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Abstract. Iris recognition from surveillance-type imagery is an active
research topic in biometrics. However, iris identification in unconstrained
conditions raises many proplems related to localization and alignment,
and typically leads to degraded recognition rates. While development
has mainly focused on more robust preprocessing, this work highlights
the possibility to account for distortions at matching stage. We propose
a constrained version of the Levenshtein Distance (LD) for matching of
binary iris-codes as an alternative to the widely accepted Hamming Dis-
tance (HD) to account for iris texture distortions by e.g. segmentation
errors or pupil dilation. Constrained LD will be shown to outperform
HD-based matching on CASIA (third version) and ICE (2005 edition)
datasets. By introducing LD alignment constraints, the matching prob-
lem can be solved in O(n ·s) time and O(n+s) space with n and s being
the number of bits and shifts, respectively.

1 Introduction

Unconstrained iris recognition is a relatively new branch in iris-based identifica-
tion. It is driven by the demands to push biometric image acquisition towards
an extraction of biometric signals with the subject of interest moving or be-
ing at-a-distance from biometric sensors. Advantages of such systems comprise
better usability, higher throughput, and the ability to acquire biometric measure-
ments without required cooperation. While iris recognition in reasonably con-
strained environments provides high confidence authentication with equal error
rates (EERs) of less that 1% [1], a reduction of constraints is quite challeng-
ing. First-generation prototype iris identification systems designed for stand-off
video-based iris recognition, e.g Sarnoff’s Iris-on-the-move [2], or General Elec-
tric’s Stand-off Iris Recognition system [3], have proven the feasibility of iris
recognition from surveillance-type imagery. But also the need for better segmen-
tation techniques than usually applied in still-image iris recognition to account
for distortions like motion blur, defocusing or off-axis gaze direction has been
identified as a main issue. Challenges like the Iris Challenge Evaluation (ICE)
and Multiple Biometric Grand Challenge (MBGC) have provided standardized
datasets to aid in finding solutions to these problems.

http://dx.doi.org/10.1007/978-3-642-17289-2_45
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Most publications regarding iris recognition in unconstrained environments
aim at more sophisticated preprocessing techniques to successfully localize and
segment images of the human eye. Proença et al. [4] identify the critical role of
segmentation and observe a strong relationship between translational segmenta-
tion inaccuracies and recognition error rates. Matey et al. [5]. assess the effect
of resolution, wavelength, occlusion and gaze as the most important factors for
incorrect segmentation and give a survey of segmentation algorithms. While iris
boundaries have been modeled as circles, ellipses and more complex shapes, still
whatever model is used, the processing chain of almost all iris recognition algo-
rithms resembles Daugman’s standard approach [6] very close: After successful
determination of the inner and outer pupil centers, the iris-ring texture of a
person’s eye is unwrapped and further processed by feature extraction mod-
ules. Refinements of this model usually refer to more sophisticated generation
of noise-masks determining pixels containing eyelashes, eyelids, or other types
of distortions. The majority of feature extraction approaches extracts binary
output (iris-codes) from the obtained normalized textures [1], and employs the
fractional Hamming Distance (HD) over different bit shifts (to account for rota-
tional alignment) between iris-codes in order to determine a degree of similarity
at matching stage. Indeed very few studies have proposed new or compared dif-
ferent binary similarity and distance measures, and it is common agreement,
that HD is the best method for this task.

Similarity measure selection is a problem encountered in various fields. Cha et
al. [7] compare several binary vector similarity measures including a new variable
credit similarity measure (altering credit for zero-zero and one-one matches) for
iris biometric authentication. Their proposed metric improved and generalized
HD measures by introducing weights in order to give greater importance to
error pixels in a neighborhood of error pixels. However, in order to determine
parameters, a separate training stage is needed and the trained contributing
factor was reported to vary considerably depending on the application data.
A more exhaustive hierarchically clustered summary of binary similarity and
distance measures can be found in Choi et al. [8].

In this paper, we propose the use of the Levenshtein Distance (LD) [9] for iris
matching in order to tolerate segmentation inaccuracies and distortions caused
by the linearity of Daugman’s normalization model [6]: Each iris point is mapped
into a doubly dimensionless coordinate system to account for elastic deformation
of the iris texture. Yuan et al. [10] identified drawbacks of this iris normalization
model and confirm claims in [11] that a linear stretching seems not enough to
catch the complex nature of pupil dilation. The novelty of our aproach lies in
considering deformation at the matching - and not at normalization - stage. We
perceive a significant improvement of recognition accuracy using this method
compared to traditional HD at only moderate additional time overhead. Im-
provements to common implementations of LD computation, i.e. alignment con-
straints, are suggested and evaluated for two different open iris databases with
respect to recognition accuracy and time complexity. As a by-product of our
evaluation, we also highlight the impact of shifts on iris recognition accuracy.
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The remainder of this paper is structured as follows: An introduction to LD
and its application in iris recognition is given in Sect. 2. Experimental setup,
employed feature extraction algorithms and datasets are presented in Sect. 3.
Evaluations are discussed in Sect. 4 and Sect. 5 concludes this work.

2 Levenshtein Distance in Iris Recognition

The Levenshtein Distance dates back to the 1960s [9] and is a well-known clas-
sical distance measure in pattern recognition for sequences of possibly different
length. The idea to use LD for biometrics is not new, e.g. Schimke et al. [12]
employ an adapted version of LD based on event-string modelling and a nearest
neighbor classifier for online signature verification. In this work, we assess the
usability of LD for iris recognition in order to cope with imperfect normalization
of iris textures. We employ LD at the matching stage to enhance iris recognition
accuracy, as outlined in Fig. 1.
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Fig. 1. System Architecture: the basic operation mode of the proposed system.

The inherent idea of LD is to employ inexact matching allowing a sequence to
exhibit additional or lack parts of another similar sequence. Similarity is defined
by an optimal transformation of one sequence into the other by three operations:
INS (insert), DEL (delete) and SUB (substitute). Each operation is associated
with a cost, cINS and cDEL are scalar values, cSUB (a, b) is a function depend-
ing on the symbols a, b ∈ {0, 1} at specific positions of the two sequences to
be compared (in iris recognition we consider binary sequences only). Typically,
cSUB (a, b) = 0⇔ a = b for symbol b replacing a. The LD is also called Edit Dis-
tance and can be calculated by Dynamic Time Warping (DTW) [13], a dynamic
programming algorithm to align the sequences. Let A ∈ {0, 1}m and B ∈ {0, 1}n
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be binary sequences of length m and n (as we apply LD to iris-codes of fixed
length, typically m = n holds). DTW uses a matrix D of size (m+ 1)× (n+ 1),
which is incrementally computed:

D[0, 0] := 0 (1)

∀i > 0 : D[i, 0] := D[i− 1, 0] + cDEL, (2)

∀j > 0 : D[0, j] := D[0, j − 1] + cINS , (3)

∀i, j > 0 : D[i, j] := min(D[i− 1, j] + cDEL,

D[i, j − 1] + cINS ,

D[i− 1, j − 1] + cSUB (A[i], B[j])). (4)

The invariant maintained throughout the algorithm is, that the subsequence
A[1..i] can be transformed into B[1..j] using a minimum of D[i, j] operations.
The Levenshtein Distance of A and B is LD(A,B) := D(m,n). A traceback al-
gorithm is used to find the optimal alignment, i.e. an alignment path results from
joining nodes and depending on the local direction an optimal (not necessary
unique) sequence of transformation operations is derived, see Fig. 1. However,
as the matching stage needs the distance measure only, we can avoid a storage
of the entire matrix and reduce space complexity from O(n2) (assuming n = m
in our application domain) to O(n) with column-wise computation. Still, time
complexity stays at O(n2) with this modification, which is not useful for com-
mercial applications. The traditional HD dissimilarity measure needs O(n · s)
time and O(n + s) space with s being the number of bit shifts, which is usually
a very small constant number.

In order to further reduce LD time requirements, we define additional con-
straints: Computations are restricted to an evaluation region S on matrix D
shaped as a stripe from top-left to bottom-right (see Fig. 1), i.e. technically we
define S := {(x, y) : |x− y| ≤ s} and set:

∀(i, j) /∈ S : D[i, j] = 0. (5)

By this modification, we enforce a maximum local deviation of the patterns by
s shifts. Like in the previously refined implementation, we keep track of the
last column only. The resulting final algorithm solves the matching problem in
O(n · s) time and O(n + s) space with n and s being the number of bits and
shifts, respectively. It is worth to notice, that the last optimization does no longer
deliver the exact Levenshtein Distance. However, it is a very natural constraint
to give an upper limit on relative shifts, since it should not be too difficult to
get estimators for eye tilt (e.g. localization of eye lids).

Finally, in order to obtain a normalized distance value, we note that for
m = n the condition LD(A,B) ≤ HD(A,B) holds, and we therefore divide the
result by the code size n. Note, that for LD the triangle inequality holds. The
advantage of LD over traditional HD lies in its ability of non-linear alignment.
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For this reason, it is widely accepted in computational biology, e.g. to estimate
alignments of DNA.

3 Experimental Setup

In order to test the performance of the proposed iris matching technique, we
employ existing iris recognition systems and replace the iris matching module by
the implementation outlined in Sect. 2, see Fig. 1. The transparent application in
existing iris biometric solutions (no re-enrollment of the user gallery is necessary)
is a key advantage of the proposed approach. All used system components as
well as employed biometric databases are described in more detail as follows.

3.1 Databases

For experimental evaluation we employ two different iris databases:

– CASIA: we select all 1307 left eyes out of a collection of 2655 NIR illuminated
indoor images with 320×280 pixel resolution of the open CASIA-V3-Interval1

iris database. This dataset reflects performance on high quality input.
– ICE : this dataset contains all 1425 right eyes out of 2953 NIR illuminated

images with 640× 480 pixel resolution of the open ICE-20052 iris database.
We selected this test set for lower quality input, as some images have notice-
able blur and occlusions.

In case of the CASIA dataset, 4028 genuine (intra-class) and 15576 imposter
(inter-class) comparisons were executed, for the ICE database results refer to
12214 genuine and 7626 imposter comparisons, i.e. we matched all genuine pairs,
but only the first template between users.

3.2 Normalization

Depending on the type of input data, we employ two different iris normalization
techniques. For the processing of CASIA images, we use a custom normalization
software applying Canny edge detection and Hough circle detection to localize
inner and outer pupil boundaries. This localization is followed by Daugman’s
rubber sheet model [6] using a circular boundary model to transform the iris
texture into a rectangular 512 × 64 pixel area. Finally, the texture is enhanced
using blockwise brightness estimation.

While the first method was tuned to deliver accurate segmentation for the
CASIA dataset, we obtained the open iris recognition software OSIRIS3 (version
2.01) in order to segment images of the ICE dataset (OSIRIS also comes with an

1 The Center of Biometrics and Security Research, CASIA Iris Image Database,
http://www.sinobiometrics.com

2 National Institute of Standards and Technology, Iris Challenge Evaluation (ICE)
2005, http://iris.nist.gov/ice/

3 BioSecure Project, Open Source for IRIS reference system, http://svnext.it-
sudparis.eu/svnview2-eph/ref syst/Iris Osiris
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official evaluation on ICE-2005). The OSIRIS segmentation module uses again
a cicular Hough transform, but also an active contour approach to detect the
contours of iris and pupil. In order to get similar input textures for the feature
extraction module, we employed adaptive histogram equalization after normal-
ization on the 512× 64 pixel sized textures with a window size of 32 pixels.

3.3 Feature extraction

The first feature to be extracted is a custom implementation of the iris-code
version by Ma et al. [14]. This algorithm extracts 10 one-dimensional horizontal
signals averaged from pixels of 5 adjacent rows from the upper 50 pixel rows.
Using dyadic wavelet transform, each of the 10 signals is analyzed, and from
a total of 20 subbands (2 fixed bands per signal), local minima and maxima
above a threshold define alternation points where the bitcode changes between
successions of 0 and 1 bits. Finally, all 1024 bits per signal are concatenated and
yield the resulting 10240 bits code.

The second applied feature is based on row-wise convolution with Log-Gabor
filters, following an implementation by Masek4 resembling Daugman’s feature
extraction approach. Again, rows are averaged to form 10 signals of 512 pix-
els each. The bit-code results from quantizing the phase angle of the complex
response with two bits and sticking together all 10240 bits.

3.4 Matching and Decision

In order to assess the performance of our adapted version of the Levenshtein Dis-
tance (Constrained LD), we compare its recognition accuracy as well as average
matching time requirements with the traditional Hamming Distance (Minimum
HD), as used in commercial systems today [1]. The latter employs the fractional
HD (i.e., the number of disagreeing bits of both codes divided by the total num-
ber of bits) over a number of bit shifts, and returns the minimum as a degree
of dissimilarity between iris codes. Finally, the decision module compares the
outcome with a threshold to classify the match as either genuine or imposter.

4 Experimental Results

The following subsections will cover each a specific research question. Unless
otherwise noted, LD refers to the in Sect. 2 introduced constrained version in
our tests and HD refers to the minimum fractional HD over a fixed number of
shifts. Experiments are carried out in verification mode using the equal error rate
(EER) and receiver operating characteristics (ROC) as the main performance
indicators.

4 L. Masek: Recognition of Human Iris Patterns for Biometric Identification, Master’s
thesis, University of Western Australia, 2003
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4.1 Does LD enhance iris recognition accuracy compared to
traditional minimum HD?

We have tested Constrained LD and Minimum HD on CASIA and ICE datasets
using two different algorithms: Ma and Masek. From the obtained EERs sum-
marized in Table 1 we can see, that LD clearly outperforms HD in all tested
combinations. All rates refer to a fixed maximum amount of 20 shifts in or-
der to ensure a fair comparison between LD and HD with respect to rotational
tolerance. However, it seems that the feature extraction algorithm influences
the amount of improvement. For Ma, relative EER improvements were more
pronounced than for Masek on both databases: up to 40 percent improvement
(from 8.6% to 4.96% EER in case of ICE ) could be achieved. A possible expla-
nation of this behaviour can be found in the manner this algorithm defines its
iris-code bits: the alternating zero and one chains seem ideally suited for non-
linear LD alignment. Still, even for Masek relative EER improvements of up to
10 percent (from 6.08% to 5.49% EER in case of ICE ) could be reported for LD.
It is remarkable that even in case of very high HD accuracy on CASIA (0.58%
EER for Ma, 0.89% EER for Masek) LD can push forward recognition rates (to
0.44% EER for Ma, 0.81% for Masek). Whereas the EER reflects only a single
point of operation, the better performance of LD over HD becomes even more
visible, if we take a closer look at the ROC curves for ICE and CASIA datasets
in Figs. 2, 3. Almost all LD curves are clearly superior to HD, except the one

Table 1. EERs of HD versus LD (20
shifts).

EER ICE CASIA
(%) Ma Masek Ma Masek

Minimum HD 8.60 6.08 0.58 0.89

Constrained LD 4.96 5.49 0.44 0.81

Table 2. Average Matching Times of
HD versus LD (20 shifts).

AMT ICE CASIA
(ms) Ma Masek Ma Masek

Minimum HD 0.73 0.73 0.99 0.97

Constrained LD 4.07 3.71 4.04 3.66
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for Ma on CASIA, which also depends on the selected maximum shift count, as
will be investigated in the next research question. Table 2 lists matching times.

4.2 Which tradeoff exists between the maximum number of shifts,
time complexity and recognition accuracy?

From Table 2 we can see, that LD requires additional matching time, however
it theoretically lies in the same complexity class like HD. LD is on average 4-5
times slower than HD over different combinations of algorithms and datasets
(results refer to the execution on a single processor at 2.8 GHz). While a single
match using HD takes less than 1 ms, LD-based matching needs approximately
4 ms in case of 20 bit shifts. While assessing the performance of LD we noticed,
that the number of shifts has an important impact on both recognition accuracy
and certainly average matching time (due to additional comparisons). From the
implementations it is easy to derive, that for both HD and LD in case of small
bit shifts, doubling the number of shifts also results in approximately twice as
much matching time. From the Figs. 4, 5 we can see, how larger maximum shifts
cause inter-class (imposter) as well as intra-class (genuine) distributions to shift
to the left, for both LD and HD.

The number of shifts is essential in order to cope with angular displacement
of two iris textures to be matched. Furthermore, as shifts should be executed on
iris-codes and not on iris-textures in order to avoid multiple extraction of features
with resulting time overhead, it is important to consider the bit sampling rate
with respect to texture pixels. In our tested algorithms the number of bits per
texture row is equal to the number of pixels per row. A bit shift of one thus
corresponds with shifting the texture a single pixel to the left or right. Fig.
6 illustrates the impact of shift count on recognition accuracy for the CASIA
dataset. It is worth noticing, that for all algorithms a significant improvement of
performance is achieved at around 7 and 14 shifts. Furthermore, we can see that
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for very few bit shifts, LD performs worse than HD, which makes sense, since
in order to benefit from the better non-linear alignment, we need at least an
amount of shifts in the order of angular displacement of genuine pairs. Finally,
Fig. 7 illustrates the resulting tradeoff between EER and average matching time.

5 Conclusion

In this paper we presented an adapted version of LD as a novel matching tech-
nique for iris recognition. Mislocation of pupil and iris centers cause significant
and irrecoverable mapping distortions, which can not be overcome with simple
HD-based matching. Even with accurate segmentation algorithms, inaccuracies
are likely to occurr in unconstrained biometrics. Due to its transparent integra-
tion, LD is a useful matching technique to tolerate non-linear deformations of iris
textures and has been shown to reduce recognition rates drastically (from 8.6%
to 4.96% EER for Ma in case of the challenging ICE dataset). Given a sufficient
number of bit shifts, all tested algorithms and datasets reported a superior per-
formance of LD over HD. With the introduction of alignment constraints, LD is
only 4-5 times slower than HD with an equal amount of shifts. Existing work in
unconstrained iris biometrics has mainly concentrated on normalization issues
so far, while alternative matching techniques have largely been neglected. We
demonstrated and highlighted the ability to tolerate distortions at the matching
stage in this work.
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