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Abstract
Intrinsic, non-invasive product authentication is still
an important topic as it does not generate additional
costs during the production process. This topic is of
specific interest for medical products as non-genuine
products can directly effect the patients’ health. This
work investigates micro-texture classification as a
mean of proving the authenticity of zircon oxide
blocks (for dental implants). Samples of three differ-
ent manufacturers were acquired using four smart-
phone devices with a clip-on macro lens. In addi-
tion, an existing drug packaging material database
was utilized. While the intra-sensor micro-texture
classification worked well, the cross-sensor classifi-
cation results were less promising. In an attempt to
track down the limiting factors, intrinsic sensor fea-
tures usually used in device identification were in-
vestigated as well.
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1 Introduction
The act of verifying a product’s origin is known as
product authentication. There are various scenarios
where someone desires to perform product authenti-
cation. Two of the more prominent ones are classify-
ing a product to be either genuine or counterfeit, and
assuring that a product stems from a certain man-
ufacturer. Such a proof of origin can be as simple
as a signed physical document, which can be eas-
ily forged, up to individual, hard-to-forge features
that are embedded in each single product. The wide-
spread use of mobile devices with imaging sensors
over the last decades led to multiple new approaches
for product authentication:

Cai et al. [1] proposed a deep learning based tex-
ture authentication framework that extracts texture
features from leather products which are encoded
into a 2D barcode. These labels should then be at-
tached to the products in an non-detachable manner
and a user can verify the authenticity of a product
by capturing the barcode and compare it to texture
features generated on-cite using a pre-trained deep
network.

Another framework that combines micro-texture
features in combination with a QR code for anti-
counterfeiting was proposed by Yan et al. [2]. Visual
features and the QR code are registered on the as-
sembly line and stored in a cloud. For verification, a
mobile phone then compares acquired features with
preregistered records online.

However, using attachable labels, barcodes or
any form of external embedded features as anti-
counterfeiting methods can be cumbersome to im-
plement into a running production chain. Further-
more, some approaches additionally demand for a
back-end database infrastructure, which is often not
feasible form a financial perspective. Thus, the pre-
ferred approach from a cost perspective is to achieve
product authentication based solely on constant but
discriminative intrinsic features of the product or its
packaging material. A further requirement is that
the product authenticity can be established in a non-
invasive way (without altering the product).

In [3], [4], micro-texture images of drug package
material was used for product authentication in an
open set scenario. Further, [4] showed that the ca-
pability of classifying manufacturers using micro-
texture structures is greatly reduced when testing
a cross-sensor scenario, i.e. train a classifier using
data from one sensor and test on data captured with
another sensor. It was suggested that in order for
micro-texture cross-sensor product authentication to
work, probably scaling between the various imaging

sensors needs to be considered.
However, there are other types of artefacts that

might cause a decrease in cross-sensor material clas-
sification accuracy. Such artefacts include optical
lens distortions, device-inherent processing steps
from the image signal processor (ISP, i.e. the pro-
cessing unit that maps raw sensor images to rgb im-
ages), or pixel response non-uniformity (PRNU, of-
ten simply coined sensor noise). Such artefacts were
successfully applied for source camera identification
in natural scene images [5]–[7]. More details on such
artefacts are given in Section 2.

Establishing a proof of authenticity is of special in-
terest for medical products as it has a direct impact
on the patients’ health. The current gold standard is
to extract a material sample with a subsequent chem-
ical analysis, which is intrusive, time and cost con-
suming.

The main goal of this study is to answer the ques-
tion if the authenticity of zircon oxide blocks, com-
monly used for dental ceramics, can be established
based on the micro-texture of their surface in a non-
intrusive way using off-the-shelf smartphone de-
vices. The contribution of this study can be summa-
rized in the following points:

• Establishing a database of dental zircon oxide
block samples from three different manufactur-
ers captured by multiple different smartphone
devices.

• Evaluation of material texture based classifica-
tion performance in an intra-sensor setting on
the established as well as an existing database
including micro-texture structures from drug
packaging material.

• Evaluation of the classification performance in a
cross-sensor setting for both databases.

• Assessment of the impact of varying scale fac-
tors in a cross-sensor setting as proposed by [4].

• Evaluation of sensor identification performance

• Investigating the effect of PRNU for sensor iden-
tification

The remainder of this research is structured as
follows: Section 2 describes the feature extraction
and classification pipeline, followed by a detailed de-
scription of the involved databases used within this
work and also introduces the experiments in Sec-
tion 3. Finally, Section 4 summarizes the findings of
this article.
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2 Experimental setup
This section first explains the feature extraction and
classification pipeline, followed by a detailed de-
scription of the two databases included in this study
and finally gives an overview of the experiments in
Section 3.

2.1 Feature Extraction & Classification

In total, five distinct techniques for feature extraction
are employed in this study that are briefly introduced
in the following. All of the algorithms were suc-
cessfully used in classical texture classification, im-
age tampering detection and paper identification [8]:
Dense SIFT [9] (SIFT descriptors applied in a grid),
Dense Micro-block Difference (DMD) [10], Local Bi-
nary Pattern (LBP) [11], Weber Pattern (WP) [12] and
Local Phase Quantization (LPQ) [13].

For all experiments in this study, feature vectors
are encoded using improved Fisher vector encoding
[14] in a similar way as described in [15]. Therefore,
extracted features from the previous step undergo
soft-quantization using a Gaussian mixture model
and dimensionality reduction using principle com-
ponent analysis. As a classifier for the encoded fea-
tures, a support vector machine with linear kernel is
utilized. Experiments within this study are accom-
plished by randomly splitting the data into training
and testing subsets such that every subset contains
half of the data. Since no hyper-parameter optimiza-
tion is done, no validation set is needed. Because the
databases explained in the upcoming section are un-
balanced in terms of micro-texture patches per class,
the class with the minimum patches in a particular
setting dictates the numbers of patches involved for
an experiment. Doing so, classification bias caused
by the amount of available data is avoided.

To quantify the outcome of the classification exper-
iments throughout this study, the accuracy is used as
an evaluation metric. Accuracy is defined as the pro-
portion of correct classifications. The reported value
in the experiments in Section 3 is the average accu-
racy, i.e. the arithmetic mean over all the accuracies
for a particular experiment.

2.2 Databases

Hereafter, the two texture databases used in the later
parts of this research are introduced. After divid-
ing the images from both databases into multiple
patches, no further pre-processing, such as contrast
enhancement, is employed in order to preserve pos-

sible artefacts generated by the sensor or the device-
inherent image signal processing pipeline.

2.2.1 Drug Package Material (Drug Data)

The first database included in this study is a subset
of a larger drug package authentication database in-
troduced by Schraml et al. [4]. The drug package au-
thentication database comprises of images captured
from packaging material of pharmaceutical prod-
ucts. The database includes different types of pack-
aging material: cardboard (M1), blister top-side (M2)
and blister bottom-side (M3). For some of the drug
packages, images were captured using three differ-
ent devices: A Canon 70D (S1), a Samsung S5 Mini
(S2) and an iPhone 5 (S3). Drug packages captured
with less than three devices are not included in the
experiments in this research. Hence, packaging ma-
terial data of six different drugs are available. Due to
the fact that some of the blisters were already opened
at the time of image acquisition and also side flaps
from the cardboard provide a smaller texture region,
the available data consists of hand-cropped areas of
different size. Therefore, all the bigger areas are cut
into patches of size 200 by 200 pixels. Table 1 lists the
available number of patches per drug.

Table 1: Number of available patches per sensor (S1-
S3), material (M1-M3) and drugs (D1-D6). The ro-
tated text lists the manufacturer and product names
of the corresponding drug.
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D1 D2 D3 D4 D5 D6

M
1 S1 4852 310 144 11982 721 —

S2 800 1200 800 1600 1600 1600
S3 800 1200 800 1600 1600 1600

M
2 S1 202 59 82 472 54 —

S2 780 1104 727 1582 1580 1600
S3 721 1073 723 1432 1407 1524

M
3 S1 546 33 19 335 61 —

S2 710 922 588 1389 1466 501
S3 656 985 667 1235 1546 435

2.2.2 Zircon Oxide Blocks (Ceramic Data)

The second database used in the experiments was
captured within the scope of this study. Here, im-
ages were acquired from the top side of zircon ox-
ide blocks from three different manufacturers (C1-
C3). The acquisition setup is depicted in Figure 1.
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Five images were captured per block, namely four
on the corners and one in the center. This database
includes images captured with four different smart-
phones: A Huawei P20 Lite (S4), a Samsung Galaxy
S8 (S5), a Samsung Galaxy Tab S6 (S6) and a Sam-
sung Galaxy XCover 4 (S7). In order to make the
material texture visible, a macro lens Agritix WIDK-
24X01 Xylorix Wood Identification Tool 1 was clipped
onto the imaging sensor of the devices. It was found
that although the resolution of the devices varies, the
captured field of view is roughly similar. Therefore,
all images underwent down-scaling to a fixed reso-
lution. Afterwards, nine patches of size 512 by 512
pixels were cropped from the center as can be seen
in Figure 2. Sample patches can be seen in Figure 3.

Figure 1: Acquisition setup for the zircon oxide
blocks, smartphone with clip-on macro lens.

Figure 2: Image of a corner on the top-side of a zircon
oxide block with patch annotations.

In Figure 2, one can see a pincushion distortion
(visible through curved lines on the left and bottom)
introduced by the macro lens. The black areas in the
right corners are caused by the macro lens not per-
fectly aligning with the imaging sensor on the smart-
phone. By choosing the downsizing factor and patch
size in a way that a margin from the patches to all im-
age borders remains, these two types of artifacts can

1https://www.xylorix.com/products/widk24x01

Figure 3: Zircon oxide block sample patches.

be evaded in the classification experiments. The used
macro lens has a circular ring of light emitting diodes
around the center which was switched on during
all image acquisitions because preliminary tests sug-
gested that this setting produces images with more
texture visible. Table 2 lists the available number of
patches per ceramic and imaging sensor.

Table 2: Number of available patches per sensor (S4-
S7) and ceramic (C1-C3). The rotated text lists the
manufacturer names of the corresponding ceramic.
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C1 C2 C3
S4 720 270 450
S5 720 270 450
S6 720 270 450
S7 720 270 450

2.3 Experiment Design
This section aims to provide a brief description re-
garding the experiments in Section 3.

As a first step, experiments are carried out to ver-
ify that material classification can be achieved in an
intra-sensor setup.

Afterwards, the cross-sensor material classifica-
tion scenario is evaluated. For the drug packaging
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data, as suggested in [4], it is investigated whether
employing different scales would reveal any im-
provements. A different scale here means that, prior
to cropping images into patches of size 200 by 200
pixels, resizing by a factor is applied. Through com-
bining different train- and test-scales, as visualized
in Table 3, various effective scale factors ( traintest ), rang-
ing from 0.5 to 3.0, are covered. Note that this is only
done for the drug package data because the ceramic
patching strategy already includes a step to unify the
resolution.

Table 3: Train-test scale combinations and resulting
scale-factor.

Test
0.50 0.75 1.00 1.25 1.50

Tr
ai

n

0.75 1.50 1.00 0.75 0.60 0.50
1.00 2.00 1.33 1.00 0.80 0.67
1.25 2.50 1.67 1.25 1.00 0.83
1.50 3.00 2.00 1.50 1.20 1.00

For the ceramic database, the impact of applying a
“leave one sensor out” strategy (i.e. train on patches
from three sensors, test on patches from the remain-
ing sensor) is investigated. Doing so, more training
data variability should be available and therefore a
better performance is expected.

Next, it is tested whether sensor identification can
be achieved. To do so, “sensors” and “classes” (man-
ufacturers) are switched for the experiments. The
idea is to investigate whether artefacts caused by the
imaging device are predominantly present in the im-
ages such that they overrule the micro-texture struc-
tures. Sensor or device inherent artefacts can be
caused by various sources. Three prominent artefact
sources are briefly explained in the following:

1. Image Signal Processor (ISP): The so called ISP
is the processing unit responsible for convert-
ing the raw color filter array (Bayer pattern)
to an rgb image. This processing pipeline in-
cludes denoising, demosaicing, white balance,
color transformation and compression (mostly
into JPEG format).

2. Lens Distortion: Since for both databases in-
cluded in this study, the data was captured us-
ing optical magnification (an additional lens),
assumably the lens also introduces distortion
artefacts that change from device to device.
When looking at Figure 2, one can see an ex-
ample of a pincushion distortion on the left an
bottom border. The marco lens has a small posi-
tional variability everytime it is attached for an

image acquisition session. Therefore, one can
not rule out the possibility that images corre-
sponding to the same smartphone acquisition
session have smaller distortions by which they
could be identified.

3. Photo Response Non-Uniformity (PRNU): Due to
imperfections in the manufacturing process,
imaging sensors have a sort-of fingerprint which
is measurable as a noise pattern that is applied to
every image acquisition. PRNU does also work
with JPEG quality 90 [7], which is the standard
case for smartphone acquisitions. Therefore, it
can also be considered as a sensor inherent arte-
fact within the context of this work.

The last experiment in this study focuses on the
PRNU sensor noise. The patching strategy that can
be seen in Figure 2 remains constant throughout the
entire ceramic data set. Since both, sensor noise and
also patches with a certain number, are “bound” to
a fixed location in the image, meaning that a certain
patch will always contain the same sensor area, an
experiment can be designed such that location de-
pendent parts of the PRNU impact can be ruled out
as a contributing factor for sensor identification per-
formance: For training, only patches numbered 1-8
are used. For testing, the remaining patches (those at
the position number 9) are then used for testing. Do-
ing so, it is assured that the sensor noise in patches
stemming from area number 9 is not used during
training.

3 Results and discussion
The following section includes the results for the ex-
periments motivated in Section 2.3. Note that some
values in Tables 4 and 7 are missing for feature ex-
traction schemes LBP and WP. These schemes pro-
duce one feature vector per image and thus too few
feature vectors are available for the Fisher encoding
step in cases where only a small amout of data is
available.

3.1 Intra-Sensor Material Classification
For the first experiment, material classification
performance is assessed for both micro-texture
databases in an intra-sensor setup. The average clas-
sification accuracy is displayed in Table 4. The results
suggest that, in general, materials stemming from
different manufacturers provide enough distinctive-
ness to classify them correctly when using SIFT or
DMD feature extraction. With LBP, WP and LPQ

Cross-Sensor Micro-Texture Material Classification and Smartphone Acquisition do not go well together 5 / 9
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having their highest achieved average accuracy value
at 91%, 85% and 55%, respectively, the classification
results for these feature extractions schemes can be
labelled unsatisfactory, even in an intra-sensor setup.

Table 4: Average material classification accuracy in
intra-sensor setup.

SIFT DMD LBP WP LPQ

M
1 S1 0.86 0.87 0.75 0.61 0.35

S2 0.98 0.97 0.87 0.71 0.30
S3 0.85 0.85 0.48 0.49 0.28

M
2 S1 1.00 0.99 — — 0.25

S2 1.00 0.99 0.91 0.75 0.49
S3 0.99 0.99 0.88 0.72 0.40

M
3 S1 1.00 0.97 — — 0.15

S2 0.99 0.98 0.80 0.58 0.35
S3 0.98 0.97 0.59 0.53 0.21

C
er

am
ic S4 0.99 0.98 0.68 0.66 0.54

S5 0.98 0.96 0.62 0.68 0.41
S6 0.98 0.95 0.74 0.62 0.55
S7 0.99 0.99 0.86 0.85 0.55

3.2 Cross-Sensor Material Classification

The cross-sensor experiments are divided into three
parts. First, exemplary results for the ceramic data
using SIFT features are reported in Table 5. An accu-
racy value beyond 90% was only reached once. Inter-
estingly, Train SensorX - Test SensorY does not nec-
essarily yield the same results as Train SensorY - Test
SensorX. It is also worth mentioning that an average
accuracy of around 33% would indicate that the clas-
sifier is guessing, since only three ceramic manufac-
turers are included in the database.

Table 5: Cross-sensor material classification on ce-
ramic data using SIFT.

Test
S4 S5 S6 S7

Tr
ai

n

S4 — 0.71 0.84 0.87
S5 0.33 — 0.34 0.40
S6 0.83 0.60 — 0.64
S7 0.34 0.91 0.40 —

It is also interesting to see that, although 3 out of 4
devices used for capturing the ceramic data are Sam-
sung devices, cross-sensor material classification be-
tween those devices does not necessarily work any
better than between a Samsung and the Huawei de-
vice. One would assume that either the ISP process-

ing steps or the imaging sensor would be rather sim-
ilar when developed by the same manufacturer.

Second, Figure 4 reports results for cross-sensor
experiments on the drug packaging database. Plots
show exemplary results for the material blister top-
side (M2) together with SIFT features. The reported
numbers correspond to the scaling scheme described
in Table 3. Regarding experiments including sensor
S1, it can be concluded that scaling does not improve
the results in a way that they could be labelled sat-
isfactory. Experiments from sensor S2 to S3 or vice
versa yield accuracy numbers up to 88% for the cases
where the samples had similar scale. However, as
with the ceramic cross-sensor experiments, results
are noticeably lower compared to the intra-sensor
case.

The third cross-sensor classification experiment
evaluates, whether a leave one sensor out strat-
egy would increase the classification performance.
When comparing the numbers in Table 6 for SIFT
to the single sensor to sensor performances in Ta-
ble 5, one can observe that the numbers appear to
be more stable but nevertheless are still far from the
intra-sensor case.

Table 6: Leave one sensor out cross validation for ma-
terial classification.

SIFT DMD LBP WP LPQ
Leave Out

S4 0.77 0.85 0.36 0.43 0.20

Leave Out
S5 0.66 0.49 0.34 0.61 0.32

Leave Out
S6 0.84 0.50 0.40 0.47 0.33

Leave Out
S7 0.46 0.57 0.33 0.70 0.37

3.3 Sensor Identification

Next, it is evaluated whether sensor classification can
be performed. To do so, the sensors and classes are
switched. Results are reported in Table 7. An in-
teresting observation can be made when looking at
the numbers for LBP, WP and LPQ and comparing
them to the intra-sensor material classification ap-
proach. It seems that, although these feature ex-
traction schemes were not able to correctly classify
the materials, they are however able to identify sen-
sors. This indicates that smartphone-inherent arte-
facts tend to be more present than the micro-texture
material information on the product.

Cross-Sensor Micro-Texture Material Classification and Smartphone Acquisition do not go well together 6 / 9
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Figure 4: Cross-sensor drug material classification - different scale factors on the drug data (M2, blister
top-side) using SIFT.

3.4 Impact of sensor noise (PRNU) (Ce-
ramic Data)

As described in Section 2.3, in order to assess the im-
pact of PRNU, patches on position 1-8 are used for
training, while patches in position 9 are used for per-
formance evaluation. To actually see a possible im-
pact of PRNU, one needs to compare the results re-
ported in Table 8 with the previous results from Ta-
ble 7. If the PRNU sensor noise would be a factor that
highly impacts the sensor identification experiments,
then one would expect a decrease in accuracy. Since
this is not the case, the location dependent parts of
the PRNU can be ruled out as the main reason why
sensor identification seems to work significantly bet-
ter than material classification.

4 Conclusion
This study conducted various classification experi-
ments on two micro-texture databases. Intra-sensor
material classification could successfully be achieved
using classical (i.e. non deep learning) texture classi-
fication methods as long as there was only one cap-
turing device involved. However, cross-sensor ma-
terial classification, for the most part, yields unsat-
isfying results. Further investigations considered a
suggestion from a related work, where it was rec-

ommended to try the cross-sensor experiment using
varying scales. The experiments showed, that the
different scales are not the main reason for the poor
performance of the cross-sensor classification.

Additional experiments to further track down the
limiting factors for the cross-sensor classification per-
formance involving commonly used device-intrinsic
sensor features, in particular the PRNU, showed that
the location dependent parts of the PRNU can be
ruled out as a reason. In fact it turned out that sensor
identification on the two databases works even better
than the desired material classification.

As mentioned earlier, there are also other artefacts
introduced, e.g. optical artefacts due to the lenses or
ISP pipelines. In our future work these additional
intrinsic artefacts present in the captured sample im-
ages will be considered in order to answer the ques-
tion why sensor identification reaches higher accu-
racies than cross-sensor material classification. Ex-
periments based on denoising filters to remove the
PRNU influence as well as captured raw images to re-
duce the influence of the image processing toolchain
will be conducted. Once the causes have been identi-
fied, suitable countermeasures can be applied in or-
der to improve the cross-sensor material classifica-
tion performance.

Cross-Sensor Micro-Texture Material Classification and Smartphone Acquisition do not go well together 7 / 9
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Table 7: Average sensor classification accuracy per
feature extraction scheme and material class.

SIFT DMD LBP WP LPQ

M
1

D1 1.00 1.00 0.99 1.00 0.66
D2 1.00 1.00 0.98 0.97 0.98
D3 1.00 1.00 — — 0.94
D4 1.00 1.00 1.00 0.99 0.45
D5 1.00 1.00 1.00 0.99 0.49
D6 1.00 1.00 1.00 0.99 0.98

M
2

D1 0.99 0.99 0.48 0.87 0.78
D2 0.97 0.97 — — 0.77
D3 0.99 0.99 — — 0.78
D4 1.00 0.99 0.94 0.91 0.74
D5 1.00 1.00 — — 0.82
D6 1.00 1.00 1.00 0.99 1.00

M
3

D1 1.00 1.00 0.92 0.88 0.75
D2 1.00 1.00 — — 0.68
D3 0.92 0.92 — — 0.40
D4 0.99 0.99 0.90 0.83 0.83
D5 1.00 1.00 — — 0.86
D6 1.00 1.00 0.26 0.86 0.82

C
er

am
ic C1 1.00 0.99 0.96 0.86 0.72

C2 1.00 1.00 1.00 0.96 0.97
C3 1.00 1.00 0.99 0.94 0.81

Table 8: Average sensor classification accuracy per
feature extraction scheme and material class, when
using patch 1-8 for training and patch 9 for testing.

SIFT DMD LBP WP LPQ

C
er

am
ic C1 1.00 1.00 0.99 0.90 0.73

C2 1.00 1.00 1.00 0.95 0.99
C3 1.00 1.00 1.00 0.95 0.89
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