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ABSTRACT
We propose a new method to encrypt baseline JPEG bit
streams by selective Huffman code word swapping and coef-
ficient value scrambling based on AES encryption. Further-
more, we show that our approach preserves the length of the
bit stream while being completely format-compliant. In con-
trast to most existing approaches, no recompression is nec-
essary as the encryption is applied directly to the bit stream.
In addition, we assess the effort required for brute-force and
known-plaintext attacks on pictures encrypted with our ap-
proach, showing that both are practically infeasible.

Categories and Subject Descriptors
I.4.2 [Image Processing and Computer Vision]: Com-
pression (Coding)—JPEG, Huffman code; E.3 [Data]: Data
Encryption—AES

General Terms
Algorithms, Security, Experimentation

Keywords
JPEG, AES, encryption, length-preserving, Huffman code

1. INTRODUCTION
The encryption of compressed images to ensure privacy

is an active research topic for a variety of different com-
pressed image and video formats. For Joint Picture Experts
Group (JPEG)-compressed images [4] in particular, several
approaches exist due to the widespread use of this image
format. While most of them require recompressing the orig-
inal data to some extent, the method proposed in this paper
operates on bit-stream level, using only swap and scramble
operations, thus being very fast.
A number of approaches have been proposed which do either
not preserve the length of the original file or break format
compliance. This includes techniques such as zig zag per-
mutation [5, 16] (which significantly increases the file size)
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and the use of permuted Huffman tables [18]. Similarly, DC
bit plane scrambling as proposed e.g. in [7] increases the
file size and is thus not length preserving as opposed to our
approach.
In terms of simple length-preserving encryption algorithms
on Discrete Cosine Transform (DCT)-based images and vide-
os, pseudo-randomly toggling DC and/or AC coefficient signs
as proposed e.g. in [12, 1] is frequently used. However, the
attack complexity for breaking such themes is significantly
lower than in our approach as we encrypt multiple bits per
coefficient instead of only one (the sign bit).
Similarly, encrypting a limited number of bits on bit-stream
level starting from the DC coefficient [13] or the high-frequen-
cy AC coefficients [14], respectively, is of lower security as
compared to the proposed approach which encrypts all coef-
ficients and additionally increases the complexity by reorder-
ing blocks. The technique of reordering all blocks within a
picture, which is used as part of our approach in a spatially
limited fashion, has already been proposed in [20], [8] and
[10] (and analysed in [17] and others). Although it increases
the total attack complexity depending on the picture size, it
does not allow for Region of Interest (RoI) encryption with-
out a significant decrease in attack complexity, as opposed
to our approach.
In terms of code-word-based techniques such as the one we
propose, only a small number approaches have been pub-
lished. Besides swapping code words of equal length be-
tween blocks for AC value histogram spreading as proposed
in [19], a method to shuffle code words with the same in-
block position between blocks exists for MPEG-4 [17] which
could also be applied to JPEG pictures. However, the latter
approach may yield non-format-compliant bit streams and
both methods are not intended to be used for RoI encryp-
tion as opposed to our approach.
Another method described in [17] encrypts multiple con-
catenated Variable-Length Code (VLC) symbols and maps
them to another string of valid VLC symbols so that the to-
tal length is preserved. Note that this approach, which has
been applied to MPEG-4 bit streams, cannot be used for
JPEG as, in the latter, each Huffman code word is followed
by a signed coefficient residual represented by a number of
bits which is encoded in the Huffman code word. Chang-
ing the code words in a length-preserving way changes the
number of coefficient bits encoded in the Huffman code word
as opposed to the actual subsequent bits in the bit stream,
making the bit stream parser get out of sync and thus break-
ing format compliance.
Note that our bit-stream-based approach is designed for en-



cryption without the need for recompression, which is useful
when there is no possibility to intercept the encoding pro-
cess. One practical use case is the encryption of pictures
from surveillance cameras, most of which send streams of
JPEG pictures (which are already encoded). Although real-
time recompression is possible with state-of-the-art hard-
ware, omitting this step may save equipment and costs.
This paper is structured as follows: In section, 2 we describe
our approach. In section 3, we give an estimation of the ef-
fort necessary for a successful attack on a picture encrypted
with our approach. Finally, we provide an outlook in section
4 before concluding the paper.

2. BIT STREAM ENCRYPTION
In baseline JPEG, 8 ·8 blocks of cosine-transformed quan-

tized AC coefficients are zig-zag scanned and run-length
coded before being Huffman coded. Hereby, the Huffman
code words only encode run-length pairs as symbols, whereas
the actual coefficient values are written directly to the bit
stream as signed residue from 0 or −2s + 1, respectively,
where s denotes the length part of the run-length symbol.
Our approach consists of three different operations. Firstly,
the order of the run-length coded symbols together with
their corresponding coefficient values (referred to as code-
word-value pairs henceforth) is permuted. Secondly, the co-
efficient value bits are scrambled and thirdly, the order of all
blocks within an Interleaved Minimum Coded Unit (iMCU)
which use the same Huffman table is permuted. Both, the
second and third operation, are described in detail at the
end of this section, while the subsequent paragraphs describe
the first operation, i.e. the permutation of the order of code-
word-value pairs.
Permutations of this order lead to a change of the order of
the zero runs in each block, thereby altering the positions of
the coefficient values within the 8 · 8 block. Figure 1 depicts
this by example.
On the top left, an examplary block with four non-zero coef-
ficient values is shown. The dots denote that the rest of the
coefficients are zero. The DC coefficient is neither changed
nor considered. On the top right, the zig-zag scanned values
of the examplary block are depicted and grouped with their
preceding zeros. Each of these groups is coded as a Huff-
man code word (black) of the run-length symbol (depicted
on top of each Huffman code word) and the coefficient value
(grey). E.g., the first coefficient (5), which is preceded by
no (i.e. 0) zeros, requires 3 bits (101) to be repesented, thus
leading to a run-length of 0/3. As the rest of the blocks’
coefficients apart from the four ones depicted are zero, an
End of Block (EOB) is signalled.
By swapping the groups of Huffman code words and coeffi-
cient values (if there is more than one group), the zero runs
and therefore the position of the coefficient values within
the block change, as depicted at the bottom of figure 1.
However, the bit stream remains format-compliant as the
exchange of code words does neither change the Huffman
codes themselves nor does it change the total number of co-
efficients. In addition, it does not change the length of the
JPEG file, thus being length-preserving.
The code-word-value pair order permutation through element-
wise reordering is derived as follows. Before processing a
JPEG file, an Advanced Encryption Standard (AES) [9] im-
plementation in Output Feedback (OFB) mode is initial-
ized with a given initialization vector and key, which can be
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Figure 1: Example of run-length permutation: The
order of Huffman coded run-length symbols and
their corresponding coefficient values is permuted,
thereby changing the position of the values in the
coefficient matrix

file- or user-dependent. It then serves as a Pseudo-Random
Number Generator (PRNG) by using n AES-encrypted out-
put bits, where 2n is the desired range of the PRNG. Note
that any cryptographic PRNG could be used here.
Code-word-value pair order permutation is then performed
by swapping the current code word and its corresponding
coefficient value at position i with the code-word-value pair
at position rand(n) where rand denotes a call to the AES-
based PRNG with an upper value bound of n and n is equal
to the number of total code-word-value pairs. For the ex-
ample in figure 1, n = 4, yielding the consumption of 2
encrypted output bits of the AES encoder per possible swap
operation.
In addition to code-word-value pair order permutation, our
approach changes the coefficients’ values in the bit stream
(grey bits in figure 1). This is done by toggling each of the
n value bits depending on whether or not the AES-based
PRNG described above returns a binary zero or one when
using one bit. Similar to the run-length order permutation,
this does not change the length of the JPEG file as the value
bits actually represent a signed residual of fixed size per code
word (see above).
Furthermore, the order of all blocks using the same Huff-
man table within an iMCU is permuted. Figure 2 shows
an example with 4:2:0 subsampling [6] where the U and the
V block use the same Huffman table (marked grey). After
the permutation, the order of U and V is switched, with the
bit stream still being format-compliant. The permutation
itself is derived as described for run-length permutations
above. Note that no code-word-value pairs are exchanged
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Figure 2: Example of block order permutation: The
order of blocks using the same Huffman code words
within an iMCU is permuted. In this example, the
Y blocks use one set of Huffman code words (white),
while both, the U and the V block, use another
(grey)

Figure 3: Example of an encrypted picture re-
gion with the proposed method (right) and the
corresponding original region (left) from a JPEG-
compressed version of the picture ”woman” from the
LIVE data base [15]

among the blocks as this would break format compliance –
only whole blocks with all their code-word-value pairs are
exchanged. Again, this does not change the length of the
JPEG file.
Figure 3 shows an example of a picture region encrypted
with our approach with an original JPEG quality of 75%.
Note that the number of possible order permutations in
blocks with few code-word-value pairs and/or small coef-
ficient values (e.g. in the area above the woman’s head) is
small, making those blocks appear nearly undistorted, i.e.
unencrypted. Conversely, the other blocks exhibit signifi-
cant distortion due to the reordering and scrambling, re-
vealing that the local encryption strength of our approach
depends on the amount of information contained in a block
as explained in more detail in the next section.
Note that although the woman’s silhouette is recognizable
in the encrypted picture, no more details (like facial charac-
teristics) can be extracted from it. This partial encryption is
due to the fact that the DC coefficients are not encrypted as
described in the next section. Although this allows creating

a picture with 1
64

th
of the orginal size out of DC coefficients,

all information contained high frequency coefficients is lost
this way without proper decryption and therefore does not
compromise the security of our approach.

3. SECURITY ANALYSIS
In order to assess the cryptographic security of our ap-

proach, its three main components are analyzed in terms of
attack complexity, i.e. the number of possible combinations
per iMCU and the probability of success for key extraction

in a known-plaintext attack. The key space depends on the
AES key size and can be up to 2256 ≈ 1077 for AES with
256 bit keys [9].
The approach described in the previous section relies on
three independent scrambling mechanisms: permuting the
order of code-word-value pairs, toggling value bits and per-
muting the order of blocks within an iMCU. Due to their
independence, the number of possible combinations can be
analyzed separately and eventually multiplied to yield the
overall number of possible combinations.
Let m denote the total number of blocks in an iMCU and let
ni denote the total number of code words in the ith block of
an iMCU. Let li,j denote the length of the jth code-word-
value pair of the ith block of an iMCU in bits. The number
of possible values (i.e. bit combinations) cv(i, j) for each
value is 2li,j , thus being

Nv =

m∏
i=1

ni∏
j=1

cv(i, j) =

m∏
i=1

nj∏
j=1

2li,j (1)

for all blocks within an iMCU.
The number of permutations prlv(i) of code-word-value pairs
of each block is ni!, where x! denotes the factorial of x. Thus,
the total number of code-word-value pair permutations is

Nrlv =

m∏
i=1

prlv(i) =

m∏
i=1

ni! (2)

for all blocks within an iMCU. Similarly, the number of
block permutations pb(x) for x blocks which use the same
Huffman code words is x!, thus being

Nb =

h∏
k=1

pb(nh(k)) =

h∏
k=1

nh(k)! (3)

for all blocks within an iMCU, where h denotes the to-
tal number of different AC Huffman tables and nh(k) is
the number of blocks using the kth Huffman table so that∑h

k=1 nh(k) = m.
In total, this yields an overall number N of possible combi-
nations per iMCU of

N = Nv ·Nrlv ·Nb =

m∏
i=1

ni∏
j=1

2li,j ·
m∏
i=1

ni! ·
h∏

k=1

nh(k)! (4)

In order to estimate the values for li,j and ni for typical
natural JPEG pictures, the reference pictures of the LIVE
data base presented in [15] have been encoded with differ-
ent quality settings (between 0 and 100% with 5% step size)
using the JPEG reference encoder. The encoded files have
then been analysed in terms of the average number of runs
per block and the average length of coefficient values.
We consider the average values to be an appropriate measure
for the following reason: Our algorithm’s attack complexity
depends on the number of code-word-value pairs within a
block, i.e. it varies with its number of non-zero coefficients.
The distribution of the latter (not depicted) reveals that
the self-information of a block with a high number of code-
word-value pairs is greater than that of a block with a small
number thereof.
We assume that the semantic self-information of a block
rougly correlates with its self-information in terms of the
number of code-word-value pairs. This assumption is sup-
ported by the fact that blocks with a small number of code-
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Figure 4: Average number of runs per block
(squares) and average coefficient value bit length
(triangles) over JPEG quality for the JPEG-
compressed LIVE reference picture set [15]

word-value pairs (e.g. 1 or 2) are very unlikely to compro-
mise the content of the whole picture, thus having a low
amount of semantic self-information. Note that semantic
self-information is hard to measure and therefore requires a
justifiable approximation. Thus, we use the average number
of code-word-value pairs to represent a block with a medium
to high amount of self-information as a practical approxima-
tion of a possibly critical block of the picture.
Figure 4 depicts the average number of runs per block and
the average length of coefficient values as functions of JPEG
quality for the reference pictures of the LIVE data base.
Both functions increase monotonically with quality, show-
ing that pictures with finer quantization contain a higher
number of runs per block and longer coefficient values. This
allows for a higher number of combinations, making an at-
tack on an iMCU harder.
Using the average values n(q) and l(q) at quality q instead
of all ni and li,j , respectively, yields a simplified equation
for the overall number N(q) of combinations dependent on
the JPEG quality q:

N(q) = 2l(q)·m·n(q) · (n(q)!)m ·
h∏

k=1

nh(k)! (5)

Using the Gamma function as an extension of the factorial
function which is only defined for natural numbered argu-
ments, N(q) can be expressed as

N(q) = 2l(q)·m·n(q) · (Γ(n(q) + 1))m ·
h∏

k=1

nh(k)! (6)

Thus, an attack on an iMCU composed of 4:2:0 subsampled
(i.e. m = 6 as entailed by the JPEG standard [4]) average
blocks compressed with JPEG quality q requires trying

N(q) = 26l(q)·n(q) · (Γ(n(q) + 1))6 · 4! · 2! (7)

combinations, if both chroma components’ AC coefficients
use the same Huffman table. For a JPEG quality of 75%
(which is the default value of the JPEG reference encoder),
this yields N(75) ≈ 1087, which is greater than the number
of possible 256 bit keys, thus making a brute-force attack on
the AES key more efficient than trying to reorder and de-
scramble the iMCU. Figure 5 illustrates this and a compar-
ison to AES’s attack complexity for different JPEG quality
values.
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Figure 5: Average attack complexity over JPEG
quality for the JPEG-compressed LIVE reference
picture set [15] for the proposed approach and AES
for comparison

Note that each iMCU can be attacked separately, thereby
possibly revealing enough information about the picture that
the rest of the picture’s iMCUs do not need to be decrypted.
This way, the total number of combinations for a full picture
does not reprent a valid metric for the number of combina-
tions to try for an attack.
Note that an attacker may eliminate some orderings of code-
word-value pairs as high values of high frequency AC co-
efficients (most of all chroma) are very unlikely to appear
in natural images [11]. This reduces the effective values of
ni and n(q), respectively. However, it is hard to quantify
the actual reduction as it depends on the picture’s content,
potentially known signal characteristics and the coefficient
distribution of the attacked iMCU’s blocks.
Regarding known-plaintext attacks, AES is considered to be
not vulnerable [3]. If an attacker has both, the original and
the encrypted JPEG picture, deriving the key from the per-
mutations and scrambled bits is nearly as hard as a brute-
force attack on the AES key itself [2] which is considered
infeasible for 256 bit keys by today’s standards.

4. FUTURE WORK
Multiple extensions of our approach are possible and re-

main future work: firstly, the DC coefficient differences of
each block could be scrambled similar to the AC coefficient
values, increasing the total number of possible combinations
to try for decryption. Secondly, blocks between different
iMCUs could be swapped as long as the corresponding blocks
in the iMCUs use a the same Huffman tables, yet increasing
the total number of possible combinations. Note that both
extensions are easy to implement and preserve the length of
the bit stream.
Finally, it is possible to use our proposed approach for RoI
encryption. iMCUs containing the RoIs can be encrypted
while the rest of the picture stays intact. Although limiting
the encryption to a set of iMCUs is trivial, signalling them
is not, if the length is to be preserved. However, if this limi-
tation is lifted, embedding the RoI information can be done
by inserting a comment segment into the bit stream which
contains a bitmap of all iMCUs where a one denotes that the
iMCU is encrypted, while a zero denotes that it is not. Such
a segment increases the file size by the marker size (2 bytes)
plus its length field (2 bytes) plus the size of the bitmap, i.e.
dniMCU

8
e bytes where niMCU denotes the number of iMCUs

in the picture.



5. CONCLUSION
We proposed a new approach to encrypt JPEG-compressed

pictures by performing swap and scramble operations on
their bit streams in a format-compliant and length-preserving
way. Furthermore, we showed the practical infeasibility of
both, brute-force and known-plaintext attacks. Given the
fact that our approach operates on bit stream level and does
not require any recompression, it can be considered faster
than existing non-length-preserving approaches with a com-
parable level of security. Additionally, our approach allows
for RoI encryption, which makes it usable for surveillance
applications.
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