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Personal identification using Eigenfeet, Ballprint and Foot geometry
biometrics

Andreas Uhl and Peter Wild

Abstract— This paper presents a new approach for personal
identification using foot-biometric features based on Eigenfeet,
local ridge characteristics and shape geometry. Due to the
immutability of personal biometric features questions regarding
privacy issues arise, when e.g. fingerprints are compromised.
For niche applications, employing footprint-based authentica-
tion might bear enough security without the drawback of rely-
ing on sensitive data demanded by high-security applications.
Part one of this paper outlines origins, fields of application
and proposed system setup. After an introduction to employed
normalization and feature extraction steps we discuss specific
characteristics of foot biometrics compared to traditional hand
and face-based techniques. Experimental results of all three
employed biometric matchers are given and analyzed in part
two. Finally, we present a summary of observed results.

I. INTRODUCTION

Recognizing people is fundamental to many daily actions
within our society and biometric research is growing rapidly.
However, while common physiological biometrics used in
access control systems rely on face, fingerprint, hand geom-
etry and iris features [1], [2], foot biometry is still in the
early stages of research. Starting with forensic applications
by Kennedy [3] using inked barefoot impressions to extract
38 local geometrical features, there has been ongoing work in
foot biometrics. A scheme operating on pressure distribution
data of 10 male feet using simple Euclidian distance between
footprints was introduced by Nakajima et al. [4] achieving
recognition rates of 85%. More recent work concentrates on
static foot shape and body posture [5] (97.8% recognition
rate examining 5 subjects) and dynamic footprint-based
recognition using Hidden Markov Models [6] (80% correctly
classified samples of 11 subjects). Clearly, commercial appli-
cations demand higher accuracy and prospective results for
larger population.

We try to improve existing recognition rates comparing
three foot-biometric features which can be acquired from
greyscale foot images alone, namely:

• Eigenfeet features (corresponding to Eigenfaces [7] in
traditional face recognition) in the principal component
subspace for recognition of both shape and textural
information;

• minutiae-based ballprint features employing different
techniques used in fingerprint verification systems; and

• geometrical information focusing on characteristics
such as local foot widths.
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The application of traditional shape and skin texture bio-
metric measurements of the human hand (such as [8], [9])
to counterparts in foot biometrics is considered complicated
due to (a) close-fitting toes, (b) absence of typical expressive
lines in footprints and (c) noisy creases in rotated footprints.

Tradeoffs between accuracy and human-friendliness are
crucial for the design of biometric systems and it is clear,
that footprint-based identification is obviously not a useful
alternative in many cases (because of e.g. non-habituated en-
vironment, user-unfriendly data acquisition or uncomfortable
associations at the acquisition step). But personal recognition
using feet might be the biometric identifier of choice when
three conditions hold:

• the environment guarantees the clean and comfortable
capture of footprints,

• no high security is demanded, and
• users claim for non-invasive identifiers in the sense of

privacy issues.

If these prerequisites are met, foot biometry might even be
implemented as a covert system in contrast to hand biometric
techniques. Due to the practice of wearing shoes in daily
actions it is difficult to capture or publicly acquire footprints
for attacks. Finally, precisely because foot biometry is not
and probably will never be a suitable authentication mecha-
nism for high security applications, storage of foot biometric
features does not necessarily imply security threats. To
improve the human-friendliness of our proposed method
we have avoided pegs [10] and special illumination and
extract biometric measurements out of a simple capture of
the right foot by a flatbed scanning device. Potential fields
of applications comprise access control in public baths, spas
and also Japanese apartments [4], i.e. areas where users
are not expected to wear shoes. For systems preventing
unpaid admission to fee-paid areas, image capture could be
executed in front of barriers (possibly underwater) supporting
both prepaid (charge in advance) and pay-per-entry schemes
(payment ex post by e.g. direct debit). All these examples
are ideally implemented as positive identification schemes,
i.e. determining membership by biometric features only.

The first part of this paper starts with an architectural
overview in Section II and an introduction to various normal-
ization and image enhancement steps in Section III. Section
IV presents implemented biometric measurements, feature
extraction and matching criteria in detail. Experimental setup
and test results are presented in Section V. Finally, Section
VI forms the conclusion.



II. SYSTEM ARCHITECTURE

We introduce a novel footprint-based biometric authen-
tication system operating in identification mode extracting
features out of plantar1 foot-images alone. While verification
systems need identifiers such as user IDs or cards in addition
to biometric features and work in 1:1 comparison mode,
identification systems are based on biometric measurements
only and search the entire database for matches. For access
control in spas we believe this setup to be more practical
being independent of physical possessions.
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Fig. 1. Architecture of the footprint identification system

A. Proposed system

The system’s architecture as depicted in Fig. 1 relies on
three different techniques adopted from fingerprint verifica-
tion [11], face recognition [7] and hand geometry [8] and
consists of the following modules:

• Image acquisition: Images are captured by flatbed
scanners or cameras (comparable with techniques used
in palmar2 hand biometric systems [9], [8]) at 600 dpi
resolution.

• Preprocessing: The ability to normalize different rota-
tions of feet is at the heart of the problem of prepro-
cessing footprints and can increase recognition accuracy
enormously [4].

• Matching and Decision module: We analyze three
different matchers regarding False Acceptance Rate
(FAR) and False Rejection Rate (FRR) for the positive
identification task. Further extension to a multimodal
foot biometric system [12] might be useful or even
necessary since scalability issues of hand geometry
(features are known to be not very distinctive and
can hardly be scaled up for identification out of large
population databases [1]) are most likely to be inherited
to foot biometrics.

1plantar (anat.): towards the lower surface of the foot, i.e. sole
2palmar (anat.): towards the palm of the hand

III. IMAGE ACQUISITION AND ALIGNMENT

In order to separate foot texture from background (back-
ground pixels are masqueraded), binarization using Canny
edge detection [13] with binary thresholding on the original
image B is applied yielding image B1. While using Otsu’s
Method has proven to be a good alternative for hand geom-
etry [8], we have decided to use a more elaborate approach
in order to reliably detect foot contours needed for shape-
based feature extraction. Within the obtained image B1 we
fill the interior of the foot using binary thresholding on B, i.e.
B2(x, y) = max(binb(B)(x, y), B1(x, y)) where binb(B)
denotes the binarization of B using threshold b. Now, this
binarized image B2 is subjected to morphological dilation
using a square structuring element S to close the boundary:

B3 = B2 ⊕ S = {(x, y)|Sxy ∩B2 6= ∅} (1)

where Sxy denotes a shift of S by (x, y). This operation is
followed by a removal of small white BLOBs and a filling of
all black BLOBs except the background to get the binarized
image B4. Finally we employ morphological erosion on this
image:

B5 = B4 ⊗ S = {(x, y)|Sxy ⊆ B4} (2)

A. Rotational alignment

Rotational alignment is achieved matching footprints with
the best-fitting ellipse, as described in [14]. The goal is to
estimate the angle Θ between y-axis and the major axis of the
best matching ellipse. Having a binary image B of size n×m
and let A be the number of white pixels representing the
foot, then the center of mass C = (x, y) can be determined
as follows:

x =
1
A

n∑
i=1

m∑
j=1

jB(i, j), y =
1
A

n∑
i=1

m∑
j=1

iB(i, j). (3)

C is also the center of the ellipse, thus if x′ = x − x and
y′ = y − y then the angle of inclination is given by:

Θ =
1
2

arctan(
2µ1,1

µ2,0 − µ0,2
) (4)

µ2,0 =
n∑

i=1

m∑
j=1

(x′ij)
2B(i, j) (5)

µ1,1 =
n∑

i=1

m∑
j=1

x′ijy
′
ijB(i, j) (6)

µ0,2 =
n∑

i=1

m∑
j=1

(y′ij)
2B(i, j) (7)

We also consider possible holes in the image, e.g. between
toes, since they have not significant influence on the result.
After rotational alignment, displacement alignment restricts
images to the bounding box containing the section of interest.

B. Adapting resolution to employed matchers

To provide each matcher with appropriate input, processed
footprints are scaled to specific resolutions, i.e.

• 512× 1024 for the Shape feature,



• a low 128× 256 variant for Eigenfeet and
• the full 600 dpi resolution for the extraction of ridge

characteristics.
The capture of highly resolved input may constitute problems
when users are expected not to move during the acquisition
step. For this reason we encourage the application of scan-
ning methods supporting localized high resolution (i.e. for
the ballprint region) or camera-based image acquisition to
suppress noise caused by motion blur.

IV. IMAGE ACQUISITION AND ALIGNMENT

Using normalized footprint data we extract both shape
and texture information by means of three different features.
The first matcher uses principal component analysis on raw
normalized footprint images. Similar to Eigenfaces suggested
by Turk and Pentland [7] for face recognition this Eigen-
feet matcher is sensitive to both geometrical and textural
properties. For a probe set of 1195 facial images of subjects
taken at the same time Delac et al [15] could verify PCA-
based recognition rates of 82.26% at rank one, i.e. within the
top one match. We expect similar reasonable identification
performance for footprint images.

Typical ridge structure is also present in footprints at high
resolutions even if no special ridge extraction devices such
as fingerprint scanners are used. For this reason, we incorpo-
rate a minutiae based feature extraction step developed for
fingerprint matching [11] estimating local ridge structure on
a specified part of the footprint. Fingerprint identification has
long tradition since fingerprint individuality and permanence
has been widely accepted based on manual inspection of
millions of fingerprints [2]. Current systems are shown to
outperform face or hand-based identification techniques [16].
However, it is not yet clear if this also holds for ridge
structures on footprints.

Finally, we also incorporate a geometry-based feature
which takes into account that feet are characterized by
their local shape characteristics. Similar to traditional hand
geometrical approaches [8] examining lengths and widths
of fingers we extract average local foot widths at different
positions. Considering the sole of the foot to be prone
to injuries shape-based features are thus expected to show
constant performance also for larger time lapses between
recordings. However, a problem mentioned in [4] is the fact
that feet are generally about 5 mm larger in the evening
than in the morning due to hypostatic congestion. Also a
significant change in weight may cause high inter-personal
variability.

Finally, for each algorithm a discrete matching score mi ∈
N ∩ [0, 100] for 1 ≤ i ≤ 6 is calculated.

A list of implemented features for the footprint-based
identification task can be found in Table I.

A. Eigenfeet

The motivation behind the Eigenfeet feature, based on
PCA is a classification using the most relevant features
instead of an arbitrary selection of features. The main idea is
to think of an image Γ as a m×n -dimensional vector which

TABLE I
IMPLEMENTED FEATURES

Algorithm Features Classifier

Eigenfeet

projection of subsampled
footprint onto feature
space spanned by 20
most significant principal
components

based on Manhattan
distance

Minutiae

using the NIST [11]
mindtct minutiae
extractor on ballprint
region under big toe

based on NIST [11]
bozorth matcher

Shape 15 local foot widths and
positions

based on Manhattan
distance

can be represented exactly in terms of a linear combination
of principal components, i.e. eigenvectors (also called Eigen-
faces for facial images), computed on the covariance matrix
of training images. Eigenvectors are ordered according to
eigenvalues and only the ones with the M highest eigen-
values are kept, leaving the most important features that are
critical for the recognition task. Feature extraction using the
Eigenfeet algorithm is equal to projecting the 128×256 input
image onto the feet space spanned by the 20 most significant
eigenvectors depicted in Fig. 2(a) obtained by a set of also 20
training images. Thus, in the strict sense the Eigenfeet feature
is a both texture-based and shape-based approach since feet
silhouette information is also encoded within eigenvectors.

A computation of Eigenfeet, which precedes enrollment
and matching, involves the following two tasks [7]:

1) Acquisition of an initial training set of centered m×
n foot images represented as vectors Γi for i ∈
{1, . . . ,M} from which the average foot vector Ψ is
subtracted:

Φi = Γi −Ψ, Ψ =
1
M

M∑
i=1

Γi (8)

2) Computation of mn×mn covariance matrix:

C =
1
M

M∑
i=1

ΦiΦT
i = AAT (9)

and eigenvectors uk with according eigenvalues λk.
For computational efficiency often the M ×M Matrix
AT A is used instead, since the M eigenvectors vk of
AT A correspond to the M largest eigenvalues uk of
AAT fulfilling the equation uk = Avk and usually M
is much smaller than mn.

3) Ordering and selection of L highest eigenvectors with
corresponding eigenvalues.

Having selected a set of Eigenfeet ui with i ∈ {1, . . . , L}
and average foot Ψ, feature extraction comprises the follow-
ing steps:

1) Normalization of the foot vector Γ calculating Φ =
Γ−Ψ.

2) Projection onto eigenspace to get the feature vector
components ωi = uT

i Φ. The feature vector consists of



(a) Eigenfeet: Computed Eigenfeet of 20 footprints (b) Minutiae: Ballprint region contain-
ing 352 minutiae

(c) Shape: Average
widths of slices

Fig. 2. Visualizing Shape, Eigenfeet and Minutiae feature extraction

exactly L components f1 = (ω1, . . . , ωL) such that Φ
is approximated by:

Φ ∼
L∑

i=1

ωiui (10)

Finally, matching involves a simple distance metric in feet
space with thresholding.

B. Minutiae extraction

We use the NFIS2 [11] minutiae extraction and matching
software mindtct and bozorth3 to extract minutiae
information out of the ballprint region under the big toe.
After rotational alignment we extract a rectangular region of
fixed size h

6 ×
w
2 centered at B = (3w

4 , 3h
12 ) where h and w

are the height and width of a bounding box circumscribing
the input footprint. We then employ contrast improving
histogram stretching on the extracted region, which is still
at 600 dpi resolution. While mindtct binarizes this input
image and detects up to 400 minutiae per ballprint image
(depending on image quality, see Fig. 2(b)), bozorth is
employed at the classification stage. A problem for highly
resolved footprint images is textile defilement due to the
practice of wearing socks, which was avoided in advance by
cleaning the sole before image acquisition. The incorporated
bozorth3 matcher for the Minutiae feature already outputs
a matching score which is used to generate a similarity score
within the Minutiae matching module.

C. Shape-based feature

In order to extract shape features, the normalized footprint
is divided into N vertical slices V0, . . . VN−1 with equal
dimensions. The y-monotone polygon Sy is now used to
compute the average width of the foot per slice, i.e. the
average width wi of the set Vi∩Sy for i ∈ {0, . . . , N−1} of
in-foot pixels. Using a binary representation B of size n×m
and the characteristic function χ we get:

wi =
N

n

n∑
j=1

m∑
k=1

χVi∩Sy (j, k) (11)

The final feature vector is now constructed as f3 =
(w2, . . . wN−1) with N = 15. We neglect the first two slices

to suppress noise caused by toes. A dissimilarity value is
calculated in matching stage using Manhattan distance.

V. EXPERIMENTS

There are a number of errors made by biometric systems,
which need to be understood and estimated before a particu-
lar biometric is selected for application. Since various error
types depend on the formulation of hypotheses we explicitly
refer to positive identification. Let M denote the database
containing m = |M| enrolled members, then for a biometric
sample f we formulate the following (null and alternate)
hypotheses for the authentication task:

• H0: there exists a member template ∃t ∈ M with a
match t ≡ f .

• Ha: within M no match exists ∀t ∈ M : t 6≡ f .
Within this context, a False Accept occurs, if f is found
to be matched with a template within M while in reality
it is an imposter and False Rejects denote falsely rejected
genuine authentication attempts. Matching with multiple
(correct or incorrect) candidates is ignored in this case.
Different algorithms are compared using FAR and FRR at
different thresholds t depicted in the form of a Receiver
Operating Characteristics (ROC) Curve in Fig. 4(b). Further
classification of common identification systems according to
[2] regarding operation mode comprise:

• threshold-based systems: returning a list of all database
members exceeding a score s(f, ti) for each template
ti, i = 1, . . . ,m;

• rank-based systems: returning a sorted K-dimensional
vector of members that best match the biometric; and

• hybrid approaches behaving like rank-based systems if
more than K templates match (according to a defined
threshold) but decrease output vector size, if less tem-
plates exceed matching scores.

Using this terminology our proposed system may be classi-
fied as a rank-based system based on scores. Therefore we
also evaluate ranking behavior estimating Rank Probability
Mass functions in Fig. 4(a). We investigate achievable recog-
nition accuracy and both inter and intra-class variability of
single incorporated foot-biometric features examining (com-
plementary) cumulative distributions of genuine and imposter



authentication attempts diagrammed in Fig. 3. Finally, we try
to analyze matching performance results.

A. Test Setup

All experiments were conducted by using our database
of 135 male and 25 female footprints of 32 volunteers. We
used an HP Scanjet 3500c flatbed scanning device operating
at 600dpi resolution to acquire 5 footprint samples of the
right foot per user. The scanner supports an area of 216 x
297 mm, which was found to be sufficient for single foot
captures. Each sample as an image of 256 grey levels was
recorded with the user sitting in front of the scanning device.
Thus the footprints are not heavily loaded with full weight.
The acquired test data set does not include any of the 20
images used for computing the predefined Eigenfeet matrix
and only two persons are recorded in both sets. For member
database enrollment we have chosen the first captured image
of m = 16 persons yielding 64 possible genuine attempts for
the remaining 4 images per user and 80 imposter attempts
(each footprint was matched against the member set M).

B. Matching Performance

Overall recognition rates for rank 1, i.e. the relative
frequency of correctly identified samples based on position 1
of the ranked K-dimensional member vector, are 96.87% for
Eigenfeet, 98.43% for the Minutiae algorithm and 92.19%
for the Shape feature, as can be seen in Fig. 4(a). This behav-
ior is outperforming existing footprint-based identification
systems for comparable population size [4]. Inspecting the
ROC-curve for the positive identification task still Minutiae
based recognition shows slightly better performance than
Eigenfeet (like Fingerprint recognition outperforms Face-
based techniques [16]), especially for operating points with
nearly equal FAR and FRR. But it should be noticed that
the Eigenfeet algorithm does not need highly resolved input
images and compared to other footprint-features small-sized
feature vectors of 160 bytes are used. We compare operating
points with closest distance to the first median with prior
fusion of points sharing the same FAR or FRR rejecting the
point with larger distance to the origin.

The Minutiae feature showed the best results with error
rates of FAR 2.5%, FRR 3.13%. But these rates are orders
of magnitude higher than reported fingerprint identification
rates [16]. Possible reasons comprise a four times higher
number of minutiae within the ballprint region (see Fig. 2(b))
or worn ridges especially for older users.

Also well performance could be indicated for the Eigenfeet
algorithm. Its matching accuracy of FAR 2.5% and FRR
4.69% is similar to the Minutiae feature, but is not prone
to textile defilement or high resolutions.

Finally the local width-based Shape feature did not pro-
duce competitive results and scalability seems to be a prob-
lem. It exhibits an FAR of 11.25% at FRR 14.06% which is
significantly worse. But for fusion purposes or verification
systems this technique could be a useful alternative.

Presumably, for traditional access control, where highest
reliability and accessibility is required (and no privacy issues
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Fig. 4. Comparing footprint identification performance

TABLE II
COMPARING FAR AND FRR

Algorithm Threshold FAR FRR
Eigenfeet 74 2.5% 4.69%
Minutiae 7 2.5% 3.13%
Shape 93 11.25% 14.06%

exist), it is better to stick to classical fingerprint, iris or face
biometrics. But footprints could be a feature for restricted
area access-control in e.g. spas or public baths, when high
accessibility is achieved due to the absence of shoes and
socks.

VI. SUMMARY

We have proposed a footprint-based biometric identifica-
tion system employing three features, partly derived from
hand, face and fingerprint biometrics [8], [7], [11] and have
compared their accuracy performance.

Minutiae and Eigenfeet based upon PCA showed the best
positive identification results at the operating points 2.5%
FAR, 3.13% FRR and 2.5% FAR, 4.69% FRR respectively.
We have experienced problems employing shape-based iden-
tification due to scalability issues yielding EERs exceeding
10% even for small database size (m =16).

The proposed approach has the advantage of being image-
based and no special hardware is required to capture foot-
prints. For future research, the effect of training set size and
lime lapses between recordings on identification performance
has to be examined. Additionally, different recording con-
ditions such as wet feet (for its use in thermal baths, e.g.)
deserve further attention. Combining rank-based results using
fusion techniques could further improve recognition rates.
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