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Complex Wavelet Transform Variants and Scale Invariance in
Magnification-Endoscopy Image Classification

Michael Hifner, Andreas Uhl, Andreas Vécsei, Georg Wimmer, and Friedrich Wrba

Abstract— In this paper, scale invariant features are extracted
from complex wavelet transform variants in order to classify
high-magnification colon endoscopy imagery with respect to the
pit pattern scheme. Superior results as compared to techniques
described previously in literature are reported.

I. INTRODUCTION

In colonoscopic (and other types of endoscopic) imagery,
mucosa texture usually is found at different scales. This
is due to varying distance and perspective towards the
colon wall and eventually different zoom factors applied
in the endoscope. Consequently, in order to design reliable
computer-aided mucosa texture classification schemes, the
scale invariance of the employed feature sets is essential.

We consider feature vectors extracted from subbands of
the Dual-Tree Complex Wavelet Transform (DT-CWT) and
the Double Dyadic Dual-Tree Complex Wavelet Transform
(D3T-CWT), since wavelet transforms in general excel by
their respective multiscale properties. The classical way of
computing scale invariant features from these transform
domains [4], [7] is to apply the Discrete Fourier Transform
(DFT) to statistical parameters of the subband coefficients’
distributions (e.g. mean and standard deviation).

In this work, we introduce the Quatro Dyadic Dual-Tree
Complex Wavelet Transform (D*T-CWT) and propose to
apply the real-valued Discrete Cosine Transform (DCT) to
coefficient parameters instead of the complex-valued DFT. In
addition to classical coefficient distribution parameters, we
employ shape and scale parameters of the Weibull distribu-
tion to construct scale invariant features by applying DCT
and DFT, respectively.

This paper is organized as follows. In section II, we briefly
introduce the pit-pattern classification scheme. Section III
discusses the basics of the DT-CWT, the D3T-CWT and the
D*T-CWT. Subsequently we describe the feature extraction
with focus on achieving scale invariance with the DCT or
DFT. In section IV we describe the experiments and present
the results. Section V presents the conclusion of our work
and an outlook on further research.

II. PIT-PATTERN CLASSIFICATION

Polyps of the colon are a frequent finding and are usually
divided into metaplastic, adenomatous and malignant. Since
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the resection of all polyps is rather time-consuming, it is
imperative that those polyps which warrant resection can
be distinguished. Furthermore, polypectomy of metaplastic
lesions is unnecessary and removal of invasive cancer may
be hazardous. To obtain images of the polyp’s surface which
are as detailed as possible a magnifying colonoscope can be
used. This type of colonoscope provides images which are
up to 150-fold magnified and thus are very detailed as they
uncover the fine surface structure of the mucosa as well as
small lesions. In the research work of Kudo [3], the ma-
croscopic appearence of colorectal polyps is systematically
described and results in the so called pit-pattern classification
scheme, which divides the mucosal crypt patterns into five
types (pit-patterns I-V, see Figure 1). It has been shown that
pit patterns can be observed well using a high-magnification
endoscope and thus this combination can be used to create
a computer-assisted diagnosis system [2]. While types I
and II are characteristic of benign lesions and represent
normal colon mucosa or hyperplastic polyps (non-neoplastic
lesions), types III to V represent neoplastic, adenomatous and
carcinomatous structures. Our classification problem can be
stated as follows: the problem of differentiating pit-patterns I
and II from III-L, III-S, IV and V will be denoted as the two-
class problem (non-neoplastic vs. neoplastic), whereas the
more complex and detailed discrimination of all pit-patterns
Ito V will be denoted as the six-class problem. Note, that pit-
type III is subdevided into types III-S/III-L and thus accounts
for two classes.

(c) II-S

(d) II-L (e) IV Vv

Fig. 1. Example images for the respective classes taken from the image
database used.

III. CWT VARIANTS AND SCALE INVARIANT FEATURES

Kingbury’s Dual-Tree Complex Wavelet Transform [1]
has already been sucessfully applied in the context of pit



pattern classification [2]. The DT-CWT devides an image
into six directional (15°, 45°, 75°, 105°, 135°, 165°) oriented
subbands per level of decomposition. The DT-CWT analyses
an image only at dyadic scales. The D3*T-CWT [5] overcomes
this issue, by introducing additional levels between dyadic
scales. These additional levels between dyadic scales are
generated by applying the DT-CWT to a scaled-down version
of the original image using a factor of 2795, We use the
bicubic interpolation to scale down the image. Instead of
the levels 1, 2,..., L in the DT-CWT we get the levels 1,
1.5, 2,..., L+0.5 in the D3T-CWT, where the integer levels
correspond to the levels of the DT-CWT (Fig. 2).

Fig. 2.

The D*T-CWT works similar to the D3T-CWT, with the
difference that the D*T-CWT has even more additional levels
between the scales. These scales are generated by applying
the DT-CWT to the scaled-down versions of the original
image using the factors /3/8, \/1/7’ and \/?)/7 The ad-
vantages of these three complex wavelet transforms are their
approximately shift-invariance, their directional selectivity
and the very efficient implementation scheme by four (eight)
[sixteen] parallel 2-D DWT at the DT-CWT (D3T-CWT)
[D*T-CWT]. All of these properties come at the very low
cost of four times (six times (444 x (1/1/2)?)) [10.5 times
(4+4x(3/8+1/2+ 3/4))] redundancy in 2-D in the DT-
CWT (D*T-CWT) [D*T-CWT].

In this paper, we use two ways to generate the feature set
from the DT-CWTs. The first and most common approach
is to compute the empirical mean and the empirical stan-
dard deviation of the absolute values of each subband and
concatenate them to one feature vector (classic distribution):

The process of decomposing an image using the DST-CWT
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where |z; 4(¢)| denotes the absulute value of the coefficients
in subband (I,d) and N;,4 denotes the total number of
coefficients in subband (I, d) (at decomposition level [ and
direction d € {1,...,6}).

The second approach is to model the absolute values of each
subband by a two-parameter Weibull distribution [2]. The
probability density function of a Weibull distribution with
shape parameter ¢ and scale parameter b is given by
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The moment estimates (c,b) of the Weibull parameters of
each subband are than arranged into feature vectors like in
the approach before. The feature extraction for the D34T-
CWTs works the same way, but the feature vector is longer
because of the non-dyadic scales. For example, the feature
vector of a RGB-image using the DT-CWT with five de-
composition levels has length 5 x 6 x 2 x 3 = 180 (5 levels
(scales), 6 directions, 2 (mean and standard deviation), 3
color channels). In case of the D3T-CWT the feature vectors
length is 360.

A common approach to achieve scale-invariance for
wavelet-based features is to use the absolute values of a
Discrete Fourier Transformation (DFT) applied to extracted
statistical moments. We use the method from [4], [7] and
apply the DFT to the feature vector (of the DT-CWT) as
follows
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For the D3T-CWT, we replace L with 2L and n €
{1,1.5,2,..., L + 0.5} and for the D*T-CWT we replace
Lby 4L and n € {1,1.25,1.5,1.75,2, ..., L + 0.75}. The
new feature vector (for the DT-CWT) is
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The feature vectors for the D3T-CWT and D*T-CWT are
created by analogy.

Contrasting to proposals in literature [4] it turned out that the
absolute values of the U’s and S’s degrade the pit-pattern
classsification results, whereas the real values ot the U’s and
S’s enhance the results. Because of
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the real values of the DFT are obtained by a cosinus
transform. Hence we propose to use the Discrete Cosinus

Transform (DCT). The DCT of one of our feature vector is
computed by
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forne{l,...,L} and d € {1,...,6}, where
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\ Pit Type H 1 \ i \ 1I-L \ 1I1-S \ v \ \Y \
2 class 178 449
6 class 114 [ 64 18 [ 119 [ 232 [ 80

TABLE I
NUMBER OF IMAGE SAMPLES PER PIT-PATTERN CLASS (GROUND TRUTH)

For the Weibull parameter case, (4 and o0; 4 are simply
replaced by ¢; ¢ and by 4.

Applying the DCT or DFT for the D3T-CWT works
similar, but it turns out, that the transformation leads
to better results if we apply the DCT or DFT on
(B1,ds H2,d5 - - s por,a) and (p1.5.d, 42.5,ds - - - 5 JL40.5,d) S€-
perately, instead of DCT(p1,4,41.5d-- -, [L+0.5,d). The
DCT or DFT for the D*T-CWT is done in a similar fashion
by applying them four times seperatly.

Further we have to note, that in case of the DFT, parts of
the feature vector will be deleted after the DFT, because the
complex conjugates are redundant in the feature vector.

IV. EXPERIMENTAL STUDY
A. Experimental Settings

We employ a simple 1-Nearest Neighor (dennoted by 1-
NN) classifier, which uses the Euclidean distance to measure
the distance between two d-dimensional feature vectors u
and v € R? in order to give more emphasis to the quality
of the extracted features than to the classifier. Classification
accuracy is defined as the number of correctly classified
samples devided by the total number of samples. We employ
leave-one-out crossvalidation (LOOCV) to reliably estimate
classification accuracy.

Euclidian distance is very sensitive to large differences in
the numerical range of single features. This is especially
important in case of the Weibull parameters, since the range
of scale and shape differs significantly. The solution of this
problem is to normalize the features of each feature vector.
Given our d-dimensional training samples vq,...,v,, the
normalization formula for the m-th element of the j-th
feature vector is defined by
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where vp,,s,, denote the sample mean and the sample
variance of the m-th feature. In this way we obtain re-scaled
features with zero-mean and unit standard deviation. Now
each feature contributes equally to the calculation of the
metric. If we apply the DCT or DFT, the range of the feature-
values increases and we re-apply the normalization a second
time.
Our image database consists of a total of 627 images,
acquired between the years 2005 and 2008 at the Department
of Gastroenterology and Hepatology (Medical University of
Vienna) using a zoom-endoscope (Olympus Evis Excera CF-
Q160ZI/L) with a magnification factor of 150. In order to
condense information of the original endoscopic images, we
cut out regions of interest of size 312 x 312 and scaled them
to a size of 256 x 256. Table I lists the number of image
samples per class.

Before decomposing the images with the CWTs, we first
employ adaptive histogram equalization using the CLA-
HE (contrast-limited adaptive histogram equalization) [6]
algorithm with 8 x 8 tiles and a uniform distribution for
constructing the contrast transfer function. Second, we blur
the image by a Gaussian 3 x 3 mask with ¢ = 0.5.

B. Experimental Results

Tests were made with 4, 5 and 6 levels of decomposition
and with grayscale- and RGB-images. In most cases the
best results were obtained with 6 levels of decomposition
of RGB-images and so only these results are presented. The
best results in the tables are given in bold face numbers.
Table II shows a comparison between the DT-CWT variants,
results with DCT being applied are given in parantheses().

[ Features || 2-class | 6-class |
Classic ‘Weibull Classic Weibull
DT-CWT 98.3 (98.4) | 98.4 (98.6) 92.3 (95.9) | 91.2 (90.3)
D3T-CWT 98.3 (99.2) | 98.4 (98.4) 92.2 (95.7) 92.3 (93)
DIT-CWT 98.4 (99.2) | 98.6 (98.7) 92.3 (94.4) | 92.5 (93.5)
TABLE II

CLASSIFICATION ACCURACY IN % WITHOUT (AND WITH) DCT.

There are no big differences among DT-CWT, the D3T-

CWT and the D*T-CWT, if we do not employ the DCT. We
can also see, that the DCT distinctly enhances the results
of the classic distribution (especially in the 6-class case),
whereas the results of the Weibull parameters nearly remain
the same. The D3T-CWT and the D*T-CWT are slightly
superior to the DT-CWT, especially in the Weibull case.
In Table III we display the results when using the DFT
instead of the DCT. The results for applying the absolute
values of the DFT are put in parentheses. We see that the
results of the real DFT values are sometimes even better than
those of the DCT (“Classic” case, see Table II) in contrast
to the absolute values, which are really bad.

[ Features ] 2-class [ 6-class |
Classic Weibull Classic Weibull
DT-CWT 98.9 (95.5) | 98.3 (89.2) 95.7 (86) 89.8 (71.1)
D3T-CWT 99.4 (95.1) | 98.3 (90.3) 96.2 (87.4) | 91.9 (76.6)
DT-CWT 99 (94.9) 98,4 (91.4) 95.5 (85.5) 92 (79.4)
TABLE III
CLASSIFICATION ACCURACY IN % FOR REAL (AND ABSOLUTE) DFT
VALUES.

It seems that the intended improvements with respect to
scale invariance do not enhance the classification results
significantly, which may be partly due to the nature of the
magnification-endoscopy image set (fixed zoom factor, small
distance to colon wall and corresponding small amount of
perspective changes). In order to give more emphasis to the
scale invariance aspect, we crop quadratic images from the
middle of the original images (sizes 180, 208, and 232)
and resize them to the size of the original image (256) per
bicubic interpolation. Now we fuse the original images and



the resized ones of a single size into a new artificial dataset.
We classify these 1254 images by the 1-NN classifier, but as
nearest neighbors for the original images only resized images
are accepted and for the resized images only the original
images are accepted as nearest neighbors. Additionally, for
any of these 1254 images, the according resized or original
image is not accepted as nearest neighbor, although we count
how often this would happen (the values given in brackets
in Tables V and VI).

Table IV shows the results of the two class case (results
with DCT are again given in parentheses, the size, e.g. 208,
represents the size of the cropped images before resizing).
In case of mean and standard deviation (“classic”), applying
the DCT improves the results slightly in all cases. For the
Weibull parameters, this is also the case except for the
smallest version of the resized images (180). With respect
to the DT-CWT variants, at least all the best results (given
in bold face) are improving moderately the more in-between
scales are considered.
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TABLE IV

OVERALL CLASSIFICATION ACCURACY IN % FOR THE 2-CLASS CASE
FOR DIFFERENTLY SCALED DATASETS.

In Table V we display the results of the 6-class case. We
note that the DCT again enhances scale invarince in case
of the classic parameters more distinctively as in case of the
Weibull parameters, where in the case of the smallest images
the results without DCT are superior. When considering the
different DT-CWT variants we also see, that the D3T-CWT
and D*T-CWT provide more scale invariance since especially
for the two smaller images sizes, the best results improve the
more in-between scales are used. It should also be noted that
the Weibull parameters provide clearly better scale invariance
compared to the classic parameters for these image sizes.

| size [ 180 [ 208 [ 22
Classic 380) | 64(18) | 88.1(260)
Classic (DCT) || 50.6 (2) | 839 (57) | 92.5 (482)
DT-CWT  —yiburt 652 (0) | S4.1(148) | S8.1(686)
Weibull (DCT) || 63.4 (0) | 87.4 (154) | 89.4 (749)
Classic 362 () | 7703 | 90.1 @99
, Classic (DCT) || 52.4 (2) | 884 (110) | 92.4 (718)
3
D TCWT —yeibunt 745 (6) | 884 (217) | 90 (904)
Weibull (DCT) || 70.8(0) | 90 (207) | 91.8 (911)
Classic 3B70) | 8029 | 903 632
. Classic (DCT) || 523 (2) | 88.6 (136) | 92.2 (832)
DYT-CWT I geipur 762 (1) | 89.6 (293) | 915 (1000)
Weibull (DCT) || 71.4 (14) | 91.4 (254) | 92.2 (1009)
TABLE V

CLASSIFICATION ACCURACY IN % FOR THE 6-CLASS CASE FOR
DIFFERENTLY SCALED DATASETS

In Table VI we present the results when applying the

two DFT variants to the fused datasets. We can see that the
DFT degrades scale invariance as compared to the DCT case
significantly for both feature set variants. Especially when
using the absosolute value, results are very poor.

For these results, the D*T-CWT is more scale invariant than
the D3T-CWT and both are clearly more scale invariant than
the DT-CWT.

‘ size H 180 ‘ 208 ‘ 232 ‘
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TABLE VI

CLASSIFICATION ACCURACY IN % FOR THE 6-CLASS CASE USING DFT
ON THE CLASSIC PARAMETERS.

V. CONCLUSIONS

We have shown that applying the DCT instead of the DFT
enhances scale invariance properties of the resulting feature
sets in many cases. Using Weibull distribution parameters
have turned out to be highly beneficial when scale invariance
properties are important, however, the potential of improve-
ment by applying a DCT to feature vectores of this type
is much smaller compared to the classical parameters mean
and standard deviation. We have found improvements with
respect to scale invariance for the D*T-CWT, but given the
significantly higher computational complexity and feature set
size, it is questionable if the small improvements justify its
employment.

In future work, we will apply the proposed feature sets
to endoscopic imagery where scale invariance properties are
more important per se.
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