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Abstract—Intrinsic, non-invasive product authentication is still
an important topic as it does not generate additional costs
during the production process. This topic is of specific interest
for medical products as non-genuine products can directly
effect the patients’ health. This work investigates micro-texture
classification as a mean of proving the authenticity of zircon
oxide blocks (for dental implants). Samples of three different
manufacturers were acquired using four smartphone devices with
a clip-on macro lens. In addition, an existing drug packaging
material database was utilized. While the intra-sensor micro-
texture classification worked well, the cross-sensor classification
results were less promising. In an attempt to track down the
limiting factors, intrinsic sensor features usually used in device
identification were investigated as well.

Index Terms—micro texture, texture classification, smartphone
imaging, cross sensor, material classification, product authenti-
cation

I. INTRODUCTION

The act of verifying a product’s origin is known as product
authentication. There are various scenarios where someone
desires to perform product authentication. Two of the more
prominent ones are classifying a product to be either genuine
or counterfeit, and assuring that a product stems from a certain
manufacturer. Such a proof of origin can be as simple as a
signed physical document, which can be easily forged, up to
individual, hard-to-forge features that are embedded in each
single product. The wide-spread use of mobile devices with
imaging sensors over the last decades led to multiple new
approaches for product authentication:

Cai et al. [1] proposed a deep learning based texture
authentication framework that extracts texture features from
leather products which are encoded into a 2D barcode. These
labels should then be attached to the products in an non-
detachable manner and a user can verify the authenticity of
a product by capturing the barcode and compare it to texture
features generated on-cite using a pre-trained deep network.

Another framework that combines micro-texture features
in combination with a QR code for anti-counterfeiting was
proposed by Yan et al. [2]. Visual features and the QR code
are registered on the assembly line and stored in a cloud. For
verification, a mobile phone then compares acquired features
with preregistered records online.

This work has been partially supported by the Salzburg State Government
project “Artificial Intelligence in Industrial Vision Salzburg”.

However, using attachable labels, barcodes or any form
of external embedded features as anti-counterfeiting methods
can be cumbersome to implement into a running production
chain. Furthermore, some approaches additionally demand for
a back-end database infrastructure, which is often not feasible
form a financial perspective. Thus, the preferred approach from
a cost perspective is to achieve product authentication based
solely on constant but discriminative intrinsic features of the
product or its packaging material. A further requirement is that
the product authenticity can be established in a non-invasive
way (without altering the product).

In [3], [4], micro-texture images of drug package material
was used for product authentication in an open set scenario.
Further, [4] showed that the capability of classifying manufac-
turers using micro-texture structures is greatly reduced when
testing a cross-sensor scenario, i.e. train a classifier using data
from one sensor and test on data captured with another sensor.
It was suggested that in order for micro-texture cross-sensor
product authentication to work, probably scaling between the
various imaging sensors needs to be considered.

However, there are other types of artefacts that might cause
a decrease in cross-sensor material classification accuracy.
Such artefacts include optical lens distortions, device-inherent
processing steps from the image signal processor (ISP, i.e. the
processing unit that maps raw sensor images to rgb images),
or pixel response non-uniformity (PRNU, often simply coined
sensor noise). Such artefacts were successfully applied for
source camera identification in natural scene images [5]–[7].
More details on such artefacts are given in Section II.

Establishing a proof of authenticity is of special interest for
medical products as it has a direct impact on the patients’
health. The current gold standard is to extract a material sam-
ple with a subsequent chemical analysis, which is intrusive,
time and cost consuming.

The main goal of this study is to answer the question if
the authenticity of zircon oxide blocks, commonly used for
dental ceramics, can be established based on the micro-texture
of their surface in a non-intrusive way using off-the-shelf
smartphone devices. The contribution of this study can be
summarized in the following points:

• Establishing a database of dental zircon oxide block
samples from three different manufacturers captured by
multiple different smartphone devices.
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• Evaluation of material texture based classification perfor-
mance in an intra-sensor setting on the established as well
as an existing database including micro-texture structures
from drug packaging material.

• Evaluation of the classification performance in a cross-
sensor setting for both databases.

• Assessment of the impact of varying scale factors in a
cross-sensor setting as proposed by [4].

• Evaluation of sensor identification performance
• Investigating the effect of PRNU for sensor identification

The remainder of this research is structured as follows:
Section II describes the feature extraction and classification
pipeline, followed by a detailed description of the involved
databases used within this work and also introduces the
experiments in Section III. Finally, Section IV summarizes
the findings of this article.

II. EXPERIMENTAL SETUP

This section first explains the feature extraction and classi-
fication pipeline, followed by a detailed description of the two
databases included in this study and finally gives an overview
of the experiments in Section III.

A. Feature Extraction & Classification

In total, five distinct techniques for feature extraction are
employed in this study that are briefly introduced in the
following. All of the algorithms were successfully used in
classical texture classification, image tampering detection and
paper identification [8]: Dense SIFT [9] (SIFT descriptors
applied in a grid), Dense Micro-block Difference (DMD) [10],
Local Binary Pattern (LBP) [11], Weber Pattern (WP) [12] and
Local Phase Quantization (LPQ) [13].

For all experiments in this study, feature vectors are encoded
using improved Fisher vector encoding [14] in a similar
way as described in [15]. Therefore, extracted features from
the previous step undergo soft-quantization using a Gaussian
mixture model and dimensionality reduction using principle
component analysis. As a classifier for the encoded features,
a support vector machine with linear kernel is utilized. Ex-
periments within this study are accomplished by randomly
splitting the data into training and testing subsets such that ev-
ery subset contains half of the data. Since no hyper-parameter
optimization is done, no validation set is needed. Because the
databases explained in the upcoming section are unbalanced
in terms of micro-texture patches per class, the class with the
minimum patches in a particular setting dictates the numbers
of patches involved for an experiment. Doing so, classification
bias caused by the amount of available data is avoided.

To quantify the outcome of the classification experiments
throughout this study, the accuracy is used as an evaluation
metric. Accuracy is defined as the proportion of correct clas-
sifications. The reported value in the experiments in Section III
is the average accuracy, i.e. the arithmetic mean over all the
accuracies for a particular experiment.

B. Databases

Hereafter, the two texture databases used in the later parts
of this research are introduced. After dividing the images
from both databases into multiple patches, no further pre-
processing, such as contrast enhancement, is employed in
order to preserve possible artefacts generated by the sensor
or the device-inherent image signal processing pipeline.

1) Drug Package Material (Drug Data): The first database
included in this study is a subset of a larger drug package
authentication database introduced by Schraml et al. [4]. The
drug package authentication database comprises of images
captured from packaging material of pharmaceutical products.
The database includes different types of packaging material:
cardboard (M1), blister top-side (M2) and blister bottom-side
(M3). For some of the drug packages, images were captured
using three different devices: A Canon 70D (S1), a Samsung
S5 Mini (S2) and an iPhone 5 (S3). Drug packages captured
with less than three devices are not included in the experiments
in this research. Hence, packaging material data of six different
drugs are available. Due to the fact that some of the blisters
were already opened at the time of image acquisition and also
side flaps from the cardboard provide a smaller texture region,
the available data consists of hand-cropped areas of different
size. Therefore, all the bigger areas are cut into patches of
size 200 by 200 pixels. Table I lists the available number of
patches per drug.

Table I: Number of available patches per sensor (S1-S3),
material (M1-M3) and drugs (D1-D6). The rotated text lists the
manufacturer and product names of the corresponding drug.
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D1 D2 D3 D4 D5 D6

M
1 S1 4852 310 144 11982 721 —

S2 800 1200 800 1600 1600 1600
S3 800 1200 800 1600 1600 1600

M
2 S1 202 59 82 472 54 —

S2 780 1104 727 1582 1580 1600
S3 721 1073 723 1432 1407 1524

M
3 S1 546 33 19 335 61 —

S2 710 922 588 1389 1466 501
S3 656 985 667 1235 1546 435

2) Zircon Oxide Blocks (Ceramic Data): The second
database used in the experiments was captured within the
scope of this study. Here, images were acquired from the top
side of zircon oxide blocks from three different manufacturers
(C1-C3). The acquisition setup is depicted in Figure 1. Five
images were captured per block, namely four on the corners
and one in the center. This database includes images captured
with four different smartphones: A Huawei P20 Lite (S4), a
Samsung Galaxy S8 (S5), a Samsung Galaxy Tab S6 (S6)
and a Samsung Galaxy XCover 4 (S7). In order to make
the material texture visible, a macro lens Agritix WIDK-



24X01 Xylorix Wood Identification Tool 1 was clipped onto the
imaging sensor of the devices. It was found that although the
resolution of the devices varies, the captured field of view is
roughly similar. Therefore, all images underwent down-scaling
to a fixed resolution. Afterwards, nine patches of size 512 by
512 pixels were cropped from the center as can be seen in
Figure 2. Sample patches can be seen in Figure 3.

Figure 1: Acquisition setup for the zircon oxide blocks,
smartphone with clip-on macro lens.

Figure 2: Image of a corner on the top-side of a zircon oxide
block with patch annotations.

In Figure 2, one can see a pincushion distortion (visible
through curved lines on the left and bottom) introduced by the
macro lens. The black areas in the right corners are caused by
the macro lens not perfectly aligning with the imaging sensor
on the smartphone. By choosing the downsizing factor and
patch size in a way that a margin from the patches to all
image borders remains, these two types of artifacts can be
evaded in the classification experiments. The used macro lens
has a circular ring of light emitting diodes around the center
which was switched on during all image acquisitions because
preliminary tests suggested that this setting produces images
with more texture visible. Table II lists the available number
of patches per ceramic and imaging sensor.

C. Experiment Design
This section aims to provide a brief description regarding

the experiments in Section III.

1https://www.xylorix.com/products/widk24x01

Figure 3: Zircon oxide block sample patches.

Table II: Number of available patches per sensor (S4-S7) and
ceramic (C1-C3). The rotated text lists the manufacturer names
of the corresponding ceramic.
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As a first step, experiments are carried out to verify that
material classification can be achieved in an intra-sensor setup.

Afterwards, the cross-sensor material classification scenario
is evaluated. For the drug packaging data, as suggested in [4],
it is investigated whether employing different scales would
reveal any improvements. A different scale here means that,
prior to cropping images into patches of size 200 by 200
pixels, resizing by a factor is applied. Through combining
different train- and test-scales, as visualized in Table III,
various effective scale factors ( traintest ), ranging from 0.5 to 3.0,
are covered. Note that this is only done for the drug package
data because the ceramic patching strategy already includes a
step to unify the resolution.

For the ceramic database, the impact of applying a “leave
one sensor out” strategy (i.e. train on patches from three sen-
sors, test on patches from the remaining sensor) is investigated.
Doing so, more training data variability should be available
and therefore a better performance is expected.

Next, it is tested whether sensor identification can be
achieved. To do so, “sensors” and “classes” (manufacturers)
are switched for the experiments. The idea is to investigate



Table III: Train-test scale combinations and resulting scale-
factor.

Test
0.50 0.75 1.00 1.25 1.50

Tr
ai

n

0.75 1.50 1.00 0.75 0.60 0.50
1.00 2.00 1.33 1.00 0.80 0.67
1.25 2.50 1.67 1.25 1.00 0.83
1.50 3.00 2.00 1.50 1.20 1.00

whether artefacts caused by the imaging device are predomi-
nantly present in the images such that they overrule the micro-
texture structures. Sensor or device inherent artefacts can be
caused by various sources. Three prominent artefact sources
are briefly explained in the following:

1) Image Signal Processor (ISP): The so called ISP is
the processing unit responsible for converting the raw
color filter array (Bayer pattern) to an rgb image. This
processing pipeline includes denoising, demosaicing,
white balance, color transformation and compression
(mostly into JPEG format).

2) Lens Distortion: Since for both databases included in
this study, the data was captured using optical mag-
nification (an additional lens), assumably the lens also
introduces distortion artefacts that change from device
to device. When looking at Figure 2, one can see an
example of a pincushion distortion on the left an bottom
border. The marco lens has a small positional variability
everytime it is attached for an image acquisition session.
Therefore, one can not rule out the possibility that im-
ages corresponding to the same smartphone acquisition
session have smaller distortions by which they could be
identified.

3) Photo Response Non-Uniformity (PRNU): Due to imper-
fections in the manufacturing process, imaging sensors
have a sort-of fingerprint which is measurable as a noise
pattern that is applied to every image acquisition. PRNU
does also work with JPEG quality 90 [7], which is the
standard case for smartphone acquisitions. Therefore,
it can also be considered as a sensor inherent artefact
within the context of this work.

The last experiment in this study focuses on the PRNU
sensor noise. The patching strategy that can be seen in Figure 2
remains constant throughout the entire ceramic data set. Since
both, sensor noise and also patches with a certain number,
are “bound” to a fixed location in the image, meaning that
a certain patch will always contain the same sensor area,
an experiment can be designed such that location dependent
parts of the PRNU impact can be ruled out as a contributing
factor for sensor identification performance: For training, only
patches numbered 1-8 are used. For testing, the remaining
patches (those at the position number 9) are then used for
testing. Doing so, it is assured that the sensor noise in patches
stemming from area number 9 is not used during training.

III. RESULTS AND DISCUSSION

The following section includes the results for the experi-
ments motivated in Section II-C. Note that some values in
Tables IV and VII are missing for feature extraction schemes
LBP and WP. These schemes produce one feature vector per
image and thus too few feature vectors are available for the
Fisher encoding step in cases where only a small amout of
data is available.

A. Intra-Sensor Material Classification

For the first experiment, material classification performance
is assessed for both micro-texture databases in an intra-
sensor setup. The average classification accuracy is displayed
in Table IV. The results suggest that, in general, materials
stemming from different manufacturers provide enough dis-
tinctiveness to classify them correctly when using SIFT or
DMD feature extraction. With LBP, WP and LPQ having their
highest achieved average accuracy value at 91%, 85% and
55%, respectively, the classification results for these feature
extractions schemes can be labelled unsatisfactory, even in an
intra-sensor setup.

Table IV: Average material classification accuracy in intra-
sensor setup.

SIFT DMD LBP WP LPQ

M
1 S1 0.86 0.87 0.75 0.61 0.35

S2 0.98 0.97 0.87 0.71 0.30
S3 0.85 0.85 0.48 0.49 0.28

M
2 S1 1.00 0.99 — — 0.25

S2 1.00 0.99 0.91 0.75 0.49
S3 0.99 0.99 0.88 0.72 0.40

M
3 S1 1.00 0.97 — — 0.15

S2 0.99 0.98 0.80 0.58 0.35
S3 0.98 0.97 0.59 0.53 0.21

C
er

am
ic S4 0.99 0.98 0.68 0.66 0.54

S5 0.98 0.96 0.62 0.68 0.41
S6 0.98 0.95 0.74 0.62 0.55
S7 0.99 0.99 0.86 0.85 0.55

B. Cross-Sensor Material Classification

The cross-sensor experiments are divided into three parts.
First, exemplary results for the ceramic data using SIFT
features are reported in Table V. An accuracy value beyond
90% was only reached once. Interestingly, Train SensorX -
Test SensorY does not necessarily yield the same results as
Train SensorY - Test SensorX. It is also worth mentioning that
an average accuracy of around 33% would indicate that the
classifier is guessing, since only three ceramic manufacturers
are included in the database.

Table V: Cross-sensor material classification on ceramic data
using SIFT.

Test
S4 S5 S6 S7

Tr
ai

n

S4 — 0.71 0.84 0.87
S5 0.33 — 0.34 0.40
S6 0.83 0.60 — 0.64
S7 0.34 0.91 0.40 —



It is also interesting to see that, although 3 out of 4 devices
used for capturing the ceramic data are Samsung devices,
cross-sensor material classification between those devices does
not necessarily work any better than between a Samsung and
the Huawei device. One would assume that either the ISP
processing steps or the imaging sensor would be rather similar
when developed by the same manufacturer.

Second, Figure 4 reports results for cross-sensor experi-
ments on the drug packaging database. Plots show exem-
plary results for the material blister top-side (M2) together
with SIFT features. The reported numbers correspond to the
scaling scheme described in Table III. Regarding experiments
including sensor S1, it can be concluded that scaling does
not improve the results in a way that they could be labelled
satisfactory. Experiments from sensor S2 to S3 or vice versa
yield accuracy numbers up to 88% for the cases where the
samples had similar scale. However, as with the ceramic cross-
sensor experiments, results are noticeably lower compared to
the intra-sensor case.

The third cross-sensor classification experiment evaluates,
whether a leave one sensor out strategy would increase the
classification performance. When comparing the numbers in
Table VI for SIFT to the single sensor to sensor performances
in Table V, one can observe that the numbers appear to be
more stable but nevertheless are still far from the intra-sensor
case.

Table VI: Leave one sensor out cross validation for material
classification.

SIFT DMD LBP WP LPQ
Leave Out

S4 0.77 0.85 0.36 0.43 0.20

Leave Out
S5 0.66 0.49 0.34 0.61 0.32

Leave Out
S6 0.84 0.50 0.40 0.47 0.33

Leave Out
S7 0.46 0.57 0.33 0.70 0.37

C. Sensor Identification

Next, it is evaluated whether sensor classification can be
performed. To do so, the sensors and classes are switched.
Results are reported in Table VII. An interesting observation
can be made when looking at the numbers for LBP, WP
and LPQ and comparing them to the intra-sensor material
classification approach. It seems that, although these feature
extraction schemes were not able to correctly classify the
materials, they are however able to identify sensors. This
indicates that smartphone-inherent artefacts tend to be more
present than the micro-texture material information on the
product.

D. Impact of sensor noise (PRNU) (Ceramic Data)

As described in Section II-C, in order to assess the impact
of PRNU, patches on position 1-8 are used for training, while
patches in position 9 are used for performance evaluation. To
actually see a possible impact of PRNU, one needs to compare

Table VII: Average sensor classification accuracy per feature
extraction scheme and material class.

SIFT DMD LBP WP LPQ

M
1

D1 1.00 1.00 0.99 1.00 0.66
D2 1.00 1.00 0.98 0.97 0.98
D3 1.00 1.00 — — 0.94
D4 1.00 1.00 1.00 0.99 0.45
D5 1.00 1.00 1.00 0.99 0.49
D6 1.00 1.00 1.00 0.99 0.98

M
2

D1 0.99 0.99 0.48 0.87 0.78
D2 0.97 0.97 — — 0.77
D3 0.99 0.99 — — 0.78
D4 1.00 0.99 0.94 0.91 0.74
D5 1.00 1.00 — — 0.82
D6 1.00 1.00 1.00 0.99 1.00

M
3

D1 1.00 1.00 0.92 0.88 0.75
D2 1.00 1.00 — — 0.68
D3 0.92 0.92 — — 0.40
D4 0.99 0.99 0.90 0.83 0.83
D5 1.00 1.00 — — 0.86
D6 1.00 1.00 0.26 0.86 0.82

C
er

am
ic C1 1.00 0.99 0.96 0.86 0.72

C2 1.00 1.00 1.00 0.96 0.97
C3 1.00 1.00 0.99 0.94 0.81

the results reported in Table VIII with the previous results
from Table VII. If the PRNU sensor noise would be a factor
that highly impacts the sensor identification experiments, then
one would expect a decrease in accuracy. Since this is not
the case, the location dependent parts of the PRNU can be
ruled out as the main reason why sensor identification seems
to work significantly better than material classification.

Table VIII: Average sensor classification accuracy per feature
extraction scheme and material class, when using patch 1-8
for training and patch 9 for testing.

SIFT DMD LBP WP LPQ

C
er

am
ic C1 1.00 1.00 0.99 0.90 0.73

C2 1.00 1.00 1.00 0.95 0.99
C3 1.00 1.00 1.00 0.95 0.89

IV. CONCLUSION

This study conducted various classification experiments on
two micro-texture databases. Intra-sensor material classifica-
tion could successfully be achieved using classical (i.e. non
deep learning) texture classification methods as long as there
was only one capturing device involved. However, cross-sensor
material classification, for the most part, yields unsatisfying
results. Further investigations considered a suggestion from a
related work, where it was recommended to try the cross-
sensor experiment using varying scales. The experiments
showed, that the different scales are not the main reason for
the poor performance of the cross-sensor classification.

Additional experiments to further track down the limit-
ing factors for the cross-sensor classification performance
involving commonly used device-intrinsic sensor features, in
particular the PRNU, showed that the location dependent parts
of the PRNU can be ruled out as a reason. In fact it turned
out that sensor identification on the two databases works even
better than the desired material classification.
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Figure 4: Cross-sensor drug material classification - different scale factors on the drug data (M2, blister top-side) using SIFT.

As mentioned earlier, there are also other artefacts intro-
duced, e.g. optical artefacts due to the lenses or ISP pipelines.
In our future work these additional intrinsic artefacts present in
the captured sample images will be considered in order to an-
swer the question why sensor identification reaches higher ac-
curacies than cross-sensor material classification. Experiments
based on denoising filters to remove the PRNU influence as
well as captured raw images to reduce the influence of the
image processing toolchain will be conducted. Once the causes
have been identified, suitable countermeasures can be applied
in order to improve the cross-sensor material classification
performance.
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