correction. In addi-
tion, the authors would like to thank Heinz Hofbauer for his valuable
suggestions regarding the face detection performance assessment and
the image metrics used for security evaluation.
Furthermore, the authors thank all the volunteering participants of their
face encryption survey. Moreover, the authors thank KeyLemon for pro-
viding higher data limits per time unit for batch face detection.
Portions of the research in this paper use the FERET database of facial
images collected under the FERET program, sponsored by the DOD

Counterdrug Technology Development Program Office. This work is
supported by FFG Bridge project 832082.

References

1. Auer, S., Bliem, A., Engel, D., Uhl, A., Unterweger, A.: Bitstream-
Based JPEG Encryption in Real-time. International Journal of
Digital Crime and Forensics 5(3), 1–14 (2013)

2. Bergeron, C., Lamy-Bergor, C.: Compliant selective encryption for
H.264/AVC video streams. In: Proceedings of the IEEE Workshop
on Multimedia Signal Processing, MMSP’05, pp. 1–4 (2005). DOI
10.1109/MMSP.2005.248641

3. Boult, T.E.: PICO: Privacy through invertible cryptographic obscu-
ration. In: IEEE/NFS Workshop on Computer Vision for Interac-
tive and Intelligent Environments, pp. 27–38. Lexington, KY, USA
(2005)

4. Carrillo, P., Kalva, H., Magliveras, S.: Compression Indepen-
dent Reversible Encryption for Privacy in Video Surveillance.
EURASIP Journal on Information Security 2009, 1–13 (2009)

5. Chattopadhyay, A., Boult, T.: PrivacyCam: a privacy preserving
camera using uclinux on the blackfin DSP. In: IEEE Conference
on Computer Vision and Pattern Recognition 2007 (CVPR’07), pp.
1–8. Minneapolis, MN, USA (2007)

6. Cheung, S.S., Paruchuri, J.K., Nguyen, T.P.: Managing privacy data
in pervasive camera networks. In: IEEE International Conference
on Image Processing 2008 (ICIP’08), pp. 1676–1679. San Diego,
CA, USA (2008)

7. Choi, S., Han, J.W., Cho, H.: Privacy-Preserving H.264 Video
Encryption Scheme. ETRI Journal 33(6), 935–944 (2011)

8. Dufaux, F., Ebrahimi, T.: Scrambling for Anonymous Visual Com-
munications. In: Proceedings of SPIE, Applications of Digital
Image Processing XXVIII, vol. 5909. SPIE (2005)

9. Dufaux, F., Ebrahimi, T.: Scrambling for privacy protection in
video surveillance systems. IEEE Transactions on Circuits and
Systems for Video Technology 18(8), 1168–1174 (2008). DOI
10.1109/TCSVT.2008.928225

10. Dufaux, F., Ebrahimi, T.: A framework for the validation of privacy
protection solutions in video surveillance. In: Proceedings of the
IEEE International Conference on Multimedia & Expo, ICME ’10,
pp. 66–71. IEEE, Singapore (2010)

11. Dufaux, F., Ouaret, M., Abdeljaoued, Y., Navarro, A., Vergnenegre,
F., Ebrahimi, T.: Privacy Enabling Technology for Video Surveil-
lance. In: SPIE Mobile Multimedia/Image Processing for Military
and Security Applications, Lecture Notes in Computer Science.
IEEE (2006)

12. Engel, D., Uhl, A., Unterweger, A.: Region of Interest Signalling
for Encrypted JPEG Images. In: IH&MMSec’13: Proceedings of
the 1st ACM Workshop on Information Hiding and Multimedia
Security, pp. 165–174. ACM (2013)

13. Hofbauer, H., Uhl, A.: An effective and efficient visual quality
index based on local edge gradients. In: IEEE 3rd European Work-
shop on Visual Information Processing, p. 6pp. Paris, France (2011)

14. Iqbal, R., Shahabuddin, S., Shirmohammadi, S.: Compressed-
domain spatial adaptation resilient perceptual encryption of live
H.264 video. In: 2010 10th International Conference on Informa-
tion Sciences Signal Processing and their Applications (ISSPA),
pp. 472–475 (2010)

15. ITU-T H.264: Advanced video coding for generic audiovi-
sual services (2007). http://www.itu.int/rec/T-REC-H.

264-200711-I/en

16. Jain, V., Learned-Miller, E.: Fddb: A benchmark for face detection
in unconstrained settings. Tech. Rep. UM-CS-2010-009, University
of Massachusetts, Amherst (2010). http://people.cs.umass.
edu/~elm/papers/fddb.pdf

http://www.itu.int/rec/T-REC-H.264-200711-I/en
http://www.itu.int/rec/T-REC-H.264-200711-I/en
http://people.cs.umass.edu/~elm/papers/fddb.pdf
http://people.cs.umass.edu/~elm/papers/fddb.pdf

20 Andreas Unterweger et al.

17. Kerr, D.A.: Chrominance Subsampling in Digital Images. http:
//dougkerr.net/pumpkin/articles/Subsampling.pdf

(2012)
18. Khan, M., Jeoti, V., Malik, A.: Perceptual encryption of JPEG

compressed images using DCT coefficients and splitting of DC
coefficients into bitplanes. In: 2010 International Conference on
Intelligent and Advanced Systems (ICIAS), pp. 1–6 (2010)

19. Kim, Y., Yin, S., Bae, T., Ro, Y.: A selective video encryption for
the region of interest in scalable video coding. In: Proceedings of
the TENCON 2007 - IEEE Region 10 Conference, pp. 1–4. Taipei,
Taiwan (2007)

20. Kwon, S.G., Choi, W.I., Jeon, B.: Digital video scrambling us-
ing motion vector and slice relocation. In: Proceedings of Sec-
ond International Conference of Image Analysis and Recognition,
ICIAR’05, Lecture Notes in Computer Science, vol. 3656, pp. 207–
214. Springer-Verlag, Toronto, Canada (2005)

21. Lian, S., Sun, J., Wang, Z.: A novel image encryption scheme
based-on jpeg encoding. In: Proceedings of the Eighth International
Conference on Information Visualisation 2004 (IV 2004), pp. 217–
220 (2004)

22. Lian, S., Sun, J., Zhang, D., Wang, Z.: A selective image encryption
scheme based on JPEG2000 codec. In: Y.N. K. Aizawa, S. Satoh
(eds.) Proceedings of the 5th Pacific Rim Conference on Multi-
media, Lecture Notes in Computer Science, vol. 3332, pp. 65–72.
Springer-Verlag (2004)

23. Lienhart, R., Maydt, J.: An extended set of Haar-like features for
rapid object detection. In: 2002 International Conference on Image
Processing, pp. I–900–I–903 vol.1 (2002)

24. Martinez-Ponte, I., Desurmont, X., Meessen, J., Delaigle, J.F.: Ro-
bust human face hiding ensuring privacy. In: Proceedings of the
6th International Workshop on Image Analysis for Multimedia
Interactive Services (WIAMIS’05) (2005)

25. Melle, A., Dugelay, J.L.: Scrambling Faces for Privacy Protection
Using Background Self-Similarities. In: 21st IEEE International
Conference on Image Processing (ICIP 2014). IEEE, Paris, France
(2014)

26. Newton, E., Sweeney, L., Malin, B.: Preserving privacy by de-
identifying face images. IEEE Transactions on Knowledge and
Data Engineering 17(2), 232–243 (2005)

27. Niu, X., Zhou, C., Ding, J., Yang, B.: JPEG Encryption with File
Size Preservation. In: International Conference on Intelligent Infor-
mation Hiding and Multimedia Signal Processing 2008 (IIHMSP
’08), pp. 308–311 (2008)

28. Phillips, P., Moon, H., Rizvi, S., Rauss, P.: The FERET evaluation
methodology for face-recognition algorithms. IEEE Transactions
on Pattern Analysis and Machine Intelligence 22(10), 1090–1104
(2000)

29. Phillips, P., Wechsler, H., Huang, J., Rauss, P.J.: The FERET
database and evaluation procedure for face-recognition algorithms.
Image and Vision Computing 16(5), 295–306 (1998)

30. Puech, W., Rodrigues, J.M.: Crypto-Compression of Medical Im-
ages by Selective Encryption of DCT. In: European Signal Pro-
cessing Conference 2005 (EUSIPCO’05) (2005)

31. Puech, W., Rodrigues, J.M.: Analysis and cryptanalysis of a se-
lective encryption method for JPEG images. In: WIAMIS ’07:
Proceedings of the Eight International Workshop on Image Analy-
sis for Multimedia Interactive Services. IEEE Computer Society,
Washington, DC, USA (2007). DOI http://dx.doi.org/10.1109/
WIAMIS.2007.21

32. Rahman, S.M.M., Hossain, M.A., Mouftah, H., Saddik, A.E.,
Okamoto, E.: A real-time privacy-sensitive data hiding approach
based on chaos cryptography. In: Proc. of IEEE International Con-
ference on Multimedia & Expo, pp. 72–77. Suntec City, Singapore
(2010)

33. Santana, M.C., Déniz-Suárez, O., Hernández-Sosa, D., Lorenzo,
J.: A comparison of face and facial feature detectors based on the

viola-jones general object detection framework. Machine Vision
and Applications 22(3), 481–494 (2011)

34. Senior, A., Pankanti, S., Hampapur, A., Brown, L., tian, Y.L., Ekin,
A., Connell, J., Shu, C.F., Lu, M.: Enabling Video Privacy through
Computer Vision. IEEE Security and Privacy 3(3), 50–57 (2005)

35. Seshadrinathan, K., Soundararajan, R., Bovik, A., Cormack, L.:
Study of Subjective and Objective Quality Assessment of Video.
IEEE Transactions on Image Processing 19(6), 1427–1441 (2010)

36. Sohn, H., Anzaku, E., Neve, W.D., Ro, Y.M., Plataniotis, K.: Pri-
vacy protection in video surveillance systems using scalable video
coding. In: Proceedings of the Sixth IEEE International Conference
on Advanced Video and Signal Based Surveillance, pp. 424–429.
Genova, Italy (2009)

37. Sun, Y., Wang, X., Tang, X.: Deep Convolutional Network Cascade
for Facial Point Detection. In: Proceedings of the 2013 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR
’13, pp. 3476–3483. IEEE Computer Society, Washington, DC,
USA (2013)

38. Tang, L.: Methods for encrypting and decrypting MPEG video
data efficiently. In: Proceedings of the ACM Multimedia 1996, pp.
219–229. Boston, USA (1996)

39. Tong, L., Dai, F., Zhang, Y., Li, J.: Restricted H.264/AVC video
coding for privacy region scrambling. In: 2010 17th IEEE Inter-
national Conference on Image Processing (ICIP), pp. 2089–2092
(2010)

40. Unterweger, A., Uhl, A.: Length-preserving Bit-stream-based JPEG
Encryption. In: MM&Sec’12: Proceedings of the 14th ACM Mul-
timedia and Security Workshop, pp. 85–89. ACM (2012)

41. Unterweger, A., Uhl, A.: Slice groups for post-compression region
of interest encryption in H.264/AVC and its scalable extension.
Signal Processing: Image Communication (2014). Accepted

42. Viola, P., Jones, M.: Robust Real-time Object detection. In: Inter-
national Journal of Computer Vision, vol. 57, pp. 137–154 (2001)

43. Wen, J., Severa, M., Zeng, W., Luttrell, M., Jin, W.: A format-
compliant configurable encryption framework for access control
of video. IEEE Transactions on Circuits and Systems for Video
Technology 12(6), 545–557 (2002)

44. Wu, C.P., Kuo, C.C.J.: Fast encryption methods for audiovisual
data confidentiality. In: SPIE Photonics East - Symposium on
Voice, Video, and Data Communications, vol. 4209, pp. 284–295.
Boston, MA, USA (2000)

45. Yang, B., Zhou, C.Q., Busch, C., Niu, X.M.: Transparent and per-
ceptually enhanced JPEG image encryption. In: 16th International
Conference on Digital Signal Processing, pp. 1–6 (2009)

46. Ye, Y., Zhengquan, X., Wei, L.: A Compressed Video Encryp-
tion Approach Based on Spatial Shuffling. In: 8th International
Conference on Signal Processing, vol. 4, pp. 16–20 (2006)

47. Zeng, W., Lei, S.: Efficient frequency domain selective scrambling
of digital video. IEEE Transactions on Multimedia 5(1), 118–129
(2003)

http://dougkerr.net/pumpkin/articles/Subsampling.pdf
http://dougkerr.net/pumpkin/articles/Subsampling.pdf

	Introduction
	Encryption framework
	Evaluation
	Conclusion

