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Abstract. Intrinsic, non-invasive product authentication is the preferred
way of detecting counterfeit products as it does not generate additional
costs during the production process. Previous works achieved promis-
ing results for smartphone-based product authentication. However, while
promising, the methods fail when enrollment and authentication are per-
formed on different devices (cross-device). This work investigates the
underlying reasons for the limitations in the practical application of
cross-device intrinsic surface structure-based product authentication. In
particular by utilising micro-texture classification approaches applied on
images of zircon oxide blocks (dental implants) captured using a com-
modity smartphone device. The main result is that the device-specific
artefacts (image sensor as well as image processing-specific ones) are
so strong that they obfuscate the material microstructure. To be more
precise, the device’s intrinsic signal makes device identification easier to
perform than the material authentication.

Keywords: intrinsic product authentication · material classification ·
microstructure texture features · dental ceramic blocks · camera source
classification

1 Introduction

The wide-spread use and availability of mobile smartphone devices with built-in
high quality cameras opened new possibilities for mobile applications such as
classification of paving materials in urban environments [10], wood type iden-
tification [25], or personal authentication using biometrics [7]. Another recent
application employing non-modified commodity smartphone devices is to verify
a product’s origin or to assure that a product stems from a certain manufacturer
[26,3,8,24], denoted as product authentication. Counterfeit products do not only
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cause economic damage to the original manufacturers especially counterfeit med-
ical and health related products can directly harm the patients’ health. Hence,
manufacturers strive to implement ways to reliably detect non-genuine products,
with several available commercial solutions for extrinsic, e.g. AuthenticVision,
QLIKTag using NFC Tags as well as intrinsic mobile product authentication e.g.
AlpVision, Bosch and Sepio’s Logitrak.

Our previous work [22] addressed the practical applicability of using commod-
ity off-the-shelf smartphone devices in combination with a clip-on macro lens to
establish the authenticity of zircon oxide blocks, commonly used for dental ce-
ramics in an intrinsic, non-intrusive way based on their surface’s micro-texture.
Material classification worked well in an intra-sensor (”one device”) scenario, but
the tested classifiers faced problems and limitations in the inter-sensor (cross-
device) one. While a cross-device application is not an issue in many application
settings (e.g. in biometrics) it is well-known to cause problems in other settings,
e.g. in sensor forensics.

The main aim of this study is to investigate and understand the limiting
factors for the cross-device intrinsic product authentication performance, their
underlying reasons and in particular what happens during the image acquisition
(i.e. the influence of the image signal processing tool-chain). This is an important
step prior to developing appropriate countermeasures (i.e. training classifiers that
work for smartphone devices unavailable during training) and can only be done in
an explorative manner. Therefore, a second version of the zircon oxide block data
set is acquired with more smartphone devices (7 in total), additionally capturing
raw images as well. Furthermore, sensor identification experiments are performed
as it turned out that sensor identification works better than the cross-device
material classification. Sensor identification deals with establishing the origin of
a digital image, i.e. linking an image to an image sensor/camera and can be done
on two levels: manufacturer/type level or device/single instance level with the
pixel response non-uniformity (PRNU) [14] being the most common approach
for single instance sensor identification. There are other artefacts stemming from
the image sensor, e.g. optical lens distortions, chromatic aberration, the layout
of the physical pixel pattern on the sensor surface (Bayer pattern) as well as
device-inherent processing steps from the image signal processor (ISP) which
were successfully utilised as well [1,4]. The signal of these imaging artefacts
might overlay the micro-structure texture features, impacting the cross-sensor
material classification accuracy. This influence is evaluated utilising raw images,
several variants of raw to RGB conversion and by applying an image denoising
filter.

The rest of this work is organised as follows: Section 2 gives an overview
on previous works about product authentication with a focus on smartphone-
based mobile solutions. Section 3 introduces the dental ceramic data set, outlines
the the micro-texture classification approaches and describes the experimental
set-up. Section 4 lists and discusses the experimental results. Finally, Section 5
concludes this work and gives an outlook on future work.
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2 Related Work

Product authentication can be categorised into intrinsic and extrinsic methods,
where the latter ones rely on external properties added to the product. This can
be as simple as a signed physical document, which can be easily forged, up to in-
dividual, hard-to-forge features that are embedded in each single product. These
so called copy detection patterns (CDP) are usually a high resolution QR or 2D
code printed with industrial printers on the product or its packaging. With the
advancements in digital scanning technology and home printer equipment, CDPs
are more often subject to successful illegal reproduction. Taran et al. [26,27]
proposed a machine-learning framework (based on a one-class support vector
machine) to explore the resistance of CDPs to illegal reproduction. They estab-
lished a publicly available CDP dataset, tailored to real life conditions, named
the ”Indigo mobile dataset”, captured using commodity smartphones (iPhone
XS) under regular light conditions. Their reported results suggest that modern
mobile phones allow to reliably authenticate CDPs under the considered classes
of fakes. Cai et al. [3] proposed a deep learning product authentication approach
for leather products based on texture features extracted from the material which
are encoded into a non-detachable 2D barcode, which can be easily scanned and
verified by consumers. Yan et al. [30] presented a framework that combines
micro-texture features in combination with a QR code for anti-counterfeiting.
Visual features and the QR code are registered on the assembly line and stored
in a cloud and are then compared to images captured using a mobile phone
for verification. The EU implemented the Falsified Medicines Directive (FMD)
2011/62/EU, based on product serialisation, i.e. a unique identifier in the form
of a 2D barcode is added to each product, enabling to track and identify each
medical package along the supply chain. It requires a central database and the
packages to be equipped with safety features in order to avoid tampering.

Any form of external embedded features can be cumbersome to implement
into a running production chain, require complex processing techniques, might
add the demand for a back-end database infrastructure that needs to be admin-
istrated and increase the production costs. Thus, manufacturers prefer intrinsic
methods, which are based solely on constant but discriminative intrinsic features
of the product or its packaging material for product authentication. In practice,
a further requirement is that the authentication can be done in a non-invasive
way, i.e. without altering the product. The concept of surface micro-structures
or so called physical non-cloneable functions (PUFs) is widely used in intrinsic
product/material authentication, especially for paper based materials [11]. Pa-
per PUFs use the fiber structure of paper as physical/intrinsic characteristic. In
2012, Voloshynovskiy et al. established the publicly available FAMOS data set
[28], captured under different illumination conditions and with two different cam-
eras and derived statistical authentication frameworks which achieved promising
results. To overcome the main drawback of using micro-structures for product
authentication - the large storage space required for the extracted feature infor-
mation - the authors [2] suggested to use digital content fingerprints as a short
and robust representation. In [9] the authors extended their previous work and
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showed that it is feasible to uniquely identify packages based on micro-structure
images acquired using an unmodified consumer smartphone without any special
lighting or adaptation. They pointed out that the smartphone captured im-
ages suffer from non-linear distortions (lens distortions), geometrical distortions
introduced by the user holding the phone in different manners and non-even,
varying lighting conditions, all affecting the classification accuracy. However,
no cross-device experiments between the smartphone and the handheld cam-
eras have been performed. In a follow-up work [8] they utilised ”SketchPrint”,
an approach previously introduced by the authors [29], which should provide
reasonable invariance to varying lightning conditions and geometric distortions.
They acquired a data set of 50 paper sheets with a commodity non-modified
smartphone and achieved a reasonable performance. Schraml et al. [20,21] used
micro-texture images of drug package material for product authentication in an
open set scenario, which worked well in the intra-sensor scenario. Their later
results in [21] showed that the classification capability is greatly reduced in a
cross-sensor/device scenario with scaling issues (different dpi resolutions) as well
as artefacts introduced during the image processing pipeline mentioned as rea-
sons for the non-satisfactory performance. Sun et al. [24] utilised an efficient
micro-structure orientation estimation technique, which models the entire prop-
agation path of the light, to establish the authenticity of paper sheets using
images captured with a mobile camera and its built-in flash. Sun et al. proposed
the so called ”LiquidHash” approach [23] for the detection of counterfeit liquid
food products, based on the characteristics of air bubbles formed if the bottle
is flipped. They utilised commodity off-the-shelf smartphone devices to capture
a video stream of the bubble movement in combination with computer vision
techniques to detect adulterated liquid products on a small data set (3 authentic
and 8 counterfeit products).

While a sensor-aware classifier, specifically trained for each of the employed
sensors could definitely improve the inter-sensor performance, the actual aim is
to train a classifier that also works on smartphone devices not available during
training. In practical applications the classification model is trained on a few
particular devices, while the authentication should not be restricted to those
devices but be possible on any modern off-the-shelf smartphone device so that
even an end user can easily check if a product is genuine or counterfeit. The
above works show that cross-device extrinsic product authentication as well as
intrinsic micro-structure based material classification is feasible in practical ap-
plications using commodity smartphone devices. However, cross-device intrin-
sic micro-structure based product authentication has hardly been investigated.
There is at least some evidence that the cross-device authentication performance
is drastically reduced [21].



Limiting Factors in Smartphone Cross-Sensor Microstructure Mat. Classific. 5

3 Experimental Setup

In the following, the database used within this study is explained in detail.
Afterwards the employed texture classification tool-chain for the experiments
Section 4 is described.

3.1 Database

Fig. 1: Unprocessed Zircon Oxide Ceramic Blocks.

The micro-texture database comprises of images acquired from the top side
of zircon oxide blocks produced by three different manufacturers: 10 blocks pro-
duced by Ivoclar Vivadent, 6 by Dentsply and 16 by 3M. The different number
of zircon oxide blocks is due to their limited availability. See Figure 1 for exam-
ples of such blocks. The acquisition setup is depicted in Figure 2. Four images,
one on every top-side corner, were captured from every block using a macro lens
Agritix WIDK-24X01 Xylorix Wood Identification Tool clipped onto the smart-
phone’s camera with seven different smartphones (40, 24 and 64 samples per
smartphone for Ivoclar Vivadent, Dentsply Sirona and 3M, respectively). The
distance between the block surface and the macro lens surface was 8 mm (This
distance was best for successful auto-focusing). The macro lens has a circular
illumination ring which was used on the brightest of the three settings during the
acquisition to suppress the influence of varying lighting conditions and enhance
the visibility of the surface micro-structure.

Checkerboard pattern images revealed that the fields of view between the
various devices are similar but the resolutions are only coarsely matching. There-
fore, a resolution normalization is applied by down-scaling the images to a fixed
resolution of 2074x2765 using bilinear interpolation. Sensor resolutions and the
scaling factors for each smartphone are listed in Table 1. Scaling the images
with different factors naturally introduces resolution specific artefacts. Hence,
one experiment in Section 4 deals with images without prior scale adjustments.
The next step is to extract multiple patches by at first rotating the images
to landscape orientation. Afterwards, the images are converted to gray-scale
and nine patches of size 512 × 512 are cropped from the center as shown in



6 J. Schuiki, C. Kauba, H. Hofbauer and A. Uhl

Fig. 2: Acquisition setup for the zircon oxide blocks, smartphone with clip-on
macro lens.

Figure 3, resulting in 576, 216 and 360 patches for Ivoclar Vivadent, Dentsply
Sirona and 3M, respectively. This patching and down-scaling strategy avoids
distortion (at the image boundaries) and black area (macro lens not perfectly
aligned with the smartphone’s lens) artefacts introduced by the macro lens. No
further pre-processing (e.g. contrast enhancement) is employed to best preserve
the micro-structures of the ceramic material and artefacts due to the sensor and
ISP pipeline.

Table 1: Smartphones and their imaging sensor resolution.

Smartphone
Image

Resolution
Scaling
Factor

Google Pixel 4a (GP) 3024 x 4032 0.686
Huawei P20 Lite (H20) 3456 x 4608 0.600
Huawei P30 Pro (H30) 2736 x 3648 0.758
iPhone 11 (i11) 3024 x 4032 0.686
iPhone 13 Pro (i13) 3024 x 4032 0.686
Samsung Galaxy A52 (SG) 3468 x 4624 0.598
Xiaomi Mi A3 (XM) 3000 x 4000 0.691

Results from previous experiments [22] suggested that the smartphone inher-
ent ISP greatly influences the cross-sensor performance. Hence, all images were
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captured in raw in addition to the ”normal” (ISP) image. Usually, the standard
smartphone camera application does not allow to capture raw images. Hence,
suitable camera applications were employed: OpenCamera for devices running
Android and Halide Mark II for the iPhone devices. Two applications are used
for conversion from the raw data, i.e. the Bayer pattern image, to an RGB im-
age: Darktable (DT) and dcraw. Dcraw offers the possibility to set additional
parameters such as -a (DCA) to average the whole image for white balance
or -d to omit demosaicing, denoted as CFA (for color filter array) in the later
experiments.

In order to remove PRNU and other sensor artefacts, images additionally
underwent denoising by application of the BM3D [6] denoising filter. Results in
Section 4 generated using denoised images are denoted with DN.

1 2 3

4 5 6

7 8 9

Fig. 3: Patch annotations in a zircon oxide block image.

3.2 Texture Classification Tool-Chain

Six distinct feature extraction techniques are employed in this study: Dense SIFT
[13] (SIFT descriptors applied on a fixed-spaced grid), Dense Micro-block Dif-
ference (DMD) [15], Local Binary Pattern Histograms (LBP) [17], Local Phase
Quantization (LPQ) [18] and Weber Pattern (WP) [16]. In addition to the afore-
mentioned standard LBP variant, a second LBP feature descriptor is employed.
LBP can be made rotational invariant by using a number of rotational shifts of
the pattern equal to the number of points and taking the minimum. This method
will be denoted as ror (n.b. this is not uniform LBP). Varying the radius of the
LBPs can make it use differently sized structures and this will be denoted as
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Rx where x is the radius in pixels. The extracted feature vectors (except the
ones from the ror LBP) are subsequently encoded using improved Fisher vec-
tor encoding [19] in a similar way as originally proposed in [5]. They undergo a
soft-quantization using a Gaussian mixture model and dimensionality reduction
using principle component analysis. A support vector machine with linear kernel
is utilized to classify the encoded features. For more details the interested reader
is referred to our previous work [12].

The accuracy, defined as the number of correct classifications divided by the
number of total classifications, is used as an evaluation metric to quantify the
classification performance. The reported value in the experiments in Section 4 is
the average accuracy, i.e. the arithmetic mean over all accuracies for a particular
experiment.

4 Experimental Results

The experiments are divided into three parts: in (i) the acquired ceramic sam-
ples are classified with regard to their manufacturer in an intra-sensor scenario
to verify that they contain enough texture information, in (ii) inter-sensor exper-
iments are carried out, which constitutes a more realistic scenario, while in (iii)
further experiments (camera classification) concerning the factors responsible for
the bad results are done.

4.1 Intra-sensor ceramic texture classification

Table 2: Average ceramic classification accuracy in intra-sensor setup.
ISP ISP DT DT DCA DCA CFA CFA

DN DN DN DN

SIFT 0.997 0.993 0.994 0.995 0.997 0.997 0.996 0.997
DMD 0.988 0.986 0.987 0.982 0.990 0.991 0.981 0.981
LBP 0.720 0.791 0.656 0.795 0.587 0.809 0.399 0.398
WP 0.760 0.770 0.752 0.787 0.760 0.804 0.670 0.675
LPQ 0.519 0.767 0.428 0.819 0.378 0.757 0.422 0.646

A random 50/50 training/evaluation data split, training using images from the
same camera only, was performed. The average accuracy over all cameras for
each imaging modality and feature is reported in Table 2. Obviously there is a
signal strong enough for classification in all imaging modalities, e.g. SIFT reaches
99% classification accuracy for each modality.

Raw with denoising (DT DN, DCA DN, CFA DN) performs better than reg-
ular (ISP) images which include artefacts from the image processing pipeline.
As the samples’ patches in fig 4 show, the surface micro-structure texture com-
ponents are hardly discernible. Thus, the imaging pipeline’s artefacts clearly
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ISP ISP DN DT DT DN

DCA DCA DN CFA CFA DN

Fig. 4: Samples of ceramic images per imaging modality.

impact the ceramic sample image patches, lowering the classification accuracy
and making raw the preferred choice.

4.2 Practical consideration: Inter-camera classification

Table 3: Average inter-sensor ceramic classification accuracy.
ISP ISP DT DT DCA DCA CFA CFA

DN DN DN DN

SIFT 0.892 0.899 0.936 0.945 0.899 0.936 0.701 0.762
DMD 0.774 0.825 0.735 0.826 0.720 0.853 0.483 0.492
LBP 0.389 0.619 0.390 0.720 0.376 0.610 0.332 0.373
WP 0.484 0.676 0.595 0.698 0.593 0.638 0.362 0.366
LPQ 0.380 0.438 0.338 0.456 0.348 0.361 0.296 0.315
LBP R1 0.587 0.758 0.644 0.910 0.643 0.790 0.505 0.510
LBP R1 ror 0.567 0.769 0.966 0.911 0.672 0.776 0.500 0.517
LBP R4 ror 0.847 0.870 0.942 0.942 0.925 0.915 0.602 0.606

The results confirm that ceramic material classification is possible in the
intra-device scenario while in practice it needs to be possible across different
devices as well. To evaluate this cross-device scenario, a leave-one out training
regime is used, i.e. train on 6 out of 7 ceramics and test on the 7th one, performed
7 times (for each ceramic). The (averaged) end results are given in Table 3.

The drop in classification accuracy compared to the intra-sensor scenario
is quite substantial, especially for ISP. In most cases denoising improves the
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classification results, with a best accuracy of 94%, but less than 70% in many
other cases, which is not satisfactory. An interesting observation is that the
drop in accuracy also happens with raw modes, in the best case using denoising
there is a drop of 5%. Such a behaviour is not surprising for the ISP case, as
each manufacturer and/or smartphone combination uses a different processing
pipeline. Raw however, should not be influenced, with the resolution being the
obvious difference (which is corrected, c.f. discussion in Section 3.1).

Table 4: Average ceramic classification accuracy in inter-sensor setup using SIFT
features and DCA images.

Test
GP H20 H30 i11 i13 SG XM

T
ra
in

GP – 0.837 0.852 0.707 0.832 0.607 0.997
H20 0.605 – 0.515 0.333 0.352 0.455 0.465
H30 0.846 0.716 – 0.676 0.854 0.751 0.906
i11 0.480 0.663 0.381 – 0.864 0.380 0.613
i13 0.813 0.579 0.362 0.819 – 0.344 0.552
SG 0.831 0.668 0.603 0.675 0.963 – 0.943
XM 0.982 0.804 0.451 0.787 0.903 0.358 –

To validate if this behaviour is manufacturer or camera specific, an experi-
ment where training is done on images from one camera and evaluated on images
from another one, for all ISP/RAW/DN types and features, is conducted. The
general trend is the same for all those combinations, so only SIFT on DCA is
shown in Table 4 for reasons of brevity. Unfortunately our database is rather
limited in terms of multiple smartphone models from the same manufacturer.
However, for the Huawei smartphone cameras it is clearly a camera specific issue:
if trained on Huawei H30, the H20 has the second worst performance of all cam-
eras (highlighted in red colour in Table 4). On the other hand, the iPhones (i11
vs. i13 - highlighted in green in Table 4) work well in cross-training, still being
inferior to many of the other tested combinations. Hence, in general it cannot be
considered as a manufacturer specific effect but more a camera specific one. Also
note that this is not reciprocal, i.e. if training on A performs well on B, training
on B is not guaranteed to work well on A, e.g. for SG and XM (highlighted in
orange in Table 4) - training on SG results in an accuracy of 94%, but training
on XM only achieves 35% accuracy on SG.

4.3 Camera classification

The signal of the camera/ISP is strong enough to obfuscate the micro-
structure texture information used for material classification to a (sometimes
strong) degree, raising the question if this can be used for camera classification.
To test this, a leave-one material out cross-validation for camera classification
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Table 5: Average sensor identification accuracy.
ISP ISP DT DT DCA DCA CFA CFA

DN DN DN DN

SIFT 0.966 0.870 0.880 0.725 0.894 0.770 0.977 0.995
DMD 0.934 0.923 0.879 0.750 0.863 0.716 0.990 0.996
LBP 0.910 0.559 0.823 0.490 0.842 0.580 0.983 0.969
WP 0.796 0.497 0.393 0.375 0.443 0.480 0.962 0.947
LPQ 0.655 0.373 0.694 0.335 0.529 0.390 0.898 0.914
LBP R1 0.935 0.879 0.859 0.606 0.862 0.712 0.999 0.997
LBP R1 ror 0.981 0.880 0.527 0.563 0.883 0.690 0.999 0.996
LBP R4 ror 0.865 0.805 0.692 0.549 0.703 0.615 0.990 0.986

is performed. The results are given in Table 5. Camera classification works well
with regular images processed by the ISP (98% accuracy) while raw ones perform
worse in most cases. However, if the Bayer pattern is kept visible, the classifica-
tion rate even reaches 99% accuracy. So apparently there are two signals able to
identify the camera: the Bayer pattern and the image processing pipeline. What
is more, the color filter arrays between models from the same manufacturer are
different enough to differentiate between the devices.

Table 6: Classification accuracy results CFA unscaled.
Texture

Classification
Sensor

Identification

CFA CFA DN CFA CFA DN

SIFT 0.453 0.736 1.000 1.000
DMD 0.333 0.333 1.000 1.000
LBP 0.344 0.277 0.973 0.981
WP 0.539 0.755 0.666 0.399
LPQ 0.325 0.445 0.842 0.616

To rule out the influence of scaling (as a result of unifying the resolution),
the camera identification experiment was carried out a second time using CFA
samples without prior scaling. Figure 5 shows examples of unscaled CFA patches.
The results are given in Table 6. While the texture classification performance
is drastically reduced, sensor classification accuracy even reaches 100%, hereby
allowing to deduce that scaling artefacts are not the reason for such a high
accuracy.

4.4 Discussion of Results

For material classification the camera intrinsic signal has a detrimental effect
on the classification as it obfuscates the material intrinsic one to a significant
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Fig. 5: Ceramic patches of size 26x26 converted with ”dcraw -d”. No down-scaling
or denoising involved.

extent. This can partly be counteracted by capturing the images in raw format
and denoising the images, as the camera specific signal is noise-like while the
material specific signal is more coarse. This leads to a promising accuracy of 94%
even in the cross-device scenario. However, it excludes a large number of devices,
especially older ones not able to capture in raw mode. Hence, if they should be
included, only the ISP images can be used, leading to a drop in accuracy to 87%
(with denoising).
For device classification it became apparent that there are in reality two, proba-
bly not entirely independent, signals which can be used for camera identification.
One is based on the sensor’s intrinsics and image processing pipeline and the
other one based on the Bayer-pattern and also the scaling done for resolution
compensation. By using the second one (Bayer pattern), an incredibly high ac-
curacy (99%) per patch can be achieved, but in practice it is still of little use
as typical camera identification tasks are performed on regular images processed
by the ISP rather than on raw ones, leaving us with the first one. Based on the
first one (signal processing pipeline) the achievable accuracy is also high (98%
per patch).

5 Conclusion

This work investigated the underlying reasons for the limitations in using un-
modified off-the-shelf smartphone devices for intrinsic product authentication
for ceramic materials based on their surface micro-structure. The experiments
confirmed that there is an intrinsic signal from the material texture as well as
one stemming from the camera itself which can be used to identify either one.
The camera intrinsic signal, however, obfuscates the material intrinsic one to a
significant extent, lowering the material classification accuracy, which can partly
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be counteracted by capturing the images in raw mode. In reality there are two,
probably not entirely independent, signals stemming from the imaging device
which can be used for camera identification, one based on the sensor’s intrinsics
and image processing pipeline and the other one based on the Bayer-pattern.
Even using the latter one an accuracy of 99% can be achieved.

Future work will include deep learning methods for classification and feature
extraction. It is worth further investigating what constitutes the signal/ texture/
feature used for device identification. This is related to the topic of ”cover source
mismatch” in steganalysis. Hence, ideas from steganalysis to mitigate the cover
source mismatch will be investigated too. With more precise information about
the signal it can be removed to strengthen the material classification perfor-
mance. Furthermore, we will acquire additional samples with different entities
of the same smartphone model in order to identify the contribution of the ISP
and the sensor specific artefacts.
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