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Abstract
Intrinsic, non-invasive product authentication is the
preferred way of detecting counterfeit products as it
does not generate additional costs during the pro-
duction process. Previous works achieved promis-
ing results for smartphone-based product authenti-
cation. However, while promising, the methods fail
when enrollment and authentication are performed
on different devices (cross-device). This work in-
vestigates the underlying reasons for the limitations
in the practical application of cross-device intrin-
sic surface structure-based product authentication.
In particular by utilising micro-texture classifica-
tion approaches applied on images of zircon oxide
blocks (dental implants) captured using a commod-
ity smartphone device. The main result is that the
device-specific artefacts (image sensor as well as im-
age processing-specific ones) are so strong that they
obfuscate the material microstructure. To be more
precise, the device’s intrinsic signal makes device
identification easier to perform than the material au-
thentication.
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1 Introduction

The wide-spread use and availability of mobile
smartphone devices with built-in high quality cam-
eras opened new possibilities for mobile applica-
tions such as classification of paving materials in
urban environments [1], wood type identification
[2], or personal authentication using biometrics [3].
Another recent application employing non-modified
commodity smartphone devices is to verify a prod-
uct’s origin or to assure that a product stems from a
certain manufacturer [4]–[7], denoted as product au-
thentication. Counterfeit products do not only cause
economic damage to the original manufacturers es-
pecially counterfeit medical and health related prod-
ucts can directly harm the patients’ health. Hence,
manufacturers strive to implement ways to reliably
detect non-genuine products, with several available
commercial solutions for extrinsic, e.g. AuthenticVi-
sion, QLIKTag using NFC Tags as well as intrinsic
mobile product authentication e.g. AlpVision, Bosch
and Sepio’s Logitrak.

Our previous work [8] addressed the practical ap-
plicability of using commodity off-the-shelf smart-
phone devices in combination with a clip-on macro
lens to establish the authenticity of zircon oxide
blocks, commonly used for dental ceramics in an in-
trinsic, non-intrusive way based on their surface’s
micro-texture. Material classification worked well
in an intra-sensor (”one device”) scenario, but the
tested classifiers faced problems and limitations in
the inter-sensor (cross-device) one. While a cross-
device application is not an issue in many application
settings (e.g. in biometrics) it is well-known to cause
problems in other settings, e.g. in sensor forensics.

The main aim of this study is to investigate and
understand the limiting factors for the cross-device
intrinsic product authentication performance, their
underlying reasons and in particular what happens
during the image acquisition (i.e. the influence of
the image signal processing tool-chain). This is
an important step prior to developing appropriate
countermeasures (i.e. training classifiers that work
for smartphone devices unavailable during training)
and can only be done in an explorative manner.
Therefore, a second version of the zircon oxide block
data set is acquired with more smartphone devices (7
in total), additionally capturing raw images as well.
Furthermore, sensor identification experiments are
performed as it turned out that sensor identification
works better than the cross-device material classifi-
cation. Sensor identification deals with establishing
the origin of a digital image, i.e. linking an image
to an image sensor/camera and can be done on two

levels: manufacturer/type level or device/single in-
stance level with the pixel response non-uniformity
(PRNU) [9] being the most common approach for
single instance sensor identification. There are other
artefacts stemming from the image sensor, e.g. op-
tical lens distortions, chromatic aberration, the lay-
out of the physical pixel pattern on the sensor sur-
face (Bayer pattern) as well as device-inherent pro-
cessing steps from the image signal processor (ISP)
which were successfully utilised as well [10], [11].
The signal of these imaging artefacts might overlay
the micro-structure texture features, impacting the
cross-sensor material classification accuracy. This
influence is evaluated utilising raw images, several
variants of raw to RGB conversion and by applying
an image denoising filter.

The rest of this work is organised as follows: Sec-
tion 2 gives an overview on previous works about
product authentication with a focus on smartphone-
based mobile solutions. Section 3 introduces the
dental ceramic data set, outlines the the micro-
texture classification approaches and describes the
experimental set-up. Section 4 lists and discusses
the experimental results. Finally, Section 5 concludes
this work and gives an outlook on future work.

2 Related Work
Product authentication can be categorised into in-
trinsic and extrinsic methods, where the latter ones
rely on external properties added to the product.
This can be as simple as a signed physical docu-
ment, which can be easily forged, up to individual,
hard-to-forge features that are embedded in each sin-
gle product. These so called copy detection patterns
(CDP) are usually a high resolution QR or 2D code
printed with industrial printers on the product or its
packaging. With the advancements in digital scan-
ning technology and home printer equipment, CDPs
are more often subject to successful illegal repro-
duction. Taran et al. [4], [12] proposed a machine-
learning framework (based on a one-class support
vector machine) to explore the resistance of CDPs
to illegal reproduction. They established a publicly
available CDP dataset, tailored to real life conditions,
named the ”Indigo mobile dataset”, captured using
commodity smartphones (iPhone XS) under regular
light conditions. Their reported results suggest that
modern mobile phones allow to reliably authenticate
CDPs under the considered classes of fakes. Cai et
al. [5] proposed a deep learning product authentica-
tion approach for leather products based on texture
features extracted from the material which are en-
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coded into a non-detachable 2D barcode, which can
be easily scanned and verified by consumers. Yan et
al. [13] presented a framework that combines micro-
texture features in combination with a QR code for
anti-counterfeiting. Visual features and the QR code
are registered on the assembly line and stored in a
cloud and are then compared to images captured
using a mobile phone for verification. The EU im-
plemented the Falsified Medicines Directive (FMD)
2011/62/EU, based on product serialisation, i.e. a
unique identifier in the form of a 2D barcode is added
to each product, enabling to track and identify each
medical package along the supply chain. It requires
a central database and the packages to be equipped
with safety features in order to avoid tampering.

Any form of external embedded features can be
cumbersome to implement into a running produc-
tion chain, require complex processing techniques,
might add the demand for a back-end database in-
frastructure that needs to be administrated and in-
crease the production costs. Thus, manufacturers
prefer intrinsic methods, which are based solely on
constant but discriminative intrinsic features of the
product or its packaging material for product au-
thentication. In practice, a further requirement is
that the authentication can be done in a non-invasive
way, i.e. without altering the product. The concept
of surface micro-structures or so called physical non-
cloneable functions (PUFs) is widely used in intrinsic
product/material authentication, especially for pa-
per based materials [14]. Paper PUFs use the fiber
structure of paper as physical/intrinsic characteris-
tic. In 2012, Voloshynovskiy et al. established the
publicly available FAMOS data set [15], captured un-
der different illumination conditions and with two
different cameras and derived statistical authentica-
tion frameworks which achieved promising results.
To overcome the main drawback of using micro-
structures for product authentication - the large stor-
age space required for the extracted feature infor-
mation - the authors [16] suggested to use digital
content fingerprints as a short and robust represen-
tation. In [17] the authors extended their previous
work and showed that it is feasible to uniquely iden-
tify packages based on micro-structure images ac-
quired using an unmodified consumer smartphone
without any special lighting or adaptation. They
pointed out that the smartphone captured images
suffer from non-linear distortions (lens distortions),
geometrical distortions introduced by the user hold-
ing the phone in different manners and non-even,
varying lighting conditions, all affecting the classi-
fication accuracy. However, no cross-device exper-
iments between the smartphone and the handheld

cameras have been performed. In a follow-up work
[6] they utilised ”SketchPrint”, an approach previ-
ously introduced by the authors [18], which should
provide reasonable invariance to varying lightning
conditions and geometric distortions. They acquired
a data set of 50 paper sheets with a commodity non-
modified smartphone and achieved a reasonable per-
formance. Schraml et al. [19], [20] used micro-
texture images of drug package material for prod-
uct authentication in an open set scenario, which
worked well in the intra-sensor scenario. Their later
results in [20] showed that the classification capabil-
ity is greatly reduced in a cross-sensor/device sce-
nario with scaling issues (different dpi resolutions)
as well as artefacts introduced during the image pro-
cessing pipeline mentioned as reasons for the non-
satisfactory performance. Sun et al. [7] utilised an
efficient micro-structure orientation estimation tech-
nique, which models the entire propagation path
of the light, to establish the authenticity of paper
sheets using images captured with a mobile cam-
era and its built-in flash. Sun et al. proposed the
so called ”LiquidHash” approach [21] for the detec-
tion of counterfeit liquid food products, based on
the characteristics of air bubbles formed if the bot-
tle is flipped. They utilised commodity off-the-shelf
smartphone devices to capture a video stream of the
bubble movement in combination with computer vi-
sion techniques to detect adulterated liquid products
on a small data set (3 authentic and 8 counterfeit
products).

While a sensor-aware classifier, specifically trained
for each of the employed sensors could definitely im-
prove the inter-sensor performance, the actual aim
is to train a classifier that also works on smartphone
devices not available during training. In practical ap-
plications the classification model is trained on a few
particular devices, while the authentication should
not be restricted to those devices but be possible on
any modern off-the-shelf smartphone device so that
even an end user can easily check if a product is
genuine or counterfeit. The above works show that
cross-device extrinsic product authentication as well
as intrinsic micro-structure based material classifica-
tion is feasible in practical applications using com-
modity smartphone devices. However, cross-device
intrinsic micro-structure based product authentica-
tion has hardly been investigated. There is at least
some evidence that the cross-device authentication
performance is drastically reduced [20].
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Figure 1: Unprocessed Zircon Oxide Ceramic Blocks.

3 Experimental Setup
In the following, the database used within this study
is explained in detail. Afterwards the employed tex-
ture classification tool-chain for the experiments Sec-
tion 4 is described.

3.1 Database

The micro-texture database comprises of images
acquired from the top side of zircon oxide blocks pro-
duced by three different manufacturers: 10 blocks
produced by Ivoclar Vivadent, 6 by Dentsply and 16
by 3M. The different number of zircon oxide blocks is
due to their limited availability. See Figure 1 for ex-
amples of such blocks. The acquisition setup is de-
picted in Figure 2. Four images, one on every top-
side corner, were captured from every block using
a macro lens Agritix WIDK-24X01 Xylorix Wood Iden-
tification Tool clipped onto the smartphone’s camera
with seven different smartphones (40, 24 and 64 sam-
ples per smartphone for Ivoclar Vivadent, Dentsply
Sirona and 3M, respectively). The distance between
the block surface and the macro lens surface was
8 mm (This distance was best for successful auto-
focusing). The macro lens has a circular illumination
ring which was used on the brightest of the three set-
tings during the acquisition to suppress the influence
of varying lighting conditions and enhance the visi-
bility of the surface micro-structure.

Checkerboard pattern images revealed that the
fields of view between the various devices are sim-
ilar but the resolutions are only coarsely matching.
Therefore, a resolution normalization is applied by
down-scaling the images to a fixed resolution of
2074x2765 using bilinear interpolation. Sensor reso-
lutions and the scaling factors for each smartphone
are listed in Table 1. Scaling the images with dif-
ferent factors naturally introduces resolution specific
artefacts. Hence, one experiment in Section 4 deals
with images without prior scale adjustments. The
next step is to extract multiple patches by at first ro-
tating the images to landscape orientation. After-
wards, the images are converted to gray-scale and
nine patches of size 512 × 512 are cropped from the

Smartphone

Zircon Oxide Block

Macrolens

Figure 2: Acquisition setup for the zircon oxide
blocks, smartphone with clip-on macro lens.

Table 1: Smartphones and their imaging sensor res-
olution.

Smartphone Image
Resolution

Scaling
Factor

Google Pixel 4a (GP) 3024 x 4032 0.686
Huawei P20 Lite (H20) 3456 x 4608 0.600
Huawei P30 Pro (H30) 2736 x 3648 0.758
iPhone 11 (i11) 3024 x 4032 0.686
iPhone 13 Pro (i13) 3024 x 4032 0.686
Samsung Galaxy A52 (SG) 3468 x 4624 0.598
Xiaomi Mi A3 (XM) 3000 x 4000 0.691

center as shown in Figure 3, resulting in 576, 216 and
360 patches for Ivoclar Vivadent, Dentsply Sirona and
3M, respectively. This patching and down-scaling
strategy avoids distortion (at the image boundaries)
and black area (macro lens not perfectly aligned with
the smartphone’s lens) artefacts introduced by the
macro lens. No further pre-processing (e.g. con-
trast enhancement) is employed to best preserve the
micro-structures of the ceramic material and arte-
facts due to the sensor and ISP pipeline.

Results from previous experiments [8] suggested
that the smartphone inherent ISP greatly influences
the cross-sensor performance. Hence, all images
were captured in raw in addition to the ”normal”
(ISP) image. Usually, the standard smartphone cam-
era application does not allow to capture raw im-
ages. Hence, suitable camera applications were em-
ployed: OpenCamera for devices running Android
and Halide Mark II for the iPhone devices. Two ap-
plications are used for conversion from the raw data,
i.e. the Bayer pattern image, to an RGB image: Dark-
table (DT) and dcraw. Dcraw offers the possibility to
set additional parameters such as -a (DCA) to aver-
age the whole image for white balance or -d to omit
demosaicing, denoted as CFA (for color filter array)
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in the later experiments.
In order to remove PRNU and other sensor arte-

facts, images additionally underwent denoising by
application of the BM3D [22] denoising filter. Results
in Section 4 generated using denoised images are de-
noted with DN.

1 2 3

4 5 6

7 8 9

Figure 3: Patch annotations in a zircon oxide block
image.

3.2 Texture Classification Tool-Chain
Six distinct feature extraction techniques are em-
ployed in this study: Dense SIFT [23] (SIFT descrip-
tors applied on a fixed-spaced grid), Dense Micro-
block Difference (DMD) [24], Local Binary Pattern
Histograms (LBP) [25], Local Phase Quantization
(LPQ) [26] and Weber Pattern (WP) [27]. In addition
to the aforementioned standard LBP variant, a sec-
ond LBP feature descriptor is employed. LBP can be
made rotational invariant by using a number of ro-
tational shifts of the pattern equal to the number of
points and taking the minimum. This method will be
denoted as ror (n.b. this is not uniform LBP). Vary-
ing the radius of the LBPs can make it use differently
sized structures and this will be denoted as Rx where
x is the radius in pixels. The extracted feature vectors
(except the ones from the ror LBP) are subsequently
encoded using improved Fisher vector encoding [28]
in a similar way as originally proposed in [29]. They
undergo a soft-quantization using a Gaussian mix-
ture model and dimensionality reduction using prin-
ciple component analysis. A support vector machine
with linear kernel is utilized to classify the encoded
features. For more details the interested reader is re-
ferred to our previous work [30].

The accuracy, defined as the number of correct
classifications divided by the number of total classi-
fications, is used as an evaluation metric to quantify
the classification performance. The reported value
in the experiments in Section 4 is the average accu-
racy, i.e. the arithmetic mean over all accuracies for

Table 2: Average ceramic classification accuracy in
intra-sensor setup.

ISP ISP DT DT DCA DCA CFA CFA
DN DN DN DN

SIFT 0.997 0.993 0.994 0.995 0.997 0.997 0.996 0.997
DMD 0.988 0.986 0.987 0.982 0.990 0.991 0.981 0.981
LBP 0.720 0.791 0.656 0.795 0.587 0.809 0.399 0.398
WP 0.760 0.770 0.752 0.787 0.760 0.804 0.670 0.675
LPQ 0.519 0.767 0.428 0.819 0.378 0.757 0.422 0.646

ISP ISP DN DT DT DN

DCA DCA DN CFA CFA DN

Figure 4: Samples of ceramic images per imaging
modality.

a particular experiment.

4 Experimental Results
The experiments are divided into three parts: in (i)
the acquired ceramic samples are classified with re-
gard to their manufacturer in an intra-sensor sce-
nario to verify that they contain enough texture in-
formation, in (ii) inter-sensor experiments are car-
ried out, which constitutes a more realistic scenario,
while in (iii) further experiments (camera classifica-
tion) concerning the factors responsible for the bad
results are done.

4.1 Intra-sensor ceramic texture classifi-
cation

A random 50/50 training/evaluation data split,
training using images from the same camera only,
was performed. The average accuracy over all cam-
eras for each imaging modality and feature is re-
ported in Table 2. Obviously there is a signal strong
enough for classification in all imaging modalities,
e.g. SIFT reaches 99% classification accuracy for each
modality.

Raw with denoising (DT DN, DCA DN, CFA DN)
performs better than regular (ISP) images which in-

Limiting Factors in Smartphone-Based Cross-Sensor Microstructure Material Classification 5 / 9
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Table 3: Average inter-sensor ceramic classification
accuracy.

ISP ISP DT DT DCA DCA CFA CFA
DN DN DN DN

SIFT 0.892 0.899 0.936 0.945 0.899 0.936 0.701 0.762
DMD 0.774 0.825 0.735 0.826 0.720 0.853 0.483 0.492
LBP 0.389 0.619 0.390 0.720 0.376 0.610 0.332 0.373
WP 0.484 0.676 0.595 0.698 0.593 0.638 0.362 0.366
LPQ 0.380 0.438 0.338 0.456 0.348 0.361 0.296 0.315
LBP R1 0.587 0.758 0.644 0.910 0.643 0.790 0.505 0.510
LBP R1 ror 0.567 0.769 0.966 0.911 0.672 0.776 0.500 0.517
LBP R4 ror 0.847 0.870 0.942 0.942 0.925 0.915 0.602 0.606

clude artefacts from the image processing pipeline.
As the samples’ patches in fig 4 show, the sur-
face micro-structure texture components are hardly
discernible. Thus, the imaging pipeline’s artefacts
clearly impact the ceramic sample image patches,
lowering the classification accuracy and making raw
the preferred choice.

4.2 Practical consideration: Inter-camera
classification

The results confirm that ceramic material classifi-
cation is possible in the intra-device scenario while
in practice it needs to be possible across different de-
vices as well. To evaluate this cross-device scenario,
a leave-one out training regime is used, i.e. train on 6
out of 7 ceramics and test on the 7th one, performed 7
times (for each ceramic). The (averaged) end results
are given in Table 3.

The drop in classification accuracy compared to
the intra-sensor scenario is quite substantial, espe-
cially for ISP. In most cases denoising improves the
classification results, with a best accuracy of 94%,
but less than 70% in many other cases, which is not
satisfactory. An interesting observation is that the
drop in accuracy also happens with raw modes, in
the best case using denoising there is a drop of 5%.
Such a behaviour is not surprising for the ISP case, as
each manufacturer and/or smartphone combination
uses a different processing pipeline. Raw however,
should not be influenced, with the resolution being
the obvious difference (which is corrected, c.f. dis-
cussion in Section 3.1).

To validate if this behaviour is manufacturer or
camera specific, an experiment where training is
done on images from one camera and evaluated
on images from another one, for all ISP/RAW/DN
types and features, is conducted. The general trend is
the same for all those combinations, so only SIFT on
DCA is shown in Table 4 for reasons of brevity. Un-
fortunately our database is rather limited in terms of

Table 4: Average ceramic classification accuracy in
inter-sensor setup using SIFT features and DCA im-
ages.

Test
GP H20 H30 i11 i13 SG XM

Tr
ai

n

GP – 0.837 0.852 0.707 0.832 0.607 0.997
H20 0.605 – 0.515 0.333 0.352 0.455 0.465
H30 0.846 0.716 – 0.676 0.854 0.751 0.906
i11 0.480 0.663 0.381 – 0.864 0.380 0.613
i13 0.813 0.579 0.362 0.819 – 0.344 0.552
SG 0.831 0.668 0.603 0.675 0.963 – 0.943
XM 0.982 0.804 0.451 0.787 0.903 0.358 –

Table 5: Average sensor identification accuracy.

ISP ISP DT DT DCA DCA CFA CFA
DN DN DN DN

SIFT 0.966 0.870 0.880 0.725 0.894 0.770 0.977 0.995
DMD 0.934 0.923 0.879 0.750 0.863 0.716 0.990 0.996
LBP 0.910 0.559 0.823 0.490 0.842 0.580 0.983 0.969
WP 0.796 0.497 0.393 0.375 0.443 0.480 0.962 0.947
LPQ 0.655 0.373 0.694 0.335 0.529 0.390 0.898 0.914
LBP R1 0.935 0.879 0.859 0.606 0.862 0.712 0.999 0.997
LBP R1 ror 0.981 0.880 0.527 0.563 0.883 0.690 0.999 0.996
LBP R4 ror 0.865 0.805 0.692 0.549 0.703 0.615 0.990 0.986

multiple smartphone models from the same manu-
facturer. However, for the Huawei smartphone cam-
eras it is clearly a camera specific issue: if trained
on Huawei H30, the H20 has the second worst per-
formance of all cameras (highlighted in red colour
in Table 4). On the other hand, the iPhones (i11
vs. i13 - highlighted in green in Table 4) work well
in cross-training, still being inferior to many of the
other tested combinations. Hence, in general it can-
not be considered as a manufacturer specific effect
but more a camera specific one. Also note that this
is not reciprocal, i.e. if training on A performs well
on B, training on B is not guaranteed to work well on
A, e.g. for SG and XM (highlighted in orange in Ta-
ble 4) - training on SG results in an accuracy of 94%,
but training on XM only achieves 35% accuracy on
SG.

4.3 Camera classification

The signal of the camera/ISP is strong enough
to obfuscate the micro-structure texture informa-
tion used for material classification to a (sometimes
strong) degree, raising the question if this can be
used for camera classification. To test this, a leave-
one material out cross-validation for camera classi-
fication is performed. The results are given in Ta-

Limiting Factors in Smartphone-Based Cross-Sensor Microstructure Material Classification 6 / 9
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Table 6: Classification accuracy results CFA un-
scaled.

Texture
Classification

Sensor
Identification

CFA CFA DN CFA CFA DN
SIFT 0.453 0.736 1.000 1.000
DMD 0.333 0.333 1.000 1.000
LBP 0.344 0.277 0.973 0.981
WP 0.539 0.755 0.666 0.399
LPQ 0.325 0.445 0.842 0.616

ble 5. Camera classification works well with regular
images processed by the ISP (98% accuracy) while
raw ones perform worse in most cases. However,
if the Bayer pattern is kept visible, the classification
rate even reaches 99% accuracy. So apparently there
are two signals able to identify the camera: the Bayer
pattern and the image processing pipeline. What is
more, the color filter arrays between models from the
same manufacturer are different enough to differen-
tiate between the devices.

To rule out the influence of scaling (as a result
of unifying the resolution), the camera identification
experiment was carried out a second time using CFA
samples without prior scaling. Figure 5 shows ex-
amples of unscaled CFA patches. The results are
given in Table 6. While the texture classification per-
formance is drastically reduced, sensor classification
accuracy even reaches 100%, hereby allowing to de-
duce that scaling artefacts are not the reason for such
a high accuracy.

4.4 Discussion of Results
For material classification the camera intrinsic signal
has a detrimental effect on the classification as it ob-
fuscates the material intrinsic one to a significant ex-
tent. This can partly be counteracted by capturing
the images in raw format and denoising the images,
as the camera specific signal is noise-like while the
material specific signal is more coarse. This leads to
a promising accuracy of 94% even in the cross-device
scenario. However, it excludes a large number of de-
vices, especially older ones not able to capture in raw
mode. Hence, if they should be included, only the
ISP images can be used, leading to a drop in accu-
racy to 87% (with denoising).
For device classification it became apparent that
there are in reality two, probably not entirely inde-
pendent, signals which can be used for camera iden-

tification. One is based on the sensor’s intrinsics and
image processing pipeline and the other one based
on the Bayer-pattern and also the scaling done for
resolution compensation. By using the second one
(Bayer pattern), an incredibly high accuracy (99%)
per patch can be achieved, but in practice it is still
of little use as typical camera identification tasks are
performed on regular images processed by the ISP
rather than on raw ones, leaving us with the first one.
Based on the first one (signal processing pipeline) the
achievable accuracy is also high (98% per patch).

5 Conclusion
This work investigated the underlying reasons for the
limitations in using unmodified off-the-shelf smart-
phone devices for intrinsic product authentication
for ceramic materials based on their surface micro-
structure. The experiments confirmed that there is
an intrinsic signal from the material texture as well
as one stemming from the camera itself which can
be used to identify either one. The camera intrinsic
signal, however, obfuscates the material intrinsic one
to a significant extent, lowering the material classifi-
cation accuracy, which can partly be counteracted by
capturing the images in raw mode. In reality there
are two, probably not entirely independent, signals
stemming from the imaging device which can be
used for camera identification, one based on the sen-
sor’s intrinsics and image processing pipeline and
the other one based on the Bayer-pattern. Even using
the latter one an accuracy of 99% can be achieved.

Future work will include deep learning methods
for classification and feature extraction. It is worth
further investigating what constitutes the signal/
texture/ feature used for device identification. This
is related to the topic of ”cover source mismatch” in
steganalysis. Hence, ideas from steganalysis to mit-
igate the cover source mismatch will be investigated
too. With more precise information about the signal
it can be removed to strengthen the material classi-
fication performance. Furthermore, we will acquire
additional samples with different entities of the same
smartphone model in order to identify the contribu-
tion of the ISP and the sensor specific artefacts.
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