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Abstract
Accurate segmentation mask generation is critical
for single-cell analysis workflows. While established
semi-automated tools require expert intervention,
emerging approaches aim to eliminate human guid-
ance through fully automatic segmentation models.
However, the suitability of automatically generated
cell segmentation masks as reliable alternatives to
expert annotations remains uncertain. This study
evaluates different imaging mass cytometry (IMC)
datasets by feeding them to a variety of generalist
cell segmentation models and comparing the out-
puts with corresponding segmentation masks. Per-
formance is assessed using instance segmentation
metricswhich are also viewed in the light of an upper
bound determined by inter-annotator agreement.
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1 Introduction
Since its introduction[1], imaging mass cytome-
try (IMC) has become a widely adopted imaging
methodology for downstream tasks like cell pheno-
typing (i.e., identifying and categorizing different
cell types) and analyzing the spatial landscape of
cells. IMC is well suited for tissue analysis due to
its ability to simultaneously detect over 40 protein
markers using metal-tagged antibodies, bypassing
signal from autofluorescence and spectral overlap
limitations of fluorescence-based techniques like im-
munofluorescence microscopy. The process involves
labeling tissue samples with antibodies conjugated
to rare-earth metals (e.g., Neodymium Nd or Irid-
ium Ir), followed by laser ablation at 1 µm2 reso-
lution to ionize tissue regions. These ions are then
quantified via mass spectrometry, generating high-
dimensional spatial cell marker data. The subcellu-
lar resolution enables mapping of cellular microen-
vironments, used for studying tumor heterogeneity,
immune cell interactions, or tissue architecture.
A crucial step in existing frameworks or pipelines

[2], [3] for IMC single cell analysis, is the segmen-
tation of cellular structures on a single cell basis (in-
stance segmentation). While this process is increas-
ingly recognized as prone to errors[4], [5] and some
approaches even try to circumvent the process of seg-
mentation [6], [7], it remains a focus for method-
ological advancements: a recent study[8] investi-
gates IMC cell segmentation performance on par-
tially labeled data. Other research is aimed to de-
velop segmentation models specifically tailored for
IMC data[9], [10]. It can be derived that improving
single cell segmentation using IMC is still a current
topic.
This study establishes a reasonable upper bound

for whole-cell segmentation on IMC data by quanti-
fying inter-annotator agreement across cellmasks in-
dependently annotated by four domain experts. This
baseline reflects the inherent variability in human
expert interpretations of cellular boundaries. The
performance of four state-of-the-art generalist cell
segmentation models is systematically evaluated on
both in-house and publicly available IMC datasets,
with segmentation performance compared against
the established human-annotator benchmark. By
comparing model performance with inter-annotator
agreement, this work explores current limitations
of automated segmentation methods for IMC whole
cell segmentation.
The remainder of this study is structured as fol-

lows: Section 2 explores related works on inter-
annotator agreement for cell instance segmentation,

thereby positioning the current work within the con-
text of existing research. In Section 3, the employed
data, the segmentation models and the evaluation
metrics are introduced. Section 4 presents and dis-
cusses the experimental results. Finally, Section 5
concludes this study.

2 Relatedwork on inter-annotator
agreement for cell instance seg-
mentation

A recent work[11] provides an overview on how to
assess inter-annotator agreement for medical image
segmentation, including Kappa statistics, STAPLE-
based and heatmap-based methods. While all of
these methods constitute dedicated ways of express-
ing the inter-annotator agreement numerically, they
are limited to semantic segmentation. A major chal-
lenge in applying similar techniques to instance seg-
mentation problems on densely populated areas like
cell tissue, is to find unambiguous element assign-
ments between annotators, also considering over-
and undersegmentation cases (i.e. one cell anno-
tated as multiple cells or missing cell annotations).
While for the two-annotator case, this could be
treated as an assignment problem (as done for the
sorted average precision metric described in section
3.3), this becomes a practically unsolvable problem
quickly as the number of annotators increases. Au-
thors in [12] approach this by distance-based con-
sensus matching between cell centroids across mul-
tiple annotators. However, because their approach
requires the average cell size as an input param-
eter and also their work is centered around H&E
stained samples from histopathology, its applicabil-
ity to other imaging modalities, such as IMC, re-
mains uncertain. An established way[13], [14] for
measuring inter-annotator agreement in the domain
of cell instance segmentation is to systematically
compare pairs of annotators using instance segmen-
tation performance metrics. In [13], nuclei (as op-
posed to whole cells) annotations are compared us-
ing measures based on the calculation of intersec-
tion over union per element at a certain threshold.
In [14], the authors evaluate the human-to-human
whole cell segmentation performance for a variety
of multiplexed tissue imaging modalities and tissue
types, however not directly focused on IMC data.
It can be deduced that assessing human-to-human
performance on IMCwhole cell segmentation repre-
sents a meaningful direction for systematic investi-
gation, as current literature lacks benchmarks in this
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specific domain. The term inter-annotator agreement
in the context of this work refers to the human-to-
human evaluation using segmentation performance
metrics described in section 3.3.

3 Methods
3.1 Data
This section details the acquisition and preprocess-
ing of a small-scale in-house IMC dataset and four
employed external datasets, accompanied by a com-
prehensive overview of dataset statistics.

3.1.1 IMC sample generation

Samples were prepared from a high cell density
lymphoid tissue according to standard IMC sample
preparation techniques as suggested by themanufac-
turer 1. The donor sample was collected according to
the guidelines of the Declaration of Helsinki, and ap-
proved by the Institutional Review Board (or Ethics
Committee) of the Province of Salzburg: Ethics state-
ment/Ethics number: 415-E/1287/18-2018, Version
5. Written informed consent was obtained from the
donor. For sample preparation, the formalin fixed
paraffin embedded tissue block was sectioned into
4 µm thick slices on a HM340E microtome (Epre-
dia, Portsmouth, New Hampshire) and mounted to
superfrost plus microscopic slides (Epredia). The
mounted sections were baked at 60°C for one hour
and immediately transferred to coblin jars contain-
ing UltraClear solution (VWR, Radnor, Pennsylva-
nia) and incubated for 5 minutes. After a second
5 minute incubation in fresh UltraClear, the sam-
ple was incubated in an ethanol series of 2x100 per-
cent, 95 percent, 80 percent ethanol and incubated
for 3 minutes (first two incubations) and 2 minutes,
each, followed by incubation in water for 5 min-
utes. For epitope retrieval the sample was trans-
ferred to pre-heated pH9 EDTA epitope retrieval
buffer and heated in a KOS pathological microwave
(Milestone, Valbremba, Italy) for 30minutes at 96°C.
After retrieval, the regular protocol was continued
with a one hour blocking step using Superblock
blocking solution (ThermoScientific, Waltham, Mas-
sachusetts). The antibody cocktail was incubated
over night at 4°C. Iridium staining was performed at
a dilution of 1:100 from a 125 µM stock (Standard
Biotools, Markham, Ontario) for 10 minutes at room
temperature.

1https://fluidigm.my.salesforce.com/sfc/p/
#700000009DAw/a/4u000000dmhS/avZw9iOjvvsWnYP.
pqXU5au3oBAZ_xuFo0uf7pWo4Nw

3.1.2 Mask generation

After laser ablation, the data was annotated by four
domain experts. During the process, each annota-
tor manually annotated 10 crops of 50 x 50 pixels
resolution which were then used to extrapolate the
annotations to the whole images. Ilastik[15] was
used to create pixel probability maps which are sub-
sequently transformed to single cell segmentation
masks using Cellprofiler[16].

3.1.3 Dataset statistics

Additionally, four external datasets are used in this
study, all of which provide IMC data and corre-
sponding segmentation masks generated in a com-
parable manner as the in-house data. It should be
noted, however, that the focus of these works was
not to create a segmentation mask but it was merely
an intermediate step towards the respective down-
stream task. All five datasets are listed in Table 1
along with their statistics.

3.1.4 Patching strategy and channel aggregation

Preliminary experiments suggested unstable results
in terms of segmentation performance caused by the
varying resolution of the individual datasets (see
column 5 in Table 1). Hence, experiments in this
work analyze the data in two modes:

• whole image: The full image is fed into the re-
spective segmentation model and the full mask
is evaluated afterwards.

• sliding window patches: Patches of size 256 x 256
pixels are cropped from the original image with
an overlap of 128 pixels. For evaluation, a bor-
der of 28 pixels is ignored on all four sides, re-
ducing the evaluated field of view per patch to
200 x 200 pixels. The border removal is meant
to mitigate artifacts generated by partitions of
cells at the border which potentially distort the
results especially when using smaller crops. It
should be noted, however, that from a practical
perspective smaller patching is unfavorable for
analysis of larger data because stitching masks
is prone to errors caused by border cells.

Because all the models described in the upcoming
section require both a nucleus channel and a mem-
brane channel, IMC channels are aggregated using
the arithmetic mean over a selection of markers on a
per pixel basis. Table 2 presents a breakdown what
markers are aggregated towhich channel, alongwith
additional details (used clone and dilution for the
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Table 1: Overview datasets and their statistics. For patching, 68 samples from the Ali20 dataset and 14
samples from the Jackson20 dataset are ignored because at least one dimension is smaller than 256 pixels.
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in-house Annot1 – 4 Lymphoid 10 1000.0/1000.0 360 4 823.7
Ali20 [17] A20 Breast 548 462.8/478.0 2787 1 314.0

Rendeiro21 [18] R21 Lung 229 1108.4/1187.5 13361 1 185.3
Jackson20 [19] J20 Breast 746 596.5/626.7 8714 1 320.5
Hoch22 [20] H22 Melanoma 167 993.1/963.4 6361 1 467.4

Table 2: Aggregated channels and their correspond-
ing antibody markers.
Category Marker Clone Channel Dilution (1:n)

Membrane Channel

CD19 6OMP31 Nd142 100
TOMM20 EPR1581-54 Nd144 100
CD5 CLDA5-1 Nd145 30
CD4 EPR6855 Gd156 400
CD68 KP1 Tb159 1000
CD20 H1 Dy161 150
CD8a C8/144B Dy162 800
CD14 EPR3653 Dy163 1000
CD45RA HI100 Er166 600
B2M B2M/961 Yb171 200
CD45RO UCHL1 Yb173 1000

Nucleus Channel DNA – Ir191 100
DNA – Ir193 100

generation of the in-house data is also mentioned for
better reproducibility) on the employed markers. To
ensure a consistent and fair comparison across all ex-
periments, themarkers for channel aggregationwere
carefully selected based on analysis of all the datasets
used in this study and their available markers.

3.2 Segmentation models
In total, four generalist single cell segmentationmod-
els are employed in this work without further fine-
tuning of internal parameters. In the following, each
model is briefly introduced:

• Cellpose v3[21]: Cellpose was introduced as
an early generalist cell segmentation model.
The Cellpose model got progressively enhanced
by adding more training data. Currently, the
"cyto3" model is its latest iteration for whole cell
segmentation, which is also the one used in this
work. Unlike other segmentation models at the
time, which mostly employed a U-Net architec-
ture and trained to directly yield a semantic seg-
mentation map of nuclei, cell borders, and back-

ground, Cellpose predicts gradient vector fields
that guide pixel assignments toward cell centers,
enabling instance segmentation of diverse cell
morphologies.

• DeepCell[14]: The DeepCell model employs a
ResNet-50 architecture as its core that is con-
nected to a feature pyramid network. It is espe-
cially aimed at nucleus and whole cell segmen-
tation for tissue data. The version used in this
work is 0.12.10.

• CellSAM[22]: CellSAM is based on the Segment
Anything Model (SAM)[23]. It automates seg-
mentation via a transformer-based object detec-
tor that generates bounding box prompts. Cell-
SAM is still in development at the time of this
study. The used version number is 0.0.dev1.

• VISTA-2D[24]: VISTA-2D is a recent generalist
cell segmentationmodel developed byNVIDIA,
which also uses the SAM as its core. The model
is part of the MONAI framework[25]. The
model delivers gradient vector fields similarly
to the Cellpose model. The final segmentation
masks are derived from these vector fields us-
ing Cellpose’s postprocessing implementation.
While the other models comewith their internal
way of contrast enhancement, the datawasman-
ually rescaled using histogram percentile clip-
ping with limits 1% and 99%.

Models differ in the way the nucleus and mem-
brane channels are arranged as an input tensor. Cell-
pose and DeepCell provide exemplary usages of the
order to feed the channels into the model. Because
CellSAM stems from the same lab as the DeepCell
model, similar usage is assumed. VISTA-2D does not

IMC Inter-Annotator Agreement and Segmentation Model Limitations 4 / 11
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comewith a definedway how the nucleus andmem-
brane channel should be assigned to the expected
RGB input. Based on preliminary experimental val-
idation, the three input channels are ordered as fol-
lows: an empty channel (all zeros), the membrane
channel, and the nucleus channel.

3.3 Segmentation evaluation metrics
The right evaluation metric to choose for segmenta-
tion experiments heavily depends on the specific sce-
nario. Existing works on cell instance segmentation
rely on various metrics such as F1 score[14] (also re-
ported as the technically identical dice score[8]) or
mean average precision[26]. While the term mean
average precision is widely used for evaluating ob-
ject detection/newly trained models, it can be un-
clear how this metric translates to masks without
confidence scores per object. A recent work[27] un-
ravels this confusion by giving an overview on how
different variants of "average precision" metrics are
calculated. For evaluation of segmentation masks in
this work, three metrics are employed, all of which
rely on the calculation of the intersection over union
(IoU) of cell areas on a per object basis. In coher-
ence with [26], [27], the calculation for the "aver-
age precision" (AP) for a specific IoU threshold tIoU
is shown in equation 1. Note that this formula is
closely related to the F1/Dice score. After assigning
cell elements from the ground truth mask to cell ele-
ments on the prediction mask (TP ), leftover (with-
out counterpart) cells on the ground truth mask are
viewed as false negatives (FN) and leftover cells
on the prediction mask are treated as false positives
(FP ).

AP (tIoU ) =
TP (tIoU )

TP (tIoU ) + FN(tIoU ) + FP (tIoU )
(1)

The metric ap50 corresponds to AP from equa-
tion 1 at threshold tIoU = 0.5. The metric map com-
putes the arithmeticmean ofAP values at tIoU points
0.5 to 0.95 with a step size of 0.05. The sortedAP[28]
(sap) metric uses linear assignment optimization for
finding corresponding segmentation objects based
on their IoU, thereby allowing for IoU values below
0.5 to be included in the calculation. Further, the AP
metric is calculated at every available IoU point. This
is the equivalent of calculating the area on the whole
AP/IoU curve. In fact, this metric is similar to the
map metric, but instead of calculating the AP only
at points {0.5, 0.55, ..., 0.95}, the AP is calculated at
every step and also the arithmetic mean is used be-
tween steps. Figure 1 illustrates how the different

0.0 0.2 0.4 0.6 0.8 1.0
IoU

0.0

0.2

0.4

0.6

0.8

1.0

AP

Metrics visualized on toy example
map sap ap50

Figure 1: Exemplary depiction of the three met-
rics. The map metric constitutes the area under the
AP/IoU curve over the interval [0.5, 1.0]. The sap
metric corresponds to an approximation of thewhole
area under the AP/IoU curve. All values are exem-
plary.

metrics can be visually represented. The three met-
rics were chosen to assess performance not only at
one fixed threshold but also over a spectrum of IoU
values, providing a more comprehensive evaluation.
Since ap50 already provides a single-threshold score
(and F1/Dice would similarly focus on one cutoff),
F1/Dice was excluded to avoid redundant evalua-
tions.

4 Results and discussion

This section covers the experimental results. In
section 4.1, the inter-annotator agreement is deter-
mined. Section 4.2 evaluates the performance of au-
tomatic segmentation via generalist models against
the four expert-annotated masks obtained in a semi-
automatic fashion. Section 4.3 evaluates the per-
formance of the models on publicly available IMC
datasets. The generalist models are used out-of-the-
box without further fine tuning. Finally, Section 4.4
states limitations of the present study. For signifi-
cance testing in Figures 4 & 5, data was checked for
normality using the Shapiro-Wilk test and for homo-
geneity of variances using Bartlett’s test. Based on
these preliminary checks, if the data were normally
distributed and variances were equal, an indepen-
dent t-test was used; if normality was met but vari-
ances were unequal, Welch’s t-test was applied; and
if normality was not satisfied, the non-parametric
Mann-Whitney U test was chosen. For all experi-
ments significance tests yield p-values < 10−6, i.e.
statistically significant.

IMC Inter-Annotator Agreement and Segmentation Model Limitations 5 / 11
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Figure 2: Pairwise inter-annotator comparison across different metrics and patch modes. Abbreviations A1
– A4 denote Annotators 1 to 4, respectively.

4.1 Inter-annotator agreement
Employing the evaluation metrics from section 3.3
and the cell masks from the in-house dataset anno-
tated by four experts, the inter-annotator agreement
is determined as a baseline. Figure 3 presents a di-
rect comparison of each pair of annotators by dis-
playing manually annotated single cell mask bound-
aries from a single patch. Although this work deals
with single cell areas, the boundary is depicted here
for better visualization of the differences. The first
named annotator is depicted in blue, annotations
from the second annotator are visualized in gold.
Overlapping annotations are depicted in white. For
visual context, a contrast enhanced version of the
Ir191 metal tag channel is used as a background im-
age. The patch, originally of resolution 50 x 50 pixels,
is upscaled to 300 x 300 pixels using nearest neighbor
interpolation for better visibility. While large parts
of the respective cell boundaries are overlapping in
a pixel-perfect manner, we can also observe a sub-
jective bias where each annotator draws cellular bor-
ders. This results in minor spatial offsets (acceptable
errors) but also leads to under- and oversegmenta-
tion, which constitute unfavorable errors.

Table 3: Average inter-annotator agreement over all
annotators.

average map average sap average ap50
whole patch whole patch whole patch
.353 .345 .566 .557 .708 .686

Figure 2 lists detailed results for pairwise compar-
isons between expert annotators using an agreement
matrix. Numbers in whole image matrices therefore
show the arithmetic mean of 10 mask comparisons,
numbers in the patch matrices represent the arith-
meticmean of 360mask comparisons. Finally, Table 3
shows the overall average over all pairwise compar-
isons per evaluation metric.

The averaged inter-annotator values from Table 3
can be viewed as a reasonable upper bound for au-
tomatic segmentation models. Because if a model
would perform better on a set of annotated masks
from a specific annotator, discrepancies would in-
crease when evaluated against masks from other an-
notators. To achieve results that more accurately
reflect reality, methods beyond manual annotation
would be required for ground truth generation to
mitigate human biases. Hence, average performance
metrics are used as upper bounds in the following
diagrams, with average values indicated by dashed
lines. Note that these lines represent the arith-
metic mean from all inter-annotator calculations and
should thus be comparedwith themean values from
the boxplot diagrams to ensure a fair comparison.

4.2 Automatic segmentation using gener-
alist models

Figure 4 shows the results for model performance
on the in-house dataset for both modes, whole im-
ages and sliding window patches. Model outputs
are always compared against segmentation masks
from one annotator, indicated via abbreviations A1–
A4. The SAM based models appear to face diffi-
culties with the rather small cellular structures on
the whole-image resolution. For smaller patches,
the performance aligns well with the other two ap-
proaches. However, when compared to the human-
to-human baseline, model output results in inferior
segmentation performance across all three evalua-
tion metrics.

4.3 Automatic segmentation on public
datasets

Figure 5 presents the results of the model perfor-
mance on the four external datasets. Here, it is as-
sumed that the determined inter-annotator agree-

IMC Inter-Annotator Agreement and Segmentation Model Limitations 6 / 11
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Annot1 vs Annot2 Annot1 vs Annot3 Annot1 vs Annot4
map: .31 | sap: .52 | ap50: .60 map: .45 | sap: .64 | ap50: .76 map: .35 | sap: .56 | ap50: .67

Annot2 vs Annot3 Annot2 vs Annot4 Annot3 vs Annot4
map: .27 | sap: .49 | ap50: .64 map: .28 | sap: .55 | ap50: .69 map: .31 | sap: .52 | ap50: .67

Figure 3: Visualization of annotation agreement between two annotators and the corresponding metrics
per patch. Only cell borders are displayed for better visibility. Annotators colored in blue and golden.
Annotation overlap in white. Best viewed in color.
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Figure 4: Model outputs evaluated against annota-
tion masks on a per annotator basis.

ment from section 4.1 can also be applied to the ex-
ternal datasets, although the used tissue types differ.
The performance of VISTA-2D varies across datasets
for the whole-image mode, which can be attributed
to differences in average resolution per dataset as
outlined in Table 1. The better performance of Cell-
SAM on the whole images in comparison to the pre-
vious experiment using the in-house data can also be
explained by the differences in image resolution. For
the patching approach, all models perform best on
the H22 dataset, yet none reach the reasonable up-
per bound established by inter-annotator agreement
metrics, indicating systematic limitations in current
segmentation algorithms. The results on external
data reveal a larger variance in results compared to
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Figure 5: Model outputs evaluated on their available
segmentation masks.

previous experiments, likely due to increased sample
size capturing a broader biological heterogeneity.

4.4 Limitations of this study
While this work advances understanding of inter-
annotator agreement and generalist model cell seg-
mentation on IMC data, several constraints merit
consideration for future research:

• Antibody channel aggregation: The impact
of channel selection for nucleus & mem-
brane/cytoplasm aggregation remains unex-
plored. While multi-channel IMC data inher-
ently captures diverse biomarkers, the interplay

IMC Inter-Annotator Agreement and Segmentation Model Limitations 7 / 11
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between channel combinations could influence
segmentation robustness. Future studies should
systematically evaluate how channel aggrega-
tion strategies affect model performance. An-
other recent approach[29] tries to process all
channels separately, thereby avoiding the chan-
nel aggregation step entirely.

• Specialized IMC segmentation models: This
study focused on generalist models. While gen-
eralist models provide a convenient way due to
their out-of-the-box usage potential, IMC spe-
cific cell segmentation approaches such as [9]
also hold great potential.

• IMC specific pre-processing: Optional process-
ing steps such as hot pixel removal, spillover cor-
rection[30] and denoising[31] were not incor-
porated into the evaluation pipeline.

• Scale sensitivity in large images: Discrepan-
cies between whole-image and sliding-window
analyses suggest resolution-dependent detec-
tion challenges for small cells. Optimal crop
sizing and super-resolution techniques (e.g.
SpiDe-Sr[32]) could address this limitation by
preserving fine-grained structures without sac-
rificing contextual information.

• Emerging generalist architectures: Some ad-
vances in foundationmodels likeµSAM[33] and
SAMCell[34], were not included in this study.
Incorporating these models would strengthen
the findings of this work due to their SAMbased
nature.

These limitations, however, do not undermine the
core findings regarding inter-annotation agreement
and IMC segmentation performance using general-
ist models but highlight pathways to refine segmen-
tation pipelines.

5 Conclusion
This study first assessed the inter-annotator agree-
ment for IMC single cell segmentation by compar-
ing cell masks independently obtained by semi-
automatic annotation from four domain experts.
This presents a reasonable upper bound for auto-
matic segmentation approaches. Afterwards, four
generalistmodels are utilized to apply single cell seg-
mentation of the same data. Results indicate that
there is room left for improvement in the light of this
upper bound. Additionally, models also were tasked

to segment publicly available IMC data. Under as-
sumption that this upper bound still holds true for
the external data, similar conclusions regarding the
demand for further improvement of the accuracy can
be drawn. While this study includes a systematic
analysis of inter-annotator agreement and generalist
model performance on IMCdata, there are things yet
to be addressed such as employing specialized seg-
mentation models.

Data and code availability.
External data sets can be found through their corre-
sponding citations. The newly generated data and
the accompanied annotations are publicly available
at https://zenodo.org/records/15511299. The
code is available at https://gitlab.cosy.sbg.ac.
at/wavelab/imc-interannotator-agreement.
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