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Abstract

Motivated by discrepancies of image ground truth
labels and results from a science-to-public event, in-
vestigations were carried out trying to quantify the
agreement between ground truth labels and auto-
matic clustering. Experimental results indicate that
labels on depicted materials in medieval images as-
signed according to art historical criteria and cluster
labels generated using a variety of approaches do not
necessarily overlap. The findings imply divergences
between domain-specific art historical classifications
and computational clustering methods, revealing the
complexity of automated art categorization. Further,
the demand to establish ground truth based on an
inter-annotator agreement to mitigate subjective bi-
ases is suggested.
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1 Introduction

Image classification is a cornerstone task in computer
vision, involving the assignment of a specific label or
category to an image based on its visual elements.
The field has seen major advancements with the rise
of deep learning techniques, which have dramati-
cally improved the accuracy and efficiency of classi-
fication models. These improvements have enabled
machines to interpret visual data with a level of pre-
cision approaching human capabilities. However,
the success of these models heavily relies on the qual-
ity of the training data labels. These labels, often
referred to as “ground truth”, are crucial for super-
vised learning approaches. They provide the model
with the correct answers to learn from, and inaccu-
racies in these labels lead to propagated errors in the
model’s verdict. Therefore, ensuring the integrity of
these labeled data is paramount to achieving reliable
and satisfactory results in image classification tasks.

Throughout various domains of science employ-
ing computer vision tools, the understanding of
ground truth and also the process of obtaining
slightly differs. Woodhouse [1] for example argues
that the term had its origin in the domain of remote
sensing, referring to the information actually mea-
sured on the ground — however advocating to abol-
ish the term in the same work. In the domain of
medicine and medical imaging, the term “gold stan-
dard” is used for the benchmark that is the avail-
able under reasonable conditions [2]. For data an-
notations, experts often rely on the results from gold
standard methods. For example the gold standard
for diagnosing celiac disease is considered perform-
ing an endoscopy together with a biopsy, i.e. remove
tissue from the body for examination by a medical
pathologist [3].

Another, more philosophical, perspective is that
the term originates from the german word “Grund-
wahrheit” [4], whose definition can be translated to
“fundamental, irrefutable statement or fact”. Which
is ironic because there is work suggesting that an
inter-observer agreement between experts is not al-
ways the case [5], [6]. Also, another common
approach for obtaining ground truth is to rely on
“crowdsourcing”, i.e. distributing the task for label-
ing images to multiple, possibly non-expert, workers
[7]. Such an approach contrasts the definition that
ground truth should be viewed as something indis-
putable.

A particularly intriguing application of image clas-
sification and ground truth generation lies in the
field of art history, specifically within the study of de-
picted materials in paintings. Within medieval paint-
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ing in the Latin West, in the 14" century, the depic-
tion of material properties and surface qualities was
paid increased attention for the first time since an-
tiquity — a development that reached a new peak in
the 15™ century. Annotations are needed in order to
be able to trace the course of this development in de-
tail in the future and to be able to examine the ren-
dering of specific materials in different contexts, e.g.
iconographic subjects. One highly significant ma-
terial attributed with complex ideas in the Middle
Ages is the wood of Christ’s cross. How it was rep-
resented in painting is therefore of particular inter-
est (see Section 2 in [8]). Because working through
large corpora of images manually can be quite cum-
bersome, the discipline of computer vision presents
itself as a potential partner for cooperation. So far,
very scarce literature can be found regarding auto-
matic analysis of Christ’s cross: In [8] it is tested,
whether patches from natural images of wood could
be used to retrieve patches of painted wood from
Christ’s cross. A research group from the Univer-
sity of Heidelberg developed an algorithm to search
within 3620 crucifixion images from an online image
archive !, however their research focused on content
based image recognition rather than analysis of de-
picted material properties. While there are openly
available databases [9], [10] that include painted
wood, none of them focus on wooden crosses. It can
be derived that automatic analysis of painted wood
and especially the wood of Christ’s cross is still a
current topic. Thus, the data used within the ex-
periments in this work consist of samples from the
wood of Christ’s cross, annotated using an annota-
tion guide established by an expert in the field of art
history. Details given in Section 3.1.

The present study aims to quantify the agreement
between labels based on art historical criteria and la-
bels assigned through automatic clustering using a
variety of image representation techniques and clus-
tering algorithms. To evaluate this agreement, im-
age representations are first grouped into clusters
using a number of clustering algorithms. Subse-
quently, the cluster labels obtained are compared to
the ground truth labels using a clustering compar-
ison metric. Section 2 gives an incentive why such
an investigation is of relevance. In Section 3, the
employed dataset is introduced, the used methodol-
ogy is explained and also details on implementation
are given. Results are reported within Section 4, fol-
lowed by a discussion. Finally, Section 5 concludes
the present study.

Ihttps://hci.iwr.uni-heidelberg.de/prototype_image_
search_crucifixion
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Figure 1: Migration plot depicting how participants
labeled the wooden parts. Left: ground truth class;
Right: assigned class.

2 Motivation

In the course of an interdisciplinary project between
art history and computer science, images depicting
the wood of Christ’s cross were manually annotated
using polygonal lines such that the wooden parts are
isolated. Four examples of such wooden parts can be
seen in Fig. 3. Further, every wooden part received
a label (considered as ground truth) describing the
structural pattern (i.e. texture) used to depict the
material wood. Texture categories were chosen based
on criteria that seemed interesting for art historical
analyses.

During a science-to-public event, participants
were tasked to assign wooden parts to a texture class
based on some given reference samples. The migra-
tion plot in Fig. 1 shows the ground truth texture
classes on the left and the texture classes assigned
by the participants on the right. Alphabetic identi-
fiers correspond to the classes in Fig. 4. The num-
bers on the left indicate the total occurrence of the
texture classes throughout the experiment, and the
numbers on the right display the number of samples
where the assigned class and the ground truth class
coincide. Samples were drawn randomly from a uni-
form distribution of the classes. The diagram pro-
vides a visual representation of how well the partic-
ipants matched the samples with the ground truth
labels. About half of the samples were assigned ac-
cording to the expert annotation.

In an attempt to further investigate the discrep-
ancy between participant assignments and expert
annotations, a pre-trained ResNet-50 [11] was used
to embed the wooden parts into a 2048-dimensional
feature representation. Note that this can be done
because modern implementations have an “adap-
tive pooling” layer at the end of the feature extrac-
tion part of the model, ensuring a fixed-dimensional
feature representation at the penultimate layer re-
gardless of input resolution. Next, t-SNE [12] was
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Figure 2: Scatter plot with t-SNE coordinates of the
wooden parts. Colors indicate the ground truth tex-
ture classes.

used to reduce these feature representations into
two-dimensional space and the resulting 2D vectors
were used to depict the wooden parts as points in a
scatter plot as can be seen in Fig. 2. While t-SNE ef-
fectively reduces dimensionality, its results should be
interpreted cautiously due to the potential distortion
of global structure and distances. However, the vi-
sualization generated by t-SNE reveals an intermin-
gling of data points across different classes, suggest-
ing a high degree of overlap and complicating clear
distinctions between classes. This motivated further
analysis using methods as described in the upcom-
ing sections.

3 Experimental Setup

3.1 Data

For dataset generation, a total of 287 images of 14th
and 15" century paintings were selected from the
REALonline image database 2, all of which depict
a scene that includes at least one cross where wood
grain is depicted. To isolate parts containing a depic-
tion of wooden structures within the paintings, areas
were annotated manually using the computer vision
annotation tool °. Distinctions are made between 13
different types of texture within the wooden struc-
tures. The texture classes were chosen according
to the needs of the art historical research ques-
tions. Every wooden piece with homogeneous tex-
ture type was surrounded with its own polygon. Do-
ing so allows for clear separation of the texture types.

Zhttps://realonline.imareal.sbg.ac.at/
Shttps://www.cvat.ai/
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Figure 3: Examples of wooden parts cut directly from
annotation polygons (one horizontally rotated exam-
ple per class) and examples of wooden patches (four
patches per class).
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Figure 4: Dataset statistics

Wooden parts, as can be seen in Fig. 3 (one example
per texture class), often contain large (transparent)
background areas caused by exclusion of all non-
wooden image contents such as fingers or parts of
the hand. Hence, quadratic non-overlapping patches
were cropped from annotated areas using a fixed
patch size of 96 pixel side length for further exper-
iments. Example patches for the used classes are
seen in Fig. 3 (four patches per texture class). Divid-
ing the data into smaller patches is a common strat-
egy for texture classification because it artificially in-
creases the dataset, while it is assumed that the defin-
ing structures are fine-grained and can thus be found
on every patch. Dataset statistics are presented in
Fig. 4. Due to the imbalance in the data in terms
of samples per texture class and because for some
classes very few patches are available, only four tex-
ture classes (indicated by colored bars; alphabetic
identifiers C, D, E and H) are used for further anal-
ysis. The nested pie chart on the right visualizes the
distribution of cropped patches based on their ori-
gin image, where each segment in the outer ring of
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a texture class represents the proportion of samples
originating from the same source image. The num-
ber of patches per source image varies both because
of differing resolutions of the images and differently
sized wooden crosses within the paintings.

3.2 Image representation

In the experiments, various image representations
are employed to evaluate the intrinsic correspon-
dence between ground truth labels and image con-
tent. This approach is necessitated by the absence
of a universally optimal image representation. By
evaluating multiple representations, the aim is to
comprehensively assess the intrinsic relationship be-
tween image content and ground truth labels across
different levels of abstraction. The following image
representations are utilized:

e Dimensionality reduction: Principal component
analysis (PCA) is applied to reduce the dimen-
sionality of the raw pixel data. This step helps to
mitigate the curse of dimensionality and poten-
tially reveals latent structures in the data.

o Classical texture features: SIFT [13] descriptors
are extracted from grayscale patches on a dense
grid with a step size of 8 pixels to capture local
gradient-based texture information. The result-
ing descriptors are aggregated using Fisher vec-
tor encoding [ 14] followed by PCA, providing a
compact representation per patch.

e Neural Networks: Feature embeddings ex-
tracted from pre-trained deep learning models
are utilized. These representations excel at iden-
tifying relevant structures in images due to their
ability to capture complex relations within the
data. However, it is important to note that these
networks, trained on ImageNet, introduce bi-
ases inherent to their training data. In pursuit
of finding a “natural description” of the images
and to avoid learning something unintended by
force, fitting a model to the data is explicitly
refrained from. Network model architectures
are taken from the PyTorch Image Models * col-
lection, which encompasses a large variety of
state-of-the-art model architectures. In partic-
ular, six different architectures are employed:
TinyNet [15], Vision Transformer (ViT) [16],
ResNet-18 [11], Mobile-ViT [17], DinoV3 [18]
ConvNext [19] & DinoV3 ViT. Within this work,

4https://github.com/rwightman/pytorch-image-models
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Figure 5: Simulated relationship between AMI and
accuracy.

models are utilized such that images are embed-
ded into a feature representation using a pre-
trained network where the final classification
layer is removed.

3.3 Consensus between ground truth and
image content

To express the agreement between ground truth and
the image descriptors outlined in Section 3.2 numer-
ically, these descriptors are grouped using a vari-
ety of algorithmic approaches for data clustering.
Four such clustering techniques are employed in this
work: (i) k-means clustering, (ii) hierarchical (ag-
glomerative) clustering, (iii) deep embedded clus-
tering [20] and (iv) SubKmeans[21]. For vanilla k-
means and hierarchical clustering, implementations
from the scikit-learn [22] python library are used
while for the latter two methods the ClustPY [23] li-
brary is utilized. Subsequently to clustering, images
hold both a ground truth label and a newly gener-
ated cluster label. Similarity can thus be expressed
resorting to clustering comparison metrics such as
Adjusted Mutual Information (AMI) [24]. AMIis a
version of mutual information that introduces a cor-
rection for chance by considering the expected simi-
larity of all pair-wise comparisons. For calculation of
an expected similarity value, a random model must
be chosen based on how the data points can be clus-
tered. According to [25], the right random model
to choose for experiments within this work is the
one-sided (always comparing against the same basis,
i.e. ground truth) comparison with a fixed number of
clusters. Hence, this work uses the reference imple-
mentation from Gates and Ahn [26] for calculation
of the AMI. Note that employing a mutual informa-
tion based metric to compare clustered images to its
ground truth labels is common strategy for evaluat-
ing the performance of clustering algorithms [27].
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4 Results & discussion

Results in Fig. 6 show the AMI values obtained using
the procedure described in Sections 3.2 & 3.3. Two
classes are always considered in isolation to evaluate
the separability from another, resulting in six texture
class constellations. The four texture classes used
in the experiments correspond to the classes intro-
duced in Section 3.1. Experiments including a ran-
dom component were carried out ten times. Error
bars indicate the standard deviation.

4.1 Relationship between AMI and accu-
racy

In an attempt to establish a relationship between the
AMI and an estimation of the classification accu-
racy, two artificial clusterings were gradually alien-
ated and the corresponding metrics calculated. Fig. 5
depicts the simulated relationship between AMI and
accuracy for a two-class setup. Two cases for la-
bel randomization are considered: (i) permutation,
where the starting point is an equal amount of ele-
ments per cluster and on every step of scrambling
the labels, every cluster receives exactly one element
from the other cluster. Doing so, the number of ele-
ments per cluster does not change, merely the labels
get permuted. (ii) randomized, which also consid-
ers imbalanced clusters. Depending on the step, a
number of elements are picked and assigned to the
other cluster in a random fashion. The relationship
can be understood such that an AMI value of y indi-
cates that x% of samples are grouped (clustered) to-
gether with others from the same class. Note that 0.5
accuracy corresponds to random guessing in a two-
class scenario.

4.2 Interpretation of the results

Since the AMI value is a measurement of cluster simi-
larity, high values indicate high accordance of expert
label and automatic label. Hence, higher AMI val-
ues suggest some separability in the feature space,
which in turn indicates separability based on image-
intrinsic properties. While PCA and the deep learn-
ing network embeddings mostly agree, the dense sift
variant generally seems to yield lower AMI values.
This can be explained by conversion to grayscale for
this texture descriptor, thereby discarding relevant
color information. The results, however, allow to
deduce some tendencies. Because the various rep-
resentations together with different clustering tech-
niques only agree on most occasions, we should not
focus on the precise numerical values itself but view
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Figure 6: Experimental results. AMI values for every considered pair of classes.

the results as a general trend. This indicates that
there exists some correspondence of ground truth
and clustering labels for some classes but not for oth-
ers. With the exception of C vs H, experiments in-
cluding class C yield overall low results, indicating
its role as a general-purpose class encompassing nu-
merous texture structures. While class C seems re-
lated to both, class D & E, these classes appear to have
some properties distinctive enough for AMI values
up to 0.5. Note that this relation does not pose a con-
tradiction since class C most likely spans a broader
range of textures. The strongest evidence for intrin-
sic separability within the scope of this work pose
the experiments D vs. H, reaching slightly above 0.6
AMI, which, according to Section 4.1, corresponds to
around 92% classification accuracy. Low AMI values
for experiments considering case E vs. H point again
to a high overlap in feature space, i.e. appear visually
similar.
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5 Conclusion

This study explored the intrinsic correspondence be-
tween image labels assigned to painted materials
based on art historical criteria and labels assigned
through automatic clustering. Experiments included
a variety of image representations and clustering
techniques. The observations allow to derive the
following conclusions: (i) Texture classes assigned
based on art historical criteria do not necessary cor-
respond to automatically generated classes based on
their inherent visual properties. Hence, automatic
separation according to the domain-specific labels
can be challenging. A potential limitation of the used
approach is the employment of patching, possibly
destroying relevant structures in the process. How-
ever, it should be noted that data points in Fig. 2 cor-
respond to the complete wooden parts, supporting
the notion that the patching strategy has negligible
effect on the overall findings. (ii) Although not ad-
dressed directly within the scope of this work, sub-
jective bias could also be a factor. Non-experts (refer-
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ring to the participants during the science-to-public
event) evidently faced difficulties assigning the tex-
ture classes according to the expert label, hereby cast-
ing doubt on the reliability of the latter. In the do-
main of medical imaging, an inter annotator discrep-
ancy exists and “collective-agreement” countermea-
sures are sometimes taken to mitigate subjective bias.
The results in this study can be seen as an indication
that Digital Humanities faces a similar problem as
medical areas and multiple-annotator labels should
be considered in future works.
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