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Abstract
On what basis class labels (“ground truth”) get as-
signed to images heavily depends on the application
scenario, sometimes even without visual inspection
of the data. Therefore, it can be of interest to evalu-
ate whether distinguishing intrinsic structures exist
within the image data. In this study, it is investigated
if images from five small-scale endoscopic datasets
where class labels were assigned based on domain-
specific criteria can be algorithmically clustered into
the desired classes. The image classification task is
treated as a clustering comparison problem by com-
paring ground truth labels with clustering results de-
rived from a variety of image representations.
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1 Introduction

Image classification is one of the fundamental tasks
in the domain of computer vision. It involves assign-
ing a label or category to a given image based on its
visual content. With rapid advances in deep learning
techniques, image classification has become more ac-
curate and efficient, enabling machines to perceive
and interpret visual information with human-like
accuracy. However, having properly labeled data
points for learning and evaluation is paramount to
satisfying results. Such labels are a subset of meta-
data widely known in the machine learning and
computer science community as “ground truth” and
used to train a model via supervised learning. This
labeled data provide the “correct answers” that the
model should learn to predict. Throughout vari-
ous domains of science employing computer vision
tools, the understanding of ground truth and also the
process of obtaining slightly differs. In the domain
of medicine (and therefore heavily influenced is the
discipline of medical imaging), the term “gold stan-
dard” is used for the benchmark that is available un-
der reasonable conditions [1]. For data annotations,
experts often rely on the results from gold standard
methods.

Because the process of assigning a class label to
images does not necessarily rely on visual inspec-
tion, it can be unclear whether relevant structures for
distinguishing actually exist within the image data.
Also, some domains require experts for data labeling
while it is known [2] that, especially in the medical
fields, an inter-observer discrepancy exists. Further-
more, there is also the possibility that learning based
approaches learn something unintended but rather
forced by labeling. Thus, it is of interest to explore
if a collection of images can be grouped according to
the defined class labels, i.e. to assess the extent of
correspondence between class label and visual con-
tent.

In this work, we investigate the correspondence
between label and image content experimentally for
five small-scale datasets. To evaluate this correspon-
dence, a variety of image representations are first
grouped into clusters using a number of cluster-
ing algorithms and obtained cluster labels are after-
wards compared to the ground truth labels using a
clustering comparison metric.

2 Materials and methods

2.1 Data

For the experiments in this work, five small-scale en-
doscopic image datasets are employed where data
labeling happened under supervision of domain ex-
perts. Two image sets deal with celiac disease while
the other three focus on colonic polyps. Although
the datasets provide annotations for various stages
of the respective conditions, the labels are always
collapsed to a two-class scenario (healthy vs. patho-
logic or benign vs. malignant). In the following, ev-
ery dataset is briefly introduced. A property shared
across all the employed datasets is their imbalance
in terms of class distribution and that classes can be
further subdivided according to patient-ids. Thus,
dataset statistics can be visualized using nested pie
charts as depicted in Figure 1. Example patches for
every dataset are shown in Figure 2.

2.1.1 Celiac disease

Celiac disease (CD) is a chronic autoimmune con-
dition that affects approximately 1% of the global
population. Currently, the gold standard for di-
agnosing CD is endoscopy with biopsy. Specimen
are then classified in a histological analysis accord-
ing to the modified Marsh classification proposed
in [3] which distinguishes between classes Marsh-
0 to Marsh-3, with subclasses 3A, 3B, and 3C. The
used dataset includes classes Marsh-0, Marsh-3A,
Marsh-3B and Marsh-3C. For this dataset, patient-
level biopsy results were available rather than area-
specific data. Consequently, final patch labeling
incorporated both histological and visual criteria.
Within this work, class 0 is used as the healthy class
and classes 3A, 3B & 3C are collapsed to form the
disease class. Imaging techniques within the scope
of this work include the modified immersion tech-
nique (MIT) under traditional white-light (WL) illu-
mination, as well as MIT under narrow band imag-
ing (NBI). The green (the two left-most) pie charts in
Figure 1 visualize the distribution for the celiac sam-
ples. Further information about the dataset can be
found in [4].

2.1.2 Colonic polyps

Colonic polyps are growths that develop on the in-
ner lining of the colon or rectum. For colon exam-
ination, the current gold standard is colonoscopy.
Colonoscopy allows to investigate the inside of the
colon using an endoscope. This work employs three
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Figure 1: Distribution of the data for all datasets used in this work. The inner ring depicts the proportion of
the data for each class; segments in the outer ring indicate images from the same patient. The accompanying
integer value indicates the number of samples per class.

Celiac-WL Celiac-NBI Polyp-HM Polyp-HM Polyp-HD Polyp-HD
stained

he
al
th
y

pa
th
ol
og
ic

Figure 2: Example patches from all datasets included in this work.

such datasets, acquired using different imaging tech-
niques:

• Polyp-HM: This dataset was acquired using a
high magnification (HM) colonoscope together
with a contrast staining. Images within this im-
age set are classified based on six classes, known
as pit patterns [5]. These class labels are as-
signed solely based on the visual content. The
data distribution of the six classes, denoted as
P1 - P6, are visualized by the blue (center) pie
chart in Figure 1. They can be summarized as
P1 and P2 including benign polyps and P4 - P6
including malignant polyps. Additional infor-
mation about the data can be found in [6].

• Polyp-HD: Two further image datasets were ac-
quired using a high definition (HD) endoscope
with and without additional staining. For these
datasets, however, images are only divided into
three classes, “normal”, “non-invasive” and
“invasive” based on their histological diagno-
sis (abbreviated as P7 - P9, where P7 is treated
as the healthy class and P8 & P9 together are

viewed as the pathologic class). The data distri-
bution is depicted in the magenta (the two right-
most) pie charts in Figure 1. For further infor-
mation the interested reader is referred to [7].

2.2 Image representation

In our experiments, we employ a variety of image
representations to evaluate the intrinsic correspon-
dence between ground truth labels and image con-
tent. This approach is necessitated by the absence of
a universally optimal image representation. By eval-
uating multiple representations, we aim to compre-
hensively assess the intrinsic relationship between
image content and ground truth labels across differ-
ent levels of abstraction.

• Raw pixel values: We begin with flattened raw
pixel values, which provide the closest approxi-
mation to a “natural description” of the image.
While this representation preserves all original
information, it lacks desirable properties such as
spatial invariance.
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• Dimensionality reduction: We apply principal

component analysis (PCA) to reduce the dimen-
sionality of the raw pixel data. This step helps to
mitigate the curse of dimensionality and poten-
tially reveals latent structures in the data.

• Neural Networks: We utilize feature embed-
dings extracted from pre-trained deep learning
models. These representations excel at identi-
fying relevant structures in images due to their
ability to capture complex relations within the
data. However, it is important to note that these
networks, trained on ImageNet, introduce bi-
ases inherent to their training data. Yet, in pur-
suit of finding a “natural representation” of the
images and also to avoid learning something
unintended by force, we explicitly refrain from
fitting a model to our data. Network model
architectures are taken from the PyTorch Im-
age Models collection (https://github.com/
rwightman/pytorch-image-models) which en-
compasses a large variety of state-of-the-art
model architectures. In particular, seven
different architectures are employed in this
work: ResNet-18 & ResNet-50, MobileNetv3,
TinyNet, EfficientNet, Vision Transformer (ViT)
& Mobile-ViT. Within this work, models are uti-
lized such that images are embedded into a fea-
ture representation using a pre-trained network
where the final classification layer is removed.

2.3 Consensus of ground truth and image
content

To quantify the alignment between the assigned
ground truth and the image descriptors outlined in
Section 2.2, these descriptors are grouped using a va-
riety of algorithmic approaches for data clustering.
Three clustering algorithms are employed for the ex-
periments in this work: k-means clustering, hierachi-
cal (or agglomerative) clustering and spectral clus-
tering. Implementations from the scikit-learn python
library are used. After clustering, images have both a
ground truth class label and a newly generated clus-
ter label. For comparing both label assignments, the
ground truth assignment can be treated as a different
clustering result and thus the comparison be treated
as a case of clustering comparison. One such com-
parison method is the adjusted mutual information
(AMI) [8] metric, which is a version of mutual in-
formation that introduces a correction for chance by
considering the expected similarity of all pairwise
comparisons. For calculation of an expected simi-
larity value, a random model must be chosen based

on how the data points can be clustered. Accord-
ing to [8], the right random model to choose for ex-
periments within this work is the one-sided (always
comparing against the same basis, i.e. ground truth)
comparison with a fixed number of clusters.

3 Results
This section presents the experimental results. Bar
charts in Figure 3 depict the AMI values for compar-
ing the clustering labels with the ground truth labels
for every image representation and clustering algo-
rithm used in this work. As mentioned in Section 2.1,
image classes are always collapsed to a two-class sce-
nario. Regardless of how many of the first principal
components are used as a data representation, re-
sults for PCA embedding are quite similar. Hence,
only one case is used for visualization. All experi-
ments were carried out ten times. Error bars indicate
the standard deviation.

4 Discussion
The overview presented in Figure 3 indicates that
raw and PCA representations result in an overall
low AMI value, suggesting their unsuitability for our
analysis. Except for Polyp-HM, every dataset has
a configuration achieving a metric value of 0.4 of
higher. One particular combination even yields a
metric value exceeding 0.5 AMI. Here, 0.5 AMI can
be interpreted as roughly 90% of agreement between
class label and clustering, as discussed in Section 4.1.
It is interesting to observe that the Polyp-HM dataset
(labels assigned solely based on visual appearance)
appears to yield the lowest agreement of labels and
algorithmic clustering, whereas the AMI values for
other datasets (labels assigned also/solely based on
histological analysis) are relatively high. We can fur-
ther observe that the choice of clustering algorithm
and feature embedding has a high impact on the re-
sults. Hence, we can conclude that the employed
methodology appears to only provide insight into
coarse trends, but seems insufficient to give a defini-
tive answer to the correspondence between image la-
bels and visual content.

4.1 Relationship between AMI and clas-
sification accuracy

In an attempt to establish a relationship between the
AMI and an estimation of the classification accuracy,
two artificial clusterings were gradually alienated
and the corresponding metrics calculated. Figure 4
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Figure 3: Results of clustering comparison using the AMI metric.

depicts the simulated relationship between AMI and
accuracy for a two-class setup. Two cases for la-
bel randomization are considered: (i) permutation,
where the starting point is an equal amount of ele-
ments per cluster and on every step of scrambling
the labels, every cluster receives exactly one element
from the other cluster. Doing so, the number of ele-
ments per cluster does not change, merely the labels
get permuted. (ii) randomized, which also consid-
ers imbalanced clusters. Depending on the step, a
number of elements are picked and assigned to the
other cluster in a random fashion. The second case
is more realistic but doing so, however, does not re-
sult in an unambiguous relationship between AMI
and accuracy. The relationship can be understood as:
The clustering algorithm was able to separate the feature
embeddings as if a classifier model would score x% accu-
racy. Note that 0.5 accuracy corresponds to random
guessing in a two-class scenario.

References
[1] J. Cardoso, L. Pereira, M. Iversen, and A.

Ramos, “What is gold standard and what is
ground truth?” Dental Press J Orthod, vol. 19,
2014.

[2] R. Corona, A. Mele, M. Amini, G. De Rosa,
G. Coppola, P. Piccardi, M. Fucci, P. Pasquini,
and T. Faraggiana, “Interobserver variability
on the histopathologic diagnosis of cutaneous
melanoma and other pigmented skin lesions.,”
Journal of Clinical Oncology, vol. 14, no. 4, 1996.

[3] G. Oberhuber, G. Granditsch, and H. Vogel-
sang, “The histopathology of coeliac disease:
Time for a standardized report scheme for
pathologists,” en, Eur. J. Gastroenterol. Hepatol.,
vol. 11, no. 10, 1999.

[4] M. Gadermayr, S. Hegenbart, R. Kwitt, and A.
Uhl, “Narrow band imaging versus white-light:
What is best for computer-assisted diagnosis of
celiac disease?” In 2016 IEEE 13th International
symposium on biomedical imaging (ISBI), 2016.

[5] S. Kudo, S. Hirota, T. Nakajima, S. Hosobe,
H. Kusaka, T. Kobayashi, M. Himori, and A.
Yagyuu, “Colorectal tumours and pit pattern,”
J. Clin. Pathol., vol. 47, no. 10, 1994.
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