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Abstract

Several attempts have been made recently to generate
synthetic fingerprint data. This has become necessary after
legal changes in Europe and some US states in order to al-
low and continue long-term developments in the field of fin-
gerprint biometrics. Apart from utilizing traditional meth-
ods (often based on Gabor filters), deep convolutional neu-
ral networks are widely used to generate synthetic finger-
print samples. The current study aims at comparing several
publicly available synthetic fingerprint datasets with sev-
eral datasets that consist of imprints taken from real people.
To enable a comparison, first a detailed description of these
datasets is carried out. Secondly, an available 4-level pro-
tocol is used, which is supposed to show similarities and/or
differences between real and synthetic fingerprint samples
in terms of quality assessment and non-mated as well as
mated comparison scores’ behavior. Creators of synthetic
datasets should feel encouraged to report the resemblance
of their synthetic samples to real FPs by using the proposed
protocol.

1. Introduction
In recent years, many efforts have been made by various

governments to increase the privacy protection of individ-
uals. The European Union has issued the General Data
Protection Regulation (GDPR), the California introduced
the California Consumer Privacy Act (CCPA) and Illinois
updated the Personal Information Protection Act (PIPA)
(all three now exhibit comparable regulations). These
regulations were absolutely necessary in order to protect
people’s data privacy, confidentiality, and integrity, given
that the technical possibilities for unauthorized use of
personal data are constantly improving, especially due to
the rapid advances made with deep neural networks.

Biometric data, whether it is fingerprint (FP) data, facial
data, or iris images, is used in many ways in everyday
life. However, a lot of data (exhibiting a large variety of
natural variations) is needed in order to improve or redesign
biometric applications. Unfortunately, the acquisition of
biometric data from real people is very costly, not only
in terms of the time required to collect the data, but also
in terms of the availability of human resources since
participants need to be willing to agree to GPDR or com-
parable regularities. A potential solution to overcome the
high efforts and costs could be the usage of synthetically
generated biometric data. Furthermore, the replacement of
real biometric samples with synthetic ones, would be a step
towards open research by sharing biometric data which
could otherwise not be made public [23].
In the best case, synthetically generated biometric samples
are capable of representing all known natural variation,
e.g. all types of basic FP patterns (loop, arch and whorl)
or minutiae point types (ridge ending, bifurcation, island
or crossover), which are potentially contained in biometric
samples of real people. The chances that these sample vari-
ations are included in synthetically created FPs can either
be controlled by quasi-deterministic strategies (traditional
generation approaches) or by learning the likelihood that
the named variations are detected in the training data (more
recent deep learning based methods). Moreover, ensuring
equal distribution of sample attributes (e.g. race, gender,
age) can be done during a synthetic FP generation process
as well [19].
The most influencing factors, which need to be detected
within the synthetic data, are (a) less discriminative differ-
ences among generated non-mated subjects and (b) identity
leakage, in case too much similarity between training
samples (which are likely to be from real subjects in the
first place) and generated ones is given. In the first case, the
synthetic data from different subjects would be too similar



and thus, behave differently from biometric data from real
subjects if evaluated with an automated authentication
system. In the second case, privacy/identity leakage would
be an obvious threat since personal information from the
training data will be contained in the synthetic data. This
must only be to such a small extent that no conclusions
can be drawn about the persons (identities) used during
training. In both described cases it is hardly possible to
detect such issues by a visual inspection, especially as the
number of generated samples is likely to be large. As a
consequence, an automated quality and performance based
evaluation is mandatory.
Currently only one study [17] is known, which tries to
define general requirements that need to be met in order
to create synthetic FP samples that behave like real FPs
and further, only [12] defines a protocol to evaluate the
resemblance of synthetic mated FPs to real FP samples.
However, when creating synthetic biometric samples, typ-
ically the first step is to generate only non-mated samples,
describing different subjects. Thus, the suggested protocol
[12] is limited to mated samples and therefore cannot be
used to evaluate the resemblance to pristine of non-mated
FP samples which are created in many recent works, e.g.
[2, 18].

Contribution of Work: The contribution of this work is
to address some neglected aspects regarding the evaluation
of synthetic datasets. First of all, the protocol proposed
in [12], which was originally designed to assess the
resemblance of mated FP samples to real FPs, is extended
to assess non-mated samples. Secondly, the work studies
which of several publicly available FP datasets resemble
real FP data using the proposed evaluation protocol. At this
point, it is the only study available that compares public
synthetic datasets with various real ones in terms of bio-
metric quality and recognition performance. Furthermore,
it is proposed that the extended protocol should be used in
the future for the evaluation of synthetic FP databases in
order to achieve a general basis for comparison. The only
aspect that is excluded in the course of this work, but must
not be neglected, relates to the aspect of identity leakage
already mentioned above. The obtained results show that
in order to fully assess the authenticity of a synthetic FP
dataset, someone needs to have access to the synthetic as
well as the corresponding real data. However, real data can
often not be made public due to company specific or legal
restrictions. Creators of synthetic datasets should therefore
feel encouraged to use the proposed protocol to report the
resemblance of the generated synthetic data to the real data,
especially when the real data utilized cannot be provided to
the public.

The remainder of the current work is structured as

follows: Various reference literature is discussed in the
following Section 2, excluding studies that will discussed
separately in Section 3. In Section 4 the generation of ad-
ditional mated samples and the experimental methodology
are presented, while the description and discussion of the
evaluation results is done in Section 5. Section 7 concludes
this study including an outlook on planned future work.

2. Related Work
Regardless of which biometric modality is considered,

according to [19] methods for generating synthetic biomet-
ric samples can be categorized into three classes: (a) adap-
tation, (b) synthesis and (c) reconstruction from a biometric
template. If an adaptation based approach is selected, the
main goal should be to modify an existing (real or synthetic)
biometric sample to mimic specific acquisition conditions.
In the context of the current study, adaptation techniques
are utilized to create mated from non-mated samples if the
investigated synthetic FP creation method is not capable of
producing mated sample (see Section 4.1 for details). The
second class, synthesis, contains methods that aim to create
synthetic samples with predefined conditions from scratch.
A prominent method that falls into this category is SFinGe
[6]. The third class, reconstruction, describes various meth-
ods, that make use of existing biometric samples and cre-
ate synthetic ones from them by learning a model. Further-
more, there is the possibility to combine synthesis and re-
construction as done in [4].
Apart from the classification just discussed, the various
methods for generating synthetic data can also be catego-
rized in another way: (i) methods that make use of tradi-
tional modeling methods and (ii) methods that are based on
a data-driven approach. Model-based methods have been
applied in rather early works on FP synthesis, while in re-
cent years data-driven approaches have gained importance.
Hence, at first a summary of model-based studies is given,
followed by a discussion of investigations applying data-
driven concepts.
In [26] a model, describing the FP ridge pattern orientation
by utilizing core and delta information, was presented. This
concepts was applied in an extended manner in [6] allowing
to model so called master FPs using an iterative application
of Gabor filters and a method to simulate realistic distor-
tions. A drawback of [6] is that the generated distortions
are, from a statistically point of view, not always representa-
tive compared to real FPs. This was partly solved in [11] as
possible realistic distortions are derived from real FP sam-
ples. As skin diseases are known to influence FP authenti-
cation processes it would be beneficial to be able to include
such complicating factors to synthetic FP data as well [8].
Data-driven synthesis approaches (which includes the syn-
thesis of FP data) exhibit a specific advantage over model-
based application as no knowledge about image semantics



is necessary. Nevertheless, this advantage can only be ex-
ploited if enough discriminative (real or synthetic) training
data is available.
A Wasserstein generative adversarial network (GAN) was
applied to generate master imprints being capable of match-
ing several real FPs in [3]. A different approach, the so
called FingerGAN [21], is able to simulate FP samples
that are originally from the FVC2006 [5] and PolyU [14]
dataset. A more recent method, the SynFi approach [24],
allows the generation of high-resolution FPs generation by
combining a GAN and a super-resolution network. A com-
bination of a convolutional autoencoder and an improved
Wasserstein GAN was used in [22] to generate synthetic
rolled and plain FPs. In [25], progressive growing GAN,
StyleGAN and StyleGAN2 were applied to create realistic
partial FP patterns, while in [27] a CycleGAN was used for
texture transfer from real FPs to Anguli [1] generated FPs
before a super-resolution network increased the image size
of the generated samples.

3. Fingerprint Datasets and Generators

This section introduces the FP datasets that are inves-
tigated in this work. Each dataset provides either real or
synthetic FP samples, except the FVC dataset series, which
provides both types of samples. A brief summary of the
utilized datasets (generators) can be found in Table 1. Note
that all datasets used in this work are publicly available.

AMSL Synthetic FP Datasets: The AMSL Synthetic
FP dataset collection1 provides three synthetic FP datasets.
The first dataset, named AMSL SynFP SGR v1, provides
50k non-mated FP samples. These synthetic samples were
created using a StyleGAN2-ADA model. The second and
third dataset, named AMSL SynFP P2P v1 and AMSL Synth
P2P v2, respectively, provide 40k mated FP samples each.
These samples were created in a two step process. In the
first step, minutiae were extracted from randomly generated
Anguli samples. Each minutiae pattern then underwent a
series of transformations, which included random rotations,
shifts and cuts, to create mated minutiae patterns. In the
second step, natural-looking FPs were generated by passing
each minutiae pattern through a Pix2Pix model pretrained
to reconstruct a FP from its minutiae. Note that a combined
set of three datasets was utilized to train each model. This
set is composed of the Neurotechnology Cross Match,
FVC2002 DB1 A+B and FVC2004 DB1 A+B dataset.

Anguli Generator: Anguli [1] is a freely available
synthetic fingerprint generator which builds upon the
algorithms utilized by SFinGe [7]. Samples generated by

1https : / / gitti . cs . uni - magdeburg . de / Andrey /
gensynth

Anguli mimick a plain FP with a resolution of 500 DPI.
Anguli can also generate mated samples, however, the
quality of generated mated impression leaves a lot to be
desired. Therefore, no mated samples created by Anguli
are examined in this work. Instead, mated samples are
created using the technique outlined in Sec. 4.1.

Clarkson FP Dataset: The Clarkson [2] FP Dataset is
a publicly available dataset composed of 50k non-mated
synthetic FP samples which were created using StyleGAN.
The model was trained on a set of 72k FPs captured with a
CrossMatch Guardian Sensor.

PLUS Synthetic FP Datasets: The PLUS Synthetic
FP datasets collection2 currently provides one synthetic
dataset named PLUS SynFP RealScan v1. The dataset
is composed of 50k non-mated samples generated using
StyleGAN2-ADA. It was trained on all samples from the
RealScanG1 sensor provided in the PLUS-MSL-FP dataset.

PLUS-MSL-FP Dataset: The PLUS-MSL-FP dataset
[13] is a publicly available multi-sensor FP dataset com-
posed of FP samples from all ten fingers of 63 different
subjects (5 impressions per finger). Each fingers was cap-
tured with ten different acquisition devices, and recaptured
four times over a time-span of two years. The datasets
consists of ∼128k images.

PrintsGAN Dataset: The PrintsGAN [9] dataset is a
mated synthetic FP datasets composed of 525k rolled FP
impressions from 35k unique identities. To create a series
of mated FP samples, first, a binary masterprint is created
using BigGAN. Next, mated binary samples are created by
warping the masterprint using a Thin Plate Spline (TPS)
and segmenting out random parts of the finger. This step
again utilizes a GAN to predict the parameters of the TPS
as well as the segmentation mask. Last, binary FPs are
convert into realistic FPs using a generative autoencoder.

FVC Datasets: The FVC datasets were created to verify
the FP recognition performance of the algorithms submit-
ted to the Fingerprint Verification Content (FVC) 2002 [15],
2004 [16] and 2006 [5], respectively. Each datasets is com-
posed of four subsets, three real subsets (DB1-3) and one
synthetic subset (DB4). To allow competitors to tune their
algorithms, each subset was split into two sets (referred to
”a” and ”b”). Further details about the number of images
in each subset can be found in Table 1. Note that only the
competition sets (DB1a-DB4a) are studied in this work.

2https://wavelab.at/sources/Kirchgasser23b/



Dataset Subset Ref. Impression Type Incl. mated
samples DPI Subjects ×

Impressions Total

R
ea

l

FVC2002 DB1a [15] Plain, Optical ✓ 500 100 × 8 800
FVC2002 DB2a [15] Plain, Optical ✓ 569 100 × 8 800
FVC2002 DB3a [15] Plain, Capacitive ✓ 500 100 × 8 800
FVC2004 DB1a [16] Plain, Optical ✓ 500 110 × 8 800
FVC2004 DB2a [16] Plain, Optical ✓ 500 110 × 8 800
FVC2004 DB3a [16] Swipe, Thermal ✓ 512 110 × 8 800
FVC2006 DB1a [5] Electric Field ✓ 250 140 × 12 1680
FVC2006 DB2a [5] Optical ✓ 569 140 × 12 1680
FVC2006 DB3a [5] Thermal sweeping ✓ 500 140 × 12 1680

PLUS-MSL-FP Columbo [13] Plain, Capacitive ✓ 500 630 × 20 ≈12.6k
PLUS-MSL-FP NB-3010-U [13] Thermal ✓ 500 630 × 20 ≈12.6k
PLUS-MSL-FP RealScanG1 [13] Plain, Optical ✓ 500 630 × 20 ≈12.6k

Sy
nt

he
tic

AMSL SynFP P2P v1 [18] Plain, Optical ✓ 500 4000 × 10 40k
AMSL SynFP P2P v2 [18] Plain, Optical ✓ 500 4000 × 10 40k
AMSL SynFP SGR v1 [18] Plain, Optical 500 - 50k

Anguli Generator - [1] Plain ✓ 500 - -
Clarkson - [2] Plain, Optical 500 - 50k

PrintsGAN - [9] Rolled ✓ 500 35k × 15 525k
PLUS SynFP RealScanG1 - Plain, Optical 500 - 50k

FVC2002 DB4a [6] Plain ✓ 500 100 × 8 800
FVC2004 DB4a [7] Plain ✓ 500 100 × 8 800
FVC2006 DB4a [5] Plain ✓ 500 140 × 12 1680

Table 1. Summary of all datasets and generators utilized in this work. The table shows the main characteristic of each dataset such as the
impression of each subset, total number of impressions or subject, DPI, etc. Note that the term ”subject” refers to a finger (not a person).
A detailed description of each dataset can be found in Sec. 3.

4. Data Preprocessing and Evaluation

The statistical evaluation conducted in this work requires
equally sized sets of mated FP samples. As the number of
mated samples and impressions is different in each dataset,
and some datasets do not provide mated samples, each
datasets had to undergo some preprocessing. These pre-
processing steps are described in the following two subsec-
tions, while the third subsection presents the utilized evalu-
ation methodology.

4.1. Generation of mated samples

Four synthetic FP datasets, i.e., PLUS SynFP Re-
alScanG1, Clarkson, AMSL SynFP SGR v1 and Anguli, do
originally not provide mated FP samples. Since various ex-
periments conducted in this work rely on the presence of
mated samples, a protocol to create these mated ones had to
be developed first. This protocol is based on methods simi-
lar those provided by StirMark [10] and StirTrace [20]. The
selected transformation methods manipulate the FPs’ con-
tent in a realistic manner by compressing/stretching the im-
prints according to the x- and y-axis, rotating and translating
them. The parameters controlling the transformations were
sampled from a differently parameterized normal distribu-
tion. For each generated mated sample, the transformation

method and the parameter values were selected on a random
basis each time. Hence, similarity between mated samples
is ensured, but they exhibit a rather different shape after per-
forming the manipulations, resulting in a fairly complicated
dataset. As a consequence, it can be assume that the recog-
nition performance of those datasets containing mated sam-
ples generated by this process will be worse compared to
the other synthetic datasets. The code and further details
for the mated sample generation are publicly available3.

4.2. Preparation of equally sized folds

For a correct statistical comparison of the genuine and
imposter distributions of each dataset, all datasets are re-
quired to have the same number of genuine and imposter
pairs. This is not the case since each dataset provides a
different number of subjects as well as mated impressions.
To overcome this problem, multiple equally sized data folds
were randomly sampled from each dataset as follows: 100
subjects were randomly chosen from each dataset. For each
of these subjects, eight impressions were randomly selected
to create a fold. As a result, each fold is composed of 800 FP
samples from 100 different subjects and abbreviated using
’F’ for fold and a number from 1 to 5 indicating the exact

3https://wavelab.at/sources/Kirchgasser23b/



fold, e.g. RealScanG1-F1. In case of the Anguli dataset the
five folds are represented by five subsets that are indepen-
dent from each other.

4.3. Evaluation Methodology

The synthetic datasets summarized in Table 1 were
evaluated based on the following aspects: (a) sample
quality, (b) non-mated sample score distribution behavior,
(c) mated sample score distribution behavior and (d)
recognition performance. The real datasets mentioned in
Table 1 act as reference datasets for the distribution of real
data.

The FP sample quality is measured using NFIQ24 as
quality assessment metric. Mated and non-mated score are
using the VeriFinger SDK 12.1 5 as biometric recognition
system.

The evaluation of the synthetic datasets follows the 4-
level evaluation protocol detailed in [12]. The 4-levels are
as follows:

1. Level: Comparison of the recognition performance
(e.g., equal error rate) of each dataset. Question: Does
a synthetic dataset behave similarly to a real dataset?
If yes, to which dataset is it similar?

2. Level: Visual comparison of quality, mated and non-
mated score distributions. Question: Does a synthetic
dataset have a distribution similar to a real dataset? If
yes, to which one is it similar?

3. Level: Metric-based score distribution similarity as-
sessment. The metric-based evaluation aims to com-
pare the variability among the score distributions,
where distances between distribution pairs are used
as a measure for variability. The distance between
two score distributions is measured either using Chi-
Squared distance (CHI), Histogram Intersection (HI)
and Jensen-Shannon divergence (JS). Intuitively, if a
synthetic dataset behaves similarly to a real dataset,
its distance(s) to real datasets should be similar to dis-
tances among real data.

Question: Is the variability between a synthetic dataset
and real data clearly dissimilar to the variability among
real data?

4. Level Direct statistical comparison of each dataset’s
quality, mated and non-mated score distribution using
a Mann-Whitney-U test. Question: Which synthetic
dataset is dissimilar to each individual real dataset
from a statistical point of view? For which dataset can
dissimilarity not be excluded?

4https://github.com/usnistgov/NFIQ2
5https : / / www . neurotechnology . com / verifinger .

html

Level-3 evaluation protocol: Given a synthetic dataset
Dsynth, calculate the distance dsynth between the syn-
thetic dataset and the first real dataset. Lorem ipsum dolor
sit amet, consetetur sadipscing elitr, sed diam nonumy eir-
mod tempor invidunt ut labore et dolore magna aliquyam
erat, sed diam voluptua. At vero eos et accusam et justo
duo dolores et ea rebum. Stet clita kasd gubergren, no sea
takimata sanctus est Lorem ipsum dolor sit amet. Lorem
ipsum dolor sit amet, consetetur sadipscing elitr, sed diam
nonumy eirmod tempor invidunt ut labore et dolore magna
aliquyam erat, sed diam voluptua. At vero eos et accusam
et justo duo dolores et ea rebum. Stet clita kasd gubergren,
no sea takimata sanctus est Lorem ipsum dolor sit amet.

Level-4 evaluation protocol: To account for variations
in the score distribution among different folds of a real
dataset (a MWU-Test indicated dissimilar fold distribu-
tions), it is impossible for a fold of a synthetic dataset to
be similar to all folds of a real dataset. To take this into
account, the dissimilarity between a synthetic dataset and a
real dataset is assessed as follows: Each fold of a synthetic
dataset is compared to each fold of the real dataset with a
MWU-Test. The count is then calculated for how many syn-
thetic folds have at least one real fold that is not dissimilar.

5. Results
This result section is structured into several paragraphs.

The first paragraph discusses the results of the recognition
performance evaluation which corresponds to the first level
of the evaluation methodology explained in Sec. 4.3. The
second, third, and fourth paragraphs discuss the results of
the quality, non-mated and mated score evaluations, respec-
tively. The evaluation of quality, non-mated and mated
scores is done using the second, third and fourth level of
the evaluation methodology.

Recognition Performance: Tables 2 and 3 summarize
the average biometric recognition performance (described
by the average equal error rate (avEER) and the corre-
sponding mean comparison scores for mated (mated) and
non-mated (nmated) FP samples. Furthermore, the stan-
dard deviations of the comparison scores are given as well
(smated and snmated). To simplify the comparison of real
datasets with synthetic ones, the results are shown in two
distinct tables. While Table 2 shows the results for real
datasets, Table 3 presents the results for synthetic datasets.

As can be seen in Table 2, for real FP datasets, the
avEER is lower than 1% (except FVC06-DB1A) which
indicates an overall good recognition performance. This
observation is consistent with the relatively high mated
scores and a low smated. Note that the FVC06-DB1A is
well known to be a fairly challenging dataset with charac-
teristics (images resolution of 96×96 pixels and 250DPI)
that are entirely different from all other datasets.



Dataset avEER mated smated nmated snmated

FVC02-DB1A 0.254 281.70 7.78 76.01 31.43
FVC02-DB2A 0.251 287.70 6.27 77.57 33.86
FVC02-DB3A 0.446 246.53 10.19 80.78 33.73
FVC04-DB1A 0.479 218.04 7.75 78.90 33.23
FVC04-DB2A 0.452 226.55 9.49 73.98 37.22
FVC04-DB3A 0.253 212.77 7.79 67.14 39.33
FVC06-DB1A 3.522 142.91 5.81 58.34 23.19
FVC06-DB2A 0.251 342.54 7.49 72.54 35.39
FVC06-DB3A 0.323 263.04 8.87 95.67 37.88

Columbo 0.423 286.95 8.09 89.55 32.57
NB-3010-U 0.915 221.76 11.98 86.35 31.67
RealScanG1 0.251 335.05 9.47 93.34 34.66

Table 2. The averaged EER (in percent) over all five folds, the av-
erage mated comparison scores (mated), the standard deviation
of the mated comparison scores (smated) and the average non-
mated comparison scores (mmated) as well as the standard de-
viation of the non-mated comparison scores (snmated) for the real
FP datasets are presented.

Dataset avEER mated smated nmated snmated

AMSL P2P-v1 6.973 69.85 21.46 23.03 43.16
AMSL P2P-v2 0.251 192.42 24.05 44.23 41.89
AMSL SGR-v1 3.802 247.72 11.24 145.63 38.98

Anguli 5.070 227.18 21.21 117.83 33.29
Clarkson 2.512 254.47 9.93 153.52 37.21
Printsgan 0.270 196.06 6.59 57.33 38.76

SynFP RealScanG1 2.610 240.32 9.64 148.25 34.78
FVC02-DB4A 0.252 249.93 19.83 58.47 32.60
FVC04-DB4A 0.409 221.57 13.51 63.88 32.18
FVC06-DB4A 0.269 219.33 15.53 55.82 30.74

Table 3. The recognition performance evaluation results for the
synthetic FP datasets.

Comparing Table 3 with Table 2, it can be seen that the
recognition performance of the synthetically generated FP
datasets is worse compared to the real ones. In particular,
it is noticeable that the average EER is the worst (highest)
for those synthetic datasets whose mated FP samples were
generated using the method described in Section 4.1. This
observation is expected due to two reasons. First, the gener-
ation process results in mated FP samples that exhibit more
distortions caused by rotation and other affine transforma-
tion based variations, than the other synthetically generated
mated samples. Secondly, the applied VeriFinger SDK 12.1
seems to be particularly sensible to these introduced distor-
tions. Moreover, it is noticeable that for the dataset with the
highest EER (AMSL P2P-v1) the mated is much lower
than for the others and the snmated is the highest among all
evaluated real and synthetic datasets.
Based on the comparison of Table 2 with Table 3, it is fur-
ther possible to state that the EER of a synthetic FP dataset
should be below 1% if this dataset behaves similarly as a
real one. This is currently only the case for AMSL P2P-v2,
Printsgan and the SFinge datasets.

Quality assessment: Figure 1 presents the Level-3 eval-
uation results for NFIQ2 scores, comparing the variability

between a synthetic dataset and real data to the variability
among real data. The numbers inside each cell show the
number of folds that are found real by the Level-3 evalua-
tion protocol. Hence, a higher number in the cell indicates a
higher chance that samples contained in a synthetic dataset
are similar to real data.

As can be seen in Figure 1, most synthetic datasets are
considered real by the employed evaluation protocol, in-
dependent of the utilized distribution comparison matrix.
Only the AMSL-SGR-v1, AMSL-P2P-v1, and AMSL-P2P-
v2 are clearly dissimilar from real data.

Figure 1. Result of the Level-3 evaluation performed on NFIQ2
quality scores. CHI denotes the Chi-Squared distance, HI the His-
togram Intersection and JS the Jenson-Shannon divergence.

Figure 2 shows the results of the Level-4 evaluation
which directly compares individual NFIQ2 score distribu-
tions of synthetic and real datasets. The numbers inside
each cell show how many folds of a synthetic dataset exhibit
at least one fold with a similar distribution among the real
datasets. Thus, the presented results show a potential sim-
ilarity between the FVC2006-DB4 and NB-3010-U dataset
(5/5 folds), PrintsGan and FVC2004-DB1A (5/5 folds),
PrintsGan and IBColumbo (5/5 folds), Anguli and NB-
3010-U dataset (5/5 folds) as well as AMSL-P2P-v1 and
IBColumbo (5/5 folds). Furthermore, in 4 out of 5 folds,
Synth-RealScanG1 has at least one non-dissimilar fold in
the RealScan dataset. This was expected since Synth-
RealScanG1 was directly created from RealScan samples.

Non-mated comparison score evaluation: Figure 3
presents the Level-3 evaluation results for non-mated
scores, comparing the variability between a synthetic
dataset and real data to the variability among real data.
As can be seen, only the non-mated score distributions of
AMSL-SGR-v1, Clarkson and partially Printsgan are simi-
lar to the distributions of real data.

Figure 4 shows the results for the Level-4 evaluation,
where a fold of each synthetic dataset is directly compared
to all folds of a real dataset. Based on the figure, it can be



Figure 2. Results of the Level-4 evaluation on NFIQ2 quality
scores. Each cell in the table represents the number of folds in
the synthetic dataset where the MWH test accepted at least one
fold from the real dataset. The significance value for the MWU-
Test is 0.01.

Figure 3. Result of the Level-3 evaluation performed on non-mated
scores. CHI denotes the Chi-Squared distance, HI the Histogram
Intersection and JS the Jensen-Shannon divergence.

claimed that there is more or less no similarity between the
non-mated score distributions of synthetic and real data.

Mated comparison score evaluation: Figure 5 shows
the results of the Level-3 evaluation for mated scores. As
can be seen, most synthetic datasets are similar to real
datasets. The only synthetic datasets which is dissimilar
according to the Level-3 evaluation protocol is AMSL-
P2P-v1.

Figure 6 shows the results of the Level-4 comparison for
mated comparison scores. As can be seen in the figure, di-
rect comparisons of a synthetic fold with a real fold indi-
cate mostly dissimilar datasets. There are only 3 synthetic

Figure 4. Results of the Level-4 evaluation on non-mated scores.
Each cell in the table represents the number of folds in the syn-
thetic dataset where the MWH test accepted at least one fold from
the real dataset. The significance value for the MWU-Test is 0.01.

Figure 5. Result of the Level-3 evaluation performed on mated
scores. CHI denotes the Chi-Squared distance, HI the Histogram
Intersection and JS the Jensen-Shannon divergence.

datasets where all 5 folds have at least one real fold that is
not clearly dissimilar according to the MWU-Test. These 3
synthetic datasets are Synth-RealScanG1, FBC2006-DB4A
and AMSL-SGR-v1.

6. Discussion
Sec. 5 presented the results of the Level-3 and Level-4

evaluations for quality, non-mated, and mated comparison
scores. This section summarizes the findings and discusses
their practical implications.
Firstly, it’s important to note that when asking how well a
synthetic dataset resembles real data, the actual question



Figure 6. Results of the Level-4 evaluation on mated scores. Each
cell in the table represents the number of folds in the synthetic
dataset where the MWH test accepted at least one fold from the
real dataset. The chosen significance value for the MWU-Test is
0.01.

being asked is how well the synthetic dataset resembles the
set of real databases. Thus, the statement that a synthetic
dataset behaves differently from real data only holds if the
chosen set of real databases is representative of all real
datasets.
Secondly, it’s important to understand that a dissimilarity
found in the Level-4 evaluation does not imply that the
synthetic dataset cannot be real. In fact, the only scenario
where a synthetic dataset should match with a real dataset
is when the synthetic dataset was directly created from
the real dataset. In this evaluation, this is only the case
for Synth-RealScanG1 and RealScanG1. Consequently,
Level-3 should be preferred over Level-4 evaluations when
evaluating how well a synthetic dataset resembles real data.

Assuming that the chosen set of real datasets is representa-
tive of real datasets, only AMSL-P2P-v2, AMSL-SGR-v1,
FVC2002-DB4A, and FVC2004-DB4A are obviously not
dissimilar in terms of the NFIQ2 score. Considering the
mated distribution, only AMSL-P2P-v2 and FVC2004-
DB4A might be similar to real data. The analysis of the
non-mated distribution does not seem to provide meaning-
ful insights regarding the question of how well a synthetic
dataset resembles real data.

7. Conclusion

The current study aims to evaluate how a synthetic
dataset resembles real fingerprint datasets. For this pur-
pose, ten publicly available synthetic fingerprint datasets

are evaluated using a modified 4-Level protocol, focusing
on quality, recognition performance, and mated and non-
mated comparison scores.

Among the ten synthetic fingerprint datasets examined,
only four were found not to be dissimilar with any of
the twelve real fingerprint datasets, based on their NFIQ2
score. These datasets are AMSL-P2P-v2, AMSL-SGR-
v1, FVC2002-DB4A, and FVC2004-DB4A. Considering
the mated scores, only the AMSL-P2P-v2 and FVC2004-
DB4A datasets were found not to be dissimilar to the exam-
ined real datasets.
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