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Abstract In this paper, we present variants of the Dual-Tree Complex
Wavelet Transform (DT-CWT) in order to automatically classify en-
doscopic images with respect to the Marsh classi�cation. The feature
vectors either consist of the means and standard deviations of the sub-
bands from a DT-CWT variant or of the Weibull parameter of these
subbands. To reduce the e�ects of di�erent distances and perspectives
toward the mucosa, we enhanced the scale invariance by applying the
discrete Fourier transform or the discrete cosine transform across the
scale dimension of the feature vector.
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1 Introduction

The celiac state of the duodenum is usually determined by visual inspection dur-
ing the endoscopy session followed by a biopsy of suspicious areas. The severity
of the muscosal state of the extracted tissue is de�ned according to a modi-
�ed Marsh scheme, which divides the images in four di�erent classes, Marsh-0
Marsh-3a, Marsh-3b and Marsh-3c (see Figure 1). Marsh-0 represents a healthy
duodenum with normal crypts and villi, Marsh-3a, Marsh-3b and Marsh 3c have
increased crypts and mild atrophy (3a), marked atrophy (3b) or the villi are
entirely absent (3c), respectively. Types Marsh-3a to Marsh-3c span the range of
characteristic changes caused by celiac disease, whereat Marsh-3A is the mildest
and Marsh-3c the most severe form. We distinguish between two regions of the
duodenum, the bulbus duodeni and the pars descendes.
In gastroscopic (and other types of endoscopic) imagery, mucosa texture is usu-
ally found with di�erent perspective, zoom (see Figure 1) and distortions (barrel-
type distortions of the endoscope [1]). That means that the mucosal textures
shows di�erent spatial scales, depending on the camera perspective and distance
to the mucosal wall.
Consequently, in order to design reliable computer-aided mucosa texture clas-
si�cation schemes, the scale invariance of the employed feature sets could be



(a) Marsh-3a (b) Marsh-3b (c) Marsh-3c (d) Marsh-0

Figure 1. Example images for the respective classes taken from the pars descendes
database

essential.

We consider feature vectors extracted from subbands of the Dual-Tree Com-
plex Wavelet Transform (DT-CWT), the Double Dyadic Dual-Tree Complex
Wavelet Transform (D3T-CWT) and the Quatro Dyadic Dual-Tree Complex
Wavelet Transform (D4T-CWT) [2], since wavelet transforms in general excel
by their respective multiscale properties. A classical way of computing scale in-
variant features from multi-scale methods like e.g. the DT-CWT [4,5] is to apply
the discrete Fourier transform (DFT) to statistical parameters of the subband
coe�cients' distributions (e.g. mean and standard deviation) and compute the
magnitudes of these complex values. In this work, we also use the real part of
the DFT or apply the real-valued discrete cosine transform (DCT) to coe�cient
parameters, which enhanced the results and the scale invariance in magni�cation-
endoscopy image classi�cation [2]. In addition to classical coe�cient distribution
parameters, we employ shape and scale parameters of the Weibull distribution
[3] to model the absolute values of each subband.
This paper is organized as follows. In section 2 we discuss the basics of the DT-
CWT, the D3T-CWT and the D4T-CWT. Subsequently we describe the feature
extraction with focus on achieving scale invariance with the DFT or DCT. In
section 3 we describe the experiments and present the results. Section 4 presents
the discussion of our work.

2 CWT VARIANTS AND SCALE INVARIANT
FEATURES

Kingbury's Dual-Tree Complex Wavelet Transform [6] divides an image into
six directional (15◦, 45◦, 75◦, 105◦, 135◦, 165◦) oriented subbands per level of
decomposition. The DT-CWT analyzes an image only at dyadic scales. The D3T-
CWT [4] overcomes this issue, by introducing additional levels between dyadic
scales. These additional levels between dyadic scales are generated by applying
the DT-CWT to a downscaled version of the original image using a factor of
2−0.5. We use the bicubic interpolation to scale down the image. Instead of the
levels 1, 2,. . ., L in the DT-CWT we get the levels 1, 1.5, 2,. . ., L+0.5 in the



D3T-CWT, where the integer levels correspond to the levels of the DT-CWT.
The D4T-CWT works similar to the D3T-CWT, with the di�erence that the
D4T-CWT has even more additional levels between the scales. These scales are
generated by applying the DT-CWT to the downscaled versions of the original
image using the factors
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complex wavelet transforms are their approximately shift-invariance, their direc-
tional selectivity and the very e�cient implementation scheme. In this paper, we
use two ways to generate the feature set from the DT-CWTs. The �rst and most
common approach is to compute the empirical mean (µl,d) and the empirical
standard deviation (σl,d) of the absolute values of each subband (decomposition
level l ∈ {1, . . . , L} and direction d ∈ {1, . . . , 6}) and concatenate them to one
feature vector later denoted as Classic distribution).
The second approach is to model the absolute values of each subband by a two-
parameter Weibull distribution [3]. The probability density function of a Weibull
distribution with shape parameter c and scale parameter b is given by
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The moment estimates (c, b) of the Weibull parameters of each subband are then
arranged into feature vectors like in the approach before. The feature extraction
for the D3,4T-CWTs works the same way, but the feature vector is longer because
of the non-dyadic scales.
A common approach to achieve scale-invariance for wavelet-based features is to
use the absolute values of a Discrete Fourier Transformation (DFT) applied to
extracted statistical moments. We use the method from [4,5] and apply the DFT
to the feature vector (of the DT-CWT) as follows
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for n ∈ {1, . . . , L} and d ∈ {1, . . . , 6}. The feature curve of a feature vector shifts
if input texture is scaled. DFT magnitude makes the feature values independent
of cyclic shifts of the feature curve. The DFT assumes that there is a periodic
input signal; however there is no reason why the statistical features should be
periodic. If the statistical features are close to zero at both ends, the approach
provides good scale invariance.
For the D3T-CWT, we replace L with 2L and n ∈ {1, 1.5, 2, . . . , L+0.5} and for
the D4T-CWT we replace L by 4L and n ∈ {1, 1.25, 1.5, 1.75, 2, . . . , L + 0.75}.
The new feature vector (for the DT-CWT) is
f = {|U1,1|, . . . |UL,1|, |U1,2|, . . . |UL,2|, . . . |UL,6|, |S1,1|, . . . |SL,1|, . . . |SL,6|}.
The feature vectors for the D3T-CWT and D4T-CWT are created by analogy.
It turned out that the results of the real values of the U ′s and S′s provide better
results than the absolute values [2]. Because of
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the real values of the DFT are obtained by a cosinus transform. Hence we propose
to use the Discrete Cosinus Transform (DCT). The DCT of one of our feature
vector is computed by
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for n ∈ {1, . . . , L} and d ∈ {1, . . . , 6} (and similar for S(n, d)) , where w(n) =
1/
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case, µl,d and σl,d are simply replaced by cl,d and bl,d.
Applying the DCT or DFT for the D3T-CWT works similar, but it turns out,
that the transformation leads to better results if we apply the DCT or DFT
on (µ1,d, µ2,d, . . . , µL,d) and (µ1.5,d, µ2.5,d, . . . , µL+0.5,d) separately, instead of
DCT (µ1,d, µ1.5,d . . . , , µL+0.5,d). The DCT or DFT for the D4T-CWT is done
in a similar fashion by applying them four times separately.
Further we have to note, that in case of the DFT, parts of the feature vector will
be deleted after the DFT, because the complex conjugates are redundant in the
feature vector. If we use RGB-images, than we simply concatenate the feature
vectors of each color channel.

3 EXPERIMENTAL STUDY

We employ two methods to evaluate and compare the feature sets described in
the section before: The area under the ROC curve (AUC) [7] and the overall
classi�cation accuracy.
To generate the ROC curve for k-NN classi�er we used the method described in
[7] (for k=20). We consider the 20 nearest neighbors of each image (the 20 feature
vectors with the lowest euclidean distance to the feature vector of the considered
image). We employ leave�one�out cross�validation (LOOCV) to �nd these 20
nearest neighbors for each image. We achieve the �rst point on the ROC curve
by classifying the images as positive, if one or more than one nearest neighbor of
a considered image is positive. Because for nearly every image, there is at least
one of the 20 neighbors positive (positive means that the image belongs to class
Marsh-3a, Marsh-3b or Marsh-3c), the true positive rate (TPR) (= sensitivity)
and the false positive rate (FPR) (= 1 - speci�city) will be 100 % or near to
100 %. The second point on the ROC curve is achieved by classifying an image
as positive, if two or more of the 20 nearest neighbors are positive, the third
point if three or more of the 20 nearest neighbors are positive and so on till 20.
The more positive nearest neighbors of the 20 nearest neighbors are needed to
classify an image as positive, the lower are the TPR and FPR. The last point is
achieved by classifying an image as positive, if all the 20 nearest neighbors are
positive. Because there is hardly ever one of the 20 nearest neighbors of an image
negative, the TPR and the FPR are in this case 0 % or near to 0 %. That is the
way to generate the points on the ROC curve. To be sure that the curve reaches
from the the point (0,0) (TPR=0, FPR=0) to the point (1,1) (TPR=1,FPR=1),



we add these points to the curve. The point (0,0) can be interpreted as 21 of the
the 20 nearest neighbors of an image have to be positive to classify the image as
positive. This is not possible and so the TPR and FPR are 0 %. The point (1,1)
can be interpreted as 0 or more of the 20 nearest neighbors of an image have to
be positive to classify the image as positive. This will always happens and so the
TPR and FPR will be 100 %. In Figure 2 we see two examples of ROC-curves.
The AUC is computed by trapezoidal integration,

AUC =
21∑

i=1

((TPRi ·∆FPRi) + 1/2(∆TPRi ·∆FPRi)) (5)

where

∆TPRi = TPRi−1 − TPRi, (6)
∆FPRi = FPRi−1 − FPRi, (7)

and TPRi or FPRi are those TPR or FPR, where at least i positive nearest
neighbors (out of the 20 nearest neighbors) are necessary to classify an image as
positive.

The second method is the 20-Nearest Neighbor (denoted by 20-NN) classi�er.
We already know the 20 nearest neighbors from the AUC. An image is classi�ed
as positive, if more than the half (=10) of the nearest neighbors are positive, or
as negative if more than the half of the nearest neighbors are negative. If there
are 10 positive and 10 negative nearest neighbors, then the image is classi�ed as
its nearest neighbor (1-NN classi�er). Classi�cation accuracy is de�ned as the
number of correctly classi�ed samples divided by the total number of samples.

Before decomposing the images with the CWTs, we employ two preprocess-
ing steps to improve the performance [8]. First we employ adaptive histogram
equalization using the CLAHE (contrast-limited adaptive histogram equaliza-
tion) algorithm with 8× 8 tiles and a uniform distribution for constructing the
contrast transfer function. Second, we blur the image by a Gaussian 3× 3 mask
with σ = 0.5.
The image database consists of a total of 273 bulbus duodeni and 296 pars de-
scendes images and was taken at the St. Anna's Children Hospital using a stan-
dard duodenoscope without magni�cation. In order to condense information of
the original endoscopic images, we cut out regions of interest of size 128 × 128
[8]. Table 1 lists the number of image samples per class. Tests were carried out
with 6 levels of decomposition and RGB-images. We only consider the 2-class
case.

The results for the AUC are given in Table 2. If we watch the results for the
bulbus dataset, we can see that the results with DCT or without any further
manipulation of the feature vector are similar. The results with the absolute
values of the DFT are much worse and the results with the real values of the
DFT are a little bit worse than the results with DCT or without any further



Table 1. Number of image samples per Marsh type (ground truth based on histology)

Data set Bulbus Pars
Marsh type 0 a b c 0 a b c
Number of images (4-class case) 153 45 54 21 132 42 53 69
Number of images (2-class case) 153 120 132 164

Table 2. Area under the ROC curve for the two data sets (bulbus and pars) with
features extracted from DT-CWT variants by computing the Classic or the Weibull
distribution and none or a further manipulation of the feature vectors by DFT variants
or the DCT.

Feature Classic Weibull
Manipulation non DFT abs DFT real DCT non DFT abs DFT real DCT

Bu
lb
us DT-CWT 0.97 0.82 0.96 0.98 0.97 0.78 0.95 0.97

D3T-CWT 0.98 0.81 0.96 0.98 0.98 0.78 0.97 0.98
D4T-CWT 0.98 0.83 0.96 0.98 0.98 0.80 0.96 0.99

Pa
rs DT-CWT 0.82 0.76 0.88 0.86 0.81 0.78 0.86 0.84

D3T-CWT 0.82 0.76 0.87 0.87 0.82 0.78 0.85 0.84
D4T-CWT 0.84 0.77 0.86 0.88 0.83 0.77 0.85 0.86

manipulation of the feature vector. In case of the pars descendens dataset, the
results with DCT or the real part of the DFT are distinctly better than those
without feature vector manipulation and the results with the absolute part of
the DCT are much more worse compared to the other methods. The di�erences
between the CWT-variants or the feature extraction methods (classic way or
Weibull distribution) are very small. The best results for the both datasets in
Table 2 are given in bold face numbers.

Table 3. Classi�cation accuracy in % for the 20-NN classi�er with the two data sets
(bulbus and pars) and features extracted from DT-CWT variants by computing the
Classic or the Weibull distribution and none or a further manipulation of the feature
vectors by DFT variants or the DCT.

Feature Classic Weibull
Manipulation non DFT abs DFT real DCT non DFT abs DFT real DCT

Bu
lb
us DT-CWT 94.9 74.7 91.6 94.5 93.8 72.9 91.2 92.3

D3T-CWT 94.9 74.0 92.3 94.9 94.1 70.3 93.4 95.2
D4T-CWT 94.5 79.1 92.3 94.9 94.5 74.7 91.9 95.2

Pa
rs DT-CWT 82.4 70.3 84.1 77.4 82.1 73.3 70.3 76.0

D3T-CWT 82.1 68.2 82.1 78.0 81.4 70.3 80.7 74.3
D4T-CWT 82.4 69.3 82.1 78.4 81.8 71.6 80.1 79.4



(a) (b)

Figure 2. ROC curves of the di�erent feature vector manipulation methods (normal,
DCT, DFT abs, DFT real) for the pars descendens dataset , with features extracted
from the D4T -CWT by the classic way (a) or the Weibull distribution (b).

The results for the 20-NN classi�er are given in Table 2. We can see that
the results for the bulbus dataset are similar with DCT or without any further
manipulation of the feature vector. The results with the real valued DFT are a
little bit worse than the results mentioned before. In case of the pars descendens
dataset, the results with DCT are worse than the results without any further
feature vector manipulation and the results with the real part of the DFT are in
case of the classic features similar and in case of the Weibull features worse than
the results without feature vector manipulation. The results with the absolute
part of the DFT are always worse than the other results. Once again, the results
of the di�erent CWT-variants are similar and the results of our feature exraction
methods (classic and weibull) are also similar, apart from the case with the real
valued DFT and the pars descendens dataset. The best results for each of the
both datasets in Table 3 are given in bold face numbers.

4 Discussion

It is hard to interpret these results because the AUC and the overall classi�cation
results are often contradictory. For an example let us consider the results of the
results of the DCT for the pars descendens dataset. The AUC is distinctly larger
with DCT than without feature vector manipulation, whereas the classi�cation
accuracy for the 20-NN classi�er is distinctly higher without feature vector ma-
nipulation than with DCT. If we watch the results, then it is impossible to say
if we should favor a feature vector manipulation like the DCT or the real valued
DFT or prefer no further feature vector manipulation. The advantages of a bet-
ter balancing of di�erent perspectives, zooms and distortions seems to be equal
than the drawbacks like losing scale information by making the feature vector
more scale invariant or by destroying information by the transformation. Maybe



the results of the AUC are more signi�cant than the overall classi�cation results,
because an overall classi�cation result uses only the information whether there
are more positive or negative nearest neighbors for an image, whereas the AUC
uses the information how much nearest neighbors are positive or negative.

There are small improvements of the CWT's with additional scales in between
dyadic scales (D3T-CWT, D4T-CWT) compared to the standard DT-CWT, but
because of their higher computational complexity it is questionable if the small
improvements justify their application.

The classic way and the Weibull distribution are equally suited to extract
the information from the subbands of the CWT's.
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