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Abstract—The last decade has brought forward many great

contributions regarding presentation attack detection for the

domain of finger and hand vein biometrics. Among those

contributions, one is able to find a variety of different attack

databases that are either private or made publicly available

to the research community. However, it is not always shown

whether the used attack samples hold the capability to actually

deceive a realistic vein recognition system. Inspired by previous

works, this study provides a systematic threat evaluation

including three publicly available finger vein attack databases

and one private dorsal hand vein database. To do so, 14 distinct

vein recognition schemes are confronted with attack samples

and the percentage of wrongly accepted attack samples is then

reported as the Impostor Attack Presentation Match Rate. As

a second step, comparison scores from different recognition

schemes are combined using score level fusion with the goal

of performing presentation attack detection.

1. Introduction

Since most biometric data is inseparably linked to a
human individual, security considerations for biometric sys-
tems are of utter importance. However, as some biometric
traits are left behind (e.g. latent fingerprint) or are always
exposed to public (e.g. gait, face), one potential attack
scenario that has to be dealt with is the presentation of a
replica of a biometric sample to the biometric reader with the
goal of either impersonate someone or not being recognized.
This is known as presentation attack and defined by the
ISO/IEC [1] as: presentation to the biometric data capture

subsystem with the goal of interfering with the operation of

the biometric system.
Due to the circumstance that blood vessels are hard to

detect with the human visual system or consumer cameras,
biometric systems that employ vascular patterns in the hand
region were often attributed with being insusceptible against
such attacks. However, German hackers [2] demonstrated
the use of a hand vein pattern which was acquired from
a distance of a few meters to successfully deceive a

This is a preprint of the following chapter: Schuiki, J., Linortner, M., Wim-

mer, G., Uhl, A., Extensive Threat Analysis of Vein Attack Databases and

Attack Detection by Fusion of Comparison Scores, published in Handbook

of Biometric Anti-Spoofing Third Edition: Presentation Attack Detection

and Vulnerability Assessment, edited by Marcel, S., Fierrez, J., Evans, N.,

2023, Springer, Singapore reproduced with permission of Springer Nature

Singapore Pte Ltd. The final authenticated version is available online at:

https://doi.org/10.1007/978-981-19-5288-3 17

commercial hand vein recognition device during a live
session at a hacking conference in 2018. Besides that,
they suggested that hand dryers in the restroom could be
manipulated to secretly capture hand vein images. Also
one must never rule out the possibility of an already
existing vein database being compromised by an attacker.
Hence, plenty of studies were published that address the
possibility of vein recognition systems getting deceived
by forged samples over the course of the last decade.
A comprehensive overview of countermeasures to such
attacks (also known as presentation attack detection, PAD)
can be found in table 14.1 in [3].

In order to evaluate the effectiveness of such PAD
algorithms, either private databases or publicly available
databases are used. For the creation of such attack samples,
the following strategies can be found in literature:

One of the pioneer works was published in 2013 by
Nguyen et al. [4], where one of the first successful attempts
to fool a finger vein recognition algorithm was reported.
They created a small scale attack database from an existing
finger vein database consisting of seven individuals. Their
recipe for generating the presentation attacks was to print
selected finger vein templates from an existing database onto
two types of paper and on overhead projector film using a
laser printer, thereby creating three different attack types.

Tome et al. [5] created presentation attacks using a
subset from a publicly available finger vein recognition
database, that was initially released at the same time. Like-
wise, as Nguyen et al. in 2013 [4], a laser printer was used
for presentation attack creation and additionally the contours
of the veins were enhanced using a black whiteboard marker.
One year later, in 2015, the first competition on counter
measures to finger vein spoofing attacks was held [6] by the
same authors as in [5]. With this publication, their presenta-
tion attack database was extended such that every biometric
sample from their reference database has a corresponding
spoofed counterpart. This was the first complete finger vein
presentation attack database publicly available for research
purposes.

Instead of merely printing vein samples on paper, Qiu
et al. [7] suggested to print the sample on two overhead
projector films and sandwich a white paper in between the
aligned overhead films. The white paper is meant to reduce
overexposure due to transparency of the overhead films.

Another experiment was shown in [8]. Here dorsal hand
vein images were acquired using a smartphone camera that



had, without modification, a moderate sensitivity in the
near infrared region. The images were then shown on the
smartphone display and presented to the biometric sensor.

A very different approach was published by Otsuka et
al. [9] in 2016. They created a working example of what
they call ’wolf attack’. This type of attack has the goal to
exploit the working of a recognition toolchain to construct
an attack sample that will generate a high similarity score
with any biometric template stored. They showed that their
master sample worked in most of the finger vein verification
attempts, therefore posing a threat to this particular recog-
nition toolchain used.

In 2020, Debiasi et al. [10] created a variety of presenta-
tion attacks that employ wax and silicone casts. However, no
successful comparison experiments with bona fide samples
were reported. In [11], the attack generation recipe using
casts of beeswax was reworked and finally shown to be
functional.

In order to demonstrate the capability of actually de-
ceiving a vein recognition algorithm, attack samples can be
evaluated using a so called ”2 scenario protocol”, which
is described in section 3.1. In the authors’ previous works
[11], [12], an extensive threat evaluation was carried out
for the finger vein databases introduced in [6], [11], [13] by
confronting twelve vein recognition schemes with the attack
samples. The twelve recognition schemes can be categorized
into three types of algorithms based on which features they
extract from the vein images. Additionally, a presentation
attack detection strategy was introduced that employs score
level fusion of recognition algorithms. This was done by
cross-evaluation of five fusion strategies along with three
feature scaling approaches.

This study extends the authors’ previous work by adding
two feature extraction and comparison schemes that intro-
duce a fourth algorithm category. Further, three additional
feature normalization techniques and two additional fusion
strategies are included in the experiments of this chapter.
Besides that, this study transfers the threat analysis proce-
dure to a private dorsal hand vein video database that was
used in earlier studies [14], [15], but it was never shown
whether it could actually deceive a vein recognition system.

The remainder of this chapter is structured as follows.
Section 2 describes the databases used later in this study.
Section 3 contains an evaluation of the threat that is emitted
by the databases from section 2 to 14 vein recognition
schemes that can be categorized into 4 types of algorithms.
In section 4, the comparison scores from section 3 are
combined using score level fusion in order to carry out
presentation attack detection. Finally, section 5 includes a
summary of this study.

2. Attack Databases

In total, four databases are included in this study which
are described hereafter.

A) Paris Lodron University of Salzburg Palmar Finger

Vein Spoofing Data Set (PLUS-FV3 Spoof)1:

The PLUS-FV3 Spoof data set uses a subset of
the PLUS Vein-FV3 [16] database as bona fide
samples. For the collection of presentation attack
artefacts, binarized vein images from 6 fingers (i.e.
index, middle and ring finger of both hands) of 22
subjects were printed on paper and sandwiched
into a top and bottom made of beeswax. The
binarization was accomplished by applying
Principal Curvature [17] feature extraction in two
different levels of vessel thickness, named thick

and thin. The original database was captured
with two types of light sources, namely LED and
Laser. Therefore, presentation attacks were created
for both illumination variants. While the original
database was captured in 5 sessions per finger,
only three of those were reused for presentation
attack generation. Summarized, a total of 396
(22*6*3) presentation attacks per light source
(LED & Laser) and vein thickness (thick & thin)
with corresponding to 660 (22*6*5) bona fide
samples are available. Every sample is of size
192x736.

B) The Idiap Research Institute VERA Fingervein

Database (IDIAP VERA)2: The IDIAP VERA
finger vein database consists of 440 bona fide
images that correspond to 2 acquisition sessions of
left and right hand index fingers of 110 subjects.
Therefore these are considered as 220 unique
fingers captured 2 times each. Every sample has
one presentation attack counterpart. Presentation
attacks are generated by printing preprocessed
samples on high quality paper using a laser
printer and enhancing vein contours with a black
whiteboard marker afterwards. Every sample is
provided in two modes named full and cropped.
While the full set is comprised of the raw images
captured with size 250x665, the cropped images
were generated by removing a 50pixel margin from
the border, resulting in images of size 150x565.

C) South China University of Technology Spoofing

Finger Vein Database (SCUT-SFVD)3: The SCUT-
SFVD database was collected from 6 fingers (i.e.
index, middle and ring finger of both hands) of
100 persons captured in 6 acquisition sessions,
making a total of 3600 bona fide samples. For
presentation attack generation, each finger vein
image is printed on two overhead projector films
which are aligned and stacked. In order to reduce
overexposure, additionally a strong white paper
(200g/m2) is put in-between the two overhead
projector films. Similar to the IDIAP VERA

1. https://wavelab.at/sources/PLUS-FV3-PALMAR-Image-Spoof/

2. https://www.idiap.ch/en/dataset/vera-fingervein

3. https://github.com/BIP-Lab/SCUT-SFVD



database, the SCUT-SFVD is provided in two
modes named full and roi. While in the full set
every image sample has a resolution of 640x288
pixel, the samples from the roi set are of variable
size. Since the LBP and the ASAVE matching
algorithm can not be evaluated on variable sized
image samples, a third set was generated for this
study named roi-resized where all roi samples
have been resized to 474x156 which corresponds
to the median of all heights and widths from the
roi set.

D) Paris Lodron University of Salzburg Dorsal Hand

Vein Video Spoofing Data Set (PLUS-DHV Spoof):

This database was initially created by [14] in order
to analyze a finger vein video presentation attack
detection scheme proposed by [18]. The database
consists of video samples from both hands of 13
participants, that were captured using two differ-
ent illumination variants: Reflected light, where the
illumination source is placed next to the imag-
ing sensor in order to capture the light which is
not absorbed but reflected by the user’s hand, as
well as transillumination, where the light source
comes from the opposite side and goes through
the user’s hand. For every bona fide video sam-
ple, five different video attacks exist: (i) printed
on paper using a laser printer (Paper Still), (ii)
printed on paper with applied movement back and
forth (Paper Moving), (iii) shown on a smartphone
display (Display Still), (iv) shown on smartphone
display with programmed sinusoidal translation os-
cillation along the x axis (Display Moving) and
(v) shown on smartphone display with programmed
sinusoidal scaling oscillation in every direction
(Display Zoom). For this study, 10 equally spaced
frames were extracted throughout every video se-
quence, resulting in 260 (26*10) bona fide as well
as attack samples, per attack type. Further, region of
interest preprocessing was applied. Note however,
that unfortunately this database is a private one.

3. Threat Analysis

This section follows the idea from previous publications
[11], [12], in which databases A) - C) from section 2 were
subjected to experiments in order to evaluate the threat these
attack samples emit to a variety of recognition algorithms.
The goal of the experiments in this section is (i) to carry out
the experiments from previous publications with a slightly
different setting in the options as well as (ii) the transfer
of this threat evaluation to the dorsal hand vein database
D) explained in section 2. To do so, the threat evaluation
protocol described in section 3.1 is used for the experiments
in this section. Altogether 14 distinct feature extraction and
comparison schemes are used in this study that can be
categorized into four classes of algorithms based on the type
of feature they extract from the vein samples:

• Binarized vessel networks: Algorithms from this cat-
egory work by transforming a raw vein image into a
binary image where the background (and also other
parts of the human body such as flesh) is removed
and only the extracted vessel structures remain. The
binarized image is then used as a feature image
for the comparison step. Seven different approaches
are included in this study that finally create such
a binarized vein image. Maximum Curvature (MC)

[19] and Repeated Line Tracking (RLT) [20] try to
achieve this by looking at the cross sectional profile
of the finger vein image. Other methods such as
Wide Line Detector (WLD) [21], Gabor Filter (GF)

[22] and Isotropic Undecimated Wavelet Transform

(IUWT) [23] also consider local neighbourhood re-
gions by using filter convolution. A slightly different
approach is given by Principal Curvature (PC) [17]

which first computes the normalized gradient field
and then looks at the eigenvalues of the Hessian
matrix at each pixel. All so far described binary
image extraction methods use a correlation measure
to compare probe and template samples which is
often referred to as Miura-matching due to its intro-
duction in Miura et al. [20]. One more sophisticated
vein pattern based feature extraction and matching
strategy is Anatomy Structure Analysis-Based Vein

Extraction (ASAVE) [24], which includes two differ-
ent techniques for binary vessel structure extraction
as well as a custom matching strategy.

• Keypoints: The term keypoint is generally under-
stood as a specific pixel or pixel region in an digital
image that provides some interesting information
to a given application. Every keypoint is stored by
describing its local neighbourhood and its location.
This research uses three keypoint based feature ex-
traction and matching schemes. One such keypoint
detection method, known as Deformation Tolerant

Feature Point Matching (DTFPM) [25], was espe-
cially tailored for the task of finger vein recognition.
This is achieved by considering shapes that are com-
mon in finger vein structures. Additionally, modified
versions of general purpose keypoint detection and
matching schemes, SIFT and SURF, as described
in [26] are tested in this research. The modification
includes filtering such that only keypoints inside the
finger are used while keypoints at the finger contours
or even in the background are discarded.

• Texture information: Image texture is a feature that
describes the structure of an image. Shapiro and
Stockman [27] define image texture as something
that gives information about the spatial arrangement
of color or intensities in an image or selected region
of an image. While two images can be identical
in terms of their histograms, they can be very dif-
ferent when looking at their spatial arrangement of
bright and dark pixels. Two methods are included
in this work that can be counted to texture-based
approaches. One of which is a Local Binary Pattern



[28] descriptor that uses histogram intersection as
a similarity metric. The second method is a con-

volutional neural network (CNN) based approach
that uses triplet loss as presented in [29]. Simi-
larity scores for the CNN approach are obtained
by computing the inverse Euclidean distance given
two feature vectors corresponding to two finger vein
samples.

• Minutiae-based: The term minutiae descends from
the domain of fingerprint biometrics. Every finger-
print is a unique pattern that consists of ridges and
valleys. The locations where such a pattern has
discontinuities such as ridge endings or bifurcations
are named ”minutiae points”. This concept of finding
such minutiae points was successfully transferred
[30] to the vein biometrics domain by skeletoniza-
tion of an extracted binarized vein image, such as de-
scribed in the first category. This study now employs
two schemes in order to perform vein recognition,
that both use these extracted minutiae points. First,
the proprietary software VeriFinger SDK (VF) 4 is
used for comparison of these minutiae points. A
second method, Location-based Spectral Minutiae

Representation (SML) [31] uses the minutiae points
as an input in order to generate a representation that
can finally be compared using a correlation measure.

3.1. Threat Evaluation Protocol

To evaluate the level of threat exhibited by a certain
database, a common evaluation scheme is used that employs
two consecutive steps, hence often coined “2 scenario proto-
col” [5], [8], [32], is adopted in this study. The two scenarios
are briefly summarized hereafter (description taken from
[12]):

• Licit Scenario (Normal Mode): The first scenario
employs two types of users: Genuine (positives) and
zero effort impostors (negatives). Therefore, both
enrollment and verification is accomplished using
bona fide finger vein samples. Through varying the
decision threshold, the False Match Rate (FMR,
ı.e. the ratio of wrongly accepted impostor attempts
to the number of total impostor attempts) and the
False Non Match Rate (FNMR, ı.e. the ratio of
wrongly denied genuine attempts to the total number
of genuine verification attempts) can be determined.
The normal mode can be understood as a matching
experiment which has the goal to determine an op-
erating point for the second scenario. The operating
point is set at the threshold value where the FMR =
FNMR (i.e. Equal Error Rate).

• Spoof Scenario (Attack Mode): The second sce-
nario uses genuine (positives) and presentation at-
tack (negatives) users. Similar to the first scenario,
enrollment is accomplished using bona fide samples.

4. https://www.neurotechnology.com/verifinger.html

Verification attempts are performed by matching pre-
sentation attack samples against their corresponding
genuine enrollment samples or templates. Given the
threshold from the licit scenario, the proportion of
wrongly accepted presentation attacks is then re-
ported as the Impostor Attack Presentation Match
Rate (IAPMR), as defined by the ISO/IEC 30107-
3:2017 [1].

3.2. Experimental Results

The experimental results are divided into two tables:
Table 1 contains the outcomes from the threat evaluation
on the finger vein databases (PLUS, IDIAP Vera & SCUT)
and table 2 contains the results from the experiments on the
dorsal hand vein database. Note that for databases where
multiple types of attacks exist for the same corresponding
bona fide samples, the reported EER values are equal since
the error rate calculation is solely based on bona fide data.
The table that contains the threat analysis for the hand vein
samples (table 2) includes always two IAPMR values per
attack type. The reason for this is illustrated in figure 1:
Due to the fact that only one video sequence is available per
subject to extract frames from, the samples are somewhat
biased in terms of intra-class variability. Hence, genuine and
impostor scores can often be separated perfectly such that a
whole range of decision thresholds would be eligible options
to set the EER (the range is illustrated in the figure as the
region in-between the vertical dash-dotted lines). The dash-
dotted lines represent the extreme cases where the EER
would still be zero, i.e. perfect separation of genuine and
impostor scores. When now looking at the two IAPMRs at
the extreme cases, one can see that this rate varies (in this
case) between 0.00% and 93.15%. Thus, the IAPMRs for
the hand vein database is always reported as for the left-
most (IAPMR-L) and right-most (IAPMR-R) extreme case.
Note that for EERs 6= 0 both IAPMRs are identical.

The minutiae based recognition schemes are evaluated
using the VeinPLUS+ Framework [33]. The binary vessel
network based methods, the keypoint based methods and
the LBP scheme were evaluated using the PLUS OpenVein

Toolkit [34]. The CNN based approach was implemented
in Python. Due to the fact that this is a learning based
approach and such learning is non-deterministic, the EERs
and IAPMRs for the CNN method are calculated by taking
the arithmetic mean over a 2-fold-cross validation. This is
done for every database except for the PLUS LED and PLUS
Laser, since there exists a second open source database [35]
which descends from a similar imaging sensor that is used
for training the CNN. For comparison the ’FVC’ protocol,
named after the Fingerprint Verification Contest 2004 [36]
where it was introduced, was used. This protocol executes
every possible genuine comparison but only compares the
first sample of each subject with the first sample of all
remaining subjects. Hence, it is ensured that every genuine
comparison is made, but largely reduces the amount of
impostor scores.
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Figure 1. Exemplary visualization of the outcomes from the two scenario protocol when the Maximum Curvature scheme was confronted with hand vein
attack samples from type: reflected light display moving.

3.2.1. Finger Vein Attack Databases. When confronted
with the finger vein attacks, binary vessel pattern based
schemes tend to produce IAPMRs up to 93.48% for the
IDIAP Vera, 86.33% for the SCUT and 89.54% for the
PLUS databases. Such IAPMRs indicate that roughly up
to 9 out of 10 attack samples could wrongly be classified as
a bona fide presentation. Compared to the reference paper
[12], the ”Miura matching” comparison step for the region
of interest (roi/cropped) versions was also executed with
parameters that allow for a certain translation invariance.
Doing so, some EER results could be reduced by up to
15%. As a consequence also the IAPMRs increased, giving
a clearer image on the threat that these cropped samples
exhibit to the algorithms that extract a binary feature im-
age. General purpose keypoint based recognition schemes,
especially SURF, seem relatively unimpressed by the attack
samples, reaching an overall high IAPMR of 14.24% at the
IDIAP Vera cropped attacks. The keypoint method that was
especially tailored for the vein recognition task, DTFPM,
along with the texture based and minutiae based methods
show a relatively in-homogeneous behaviour. All, however,
indicate that the PLUS attacks are little to no threat to them
compared to the IDIAP and SCUT attack samples.

3.2.2. Dorsal Hand Vein Attack Database. When looking
at the threat analysis for the dorsal hand vein attacks (table
2), one is able to observe that (i) attack samples that were
captured through transillumination are more likely to pose
a threat to the recognition schemes and also (ii) attacks
shown on a smartphone display tend to work better than
the laser printed paper attacks. One exception constitutes
the MC recognition scheme. It seems that, when treating
both extreme cases IAPMR-R and IAPMR-L as equally
valid, all attacks have an overall high potential to fool
the MC algorithm. The same holds true for the DTFPM
keypoint recognition scheme. For other binary vessel net-
work schemes, as mentioned, only the display attacks seem
to have a certain attack potential. The remaining general

purpose keypoint schemes, SIFT and SURF, the Minutiae
based schemes as well as LBP seem to remain unaffected
regardless of the attack type used. Interestingly, the display
attacks seem to have at least some attack potential to the
CNN recognition scheme.

4. Attack Detection Using Score Level Fusion

Using the the observation that different recognition
schemes vary in their behaviour and thus probably
contain complementary information, this section includes
experiments to combine multiple recognition schemes in
order to achieve presentation attack detection. Note that
throughout the following section, genuine scores (i.e.
scores that descend from intra-subject comparisons) are
viewed as bona fide scores and scores that descend from
comparisons where an attack sample is compared to its
bona fide counterpart are considered to be presentation
attack scores. Solving the presentation attack problem
via combination of multiple similarity scores descending
from distinct recognition schemes can be formally written
as follows. Let sij be the ith comparison score out of
m total eligible comparisons that was assigned by the
jth recognition scheme out of n considered recognition
schemes at a time, i.e. i ∈ {1, ...,m} and j ∈ {1, ..., n}.
Note that for an ith comparison, every recognition scheme
needs to compare the same biometric samples. Further, let
xi be the the vector xi = (si1, ..., sin) that describes the ith
comparison by concatenation of all n recognition schemes
considered at a time. Let X be the set of all m eligible
comparisons from a certain database X = {x1, ..., xm}.
Since some of the following fusion strategies demand
for training data, the set of all comparisons X is always
divided into a train Xtrain and a test split Xtest using
k-fold cross validation. The combined score that remains
after score level fusion for the ith comparison shall be
denoted as Si. The comparison can then be classified as



TABLE 1. VULNERABILITY ANALYSIS USING 2 SCENARIO PROTOCOL FOR THE FINGER VEIN DBS.

MC PC GF IUWT RLT WLD ASAVE DTFPM SIFT SURF LBP CNN SML VF

PLUS LED Thick

EER 0.60 0.75 1.06 0.68 4.62 1.14 2.35 2.35 1.06 3.33 3.86 2.90 2.79 0.80
IAPMR 72.81 69.93 36.99 79.08 40.65 69.15 24.31 16.34 0.00 0.00 0.00 0.67 4.02 5.16

PLUS LED Thin

EER 0.60 0.75 1.06 0.68 4.62 1.14 2.35 2.35 1.06 3.33 3.86 2.90 2.79 0.80
IAPMR 89.65 79.80 59.72 89.77 32.83 83.96 19.07 15.78 0.00 0.00 0.25 0.35 5.87 5.24

PLUS Laser Thick

EER 1.29 1.65 2.72 1.97 6.21 2.80 2.50 2.90 1.04 3.71 4.27 6.82 2.95 1.01
IAPMR 59.90 57.47 31.55 79.44 22.48 57.22 9.07 4.98 0.00 0.00 0.00 0.00 2.67 6.54

PLUS Laser Thin

EER 1.29 1.65 2.72 1.97 6.21 2.80 2.50 2.90 1.04 3.71 4.27 6.82 2.95 1.01
IAPMR 76.52 66.92 52.65 84.34 16.79 77.78 2.02 5.18 0.13 0.00 0.00 0.05 3.60 5.62

IDIAP Vera FV Full

EER 2.66 2.73 6.83 4.95 29.55 6.03 9.11 10.45 4.54 11.39 8.17 6.35 6.69 4.04
IAPMR 93.18 90.45 85.76 93.18 35.00 93.48 72.58 26.21 14.24 0.91 16.97 17.27 59.09 21.67

IDIAP Vera FV Cropped

EER 5.52 6.91 11.36 6.36 27.19 9.09 19.10 6.69 5.43 11.62 5.80 9.93 17.27 11.11
IAPMR 92.27 89.24 81.97 91.82 38.64 90.45 68.79 81.97 44.55 14.24 69.09 7.84 64.55 21.97

SCUT-SFVD Full

EER 4.01 4.79 9.40 6.29 14.01 7.60 11.56 8.90 2.37 5.49 8.78 0.74 7.63 1.41
IAPMR 86.33 84.67 54.90 74.06 40.36 74.21 74.98 73.75 30.43 4.18 45.43 68.65 59.76 32.90

SCUT-SFVD ROI-Resized

EER 2.28 2.12 3.52 2.10 2.94 2.36 6.03 5.63 1.92 9.41 3.51 0.84 7.25 3.78
IAPMR 60.36 47.95 36.88 49.85 9.46 52.49 59.88 55.08 34.93 7.42 55.36 55.00 61.22 40.40

bona fide or attack comparison by simple thresholding of Si.

For the experiments in this study, three simple fusion
strategies (Min-Rule Fusion, Max-Rule Fusion and Simple

Sum-Rule Fusion) were adopted from [37] that can be seen
in the following equations.

• Min-Rule Fusion

Si = min(xi) (1)

• Max-Rule Fusion

Si = max(xi) (2)

• Simple Sum-Rule Fusion

Si =

n
∑

j=1

sij (3)

A slightly more sophisticated method is given by the
Weighted Sum-Rule Fusion. In [38] this technique is also
named as ”Matcher Weighting” in order to distinguish the
weighting strategy from the one where every user or individ-
ual would get different weights instead of every recognition
scheme.

• Weighted Sum-Rule Fusion

Si =

n
∑

j=1

sij ∗ wj (4)

In order to use the weighted sum rule fusion, a strategy
has to be chosen on how to assign the weights wj in equation
4. Snelick et al. [38] propose to choose weights indirect
proportional to the error rates. Since it is not intuitively
clear which error rates to use in this study (since the goal
is to use score level fusion of different recognition schemes
to achieve presentation attack detection), the training split
Xtrain is used to calculate an Equal Error Rate estimate
EERj per recognition scheme j. This decision can be
justified since Xtrain consists of bona fide and attack com-
parisons and therefore gives a rough estimate on how much
a particular recognition scheme contributes to the PAD-task.

wj =

1

EERj
∑n

v=1

1

EERv

(5)

Additionally, three binary classifiers are evaluated
that are trained using Xtrain in order to predict the



TABLE 2. RESULTS OF THE THREAT ANALYSIS FOR THE HAND VEIN ATTACKS.

MC PC GF IUWT RLT WLD ASAVE DTFPM SIFT SURF LBP CNN SML VF

PLUS-DHV Transillumination Paper-Still

EER 0.00 0.00 0.00 0.00 2.66 0.00 0.00 0.00 0.00 0.00 0.00 1.62 0.17 0.09
IAPMR-R 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.31 3.15 2.31
IAPMR-L 94.90 5.03 0.28 6.01 0.00 11.75 38.95 85.52 0.35 0.00 6.78 3.31 3.15 2.31

PLUS-DHV Transillumination Paper-Moving

IAPMR-R 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.38 3.78 2.24
IAPMR-L 92.38 4.97 0.42 5.87 0.00 10.77 32.94 79.86 0.00 0.00 3.85 3.38 3.78 2.24

PLUS-DHV Transillumination Display-Still

IAPMR-R 1.40 0.49 24.20 0.56 8.46 10.77 0.00 0.00 0.00 0.00 0.00 18.58 5.31 9.51
IAPMR-L 99.65 33.15 32.87 42.24 8.46 61.82 2.17 96.22 3.64 0.00 0.00 18.46 5.31 9.51

PLUS-DHV Transillumination Display-Moving

IAPMR-R 0.63 0.28 23.01 1.19 7.13 10.84 0.00 0.00 0.00 0.00 0.00 18.54 5.59 10.77
IAPMR-L 98.95 34.83 29.93 40.70 7.13 54.69 5.66 95.03 3.43 0.00 0.00 18.50 5.59 10.77

PLUS-DHV Transillumination Display-Zoom

IAPMR-R 0.14 0.21 22.87 0.21 9.02 10.56 0.00 0.00 0.00 0.00 0.00 18.54 6.08 9.72
IAPMR-L 99.65 33.22 31.47 43.29 9.02 57.55 2.87 96.50 3.43 0.00 0.00 18.54 6.08 9.72

PLUS-DHV Reflected Light Paper-Still

EER 0.00 0.00 0.10 0.00 3.25 0.00 0.00 0.00 0.00 0.18 0.00 2.62 0.34 0.69
IAPMR-R 0.00 0.00 2.66 0.00 0.00 13.50 0.00 0.00 0.00 0.00 0.00 0.00 1.47 0.42
IAPMR-L 92.80 0.00 2.66 0.07 0.00 13.50 17.90 8.18 0.00 0.00 0.00 0.00 1.47 0.42

PLUS-DHV Reflected Light Paper-Moving

IAPMR-R 0.00 0.00 2.52 0.00 0.00 10.56 0.00 0.00 0.00 0.00 0.00 0.00 1.75 0.42
IAPMR-L 91.96 0.00 2.52 0.63 0.00 10.56 19.65 23.43 0.00 0.00 0.00 0.00 1.75 0.42

PLUS-DHV Reflected Light Display-Still

IAPMR-R 0.00 8.46 12.24 2.45 64.83 0.00 0.00 0.00 0.07 3.08 0.00 8.00 1.33 3.08
IAPMR-L 94.97 67.90 12.24 30.07 64.83 0.00 13.15 54.62 3.57 3.08 0.00 8.00 1.33 3.08

PLUS-DHV Reflected Light Display-Moving

IAPMR-R 0.00 7.97 12.38 2.59 65.38 0.00 0.00 0.00 0.00 2.45 0.00 8.54 1.75 3.29
IAPMR-L 93.15 71.33 12.38 37.34 65.38 0.00 19.86 64.13 3.43 2.45 0.00 8.54 1.75 3.29

PLUS-DHV Reflected Light Display-Zoom

IAPMR-R 0.49 9.58 11.96 2.73 59.16 0.00 0.00 0.00 0.00 2.38 0.00 6.42 1.54 3.15
IAPMR-L 95.31 73.43 11.96 36.92 59.16 0.00 12.66 58.39 3.36 2.38 0.00 6.42 1.54 3.15

test data Xtest per fold: (i) Fisher Linear Discriminant,
(ii) Support Vector Machine with Linear Kernel and (iii)
Support Vector Machine with Radial Basis Function Kernel.

Similarity scores from distinct recognition algorithms,
however, do not necessary lie in the same range. Therefore
a variety of comparison score normalization strategies are
applied to xi in order to create a normalized comparison
feature vector x′

i along with the option of applying no
feature scaling at all (No Norm: x′

i = xi). Note that
calculations over the whole data (e.g. mean, min, max,...) are
also conducted over the training split Xtrain for the normal-
ization step as well in order to simulate a realistic scenario
where the sample under test is not included in parameter

determination. Together with the option of omitting score
normalization, six strategies are included in this research.

Three popular score normalization techniques [39], Min-

Max Norm, Z-Score Norm and Tanh-Norm are described in
the following equations, where σ represents the operator
for calculation of the standard deviation and µ stands for
calculation of the arithmetic mean.

• Min-Max Norm

x′
i =

xi −min(Xtrain)

max(Xtrain)−min(Xtrain)
(6)



• Tanh-Norm

x′
i = 0.5 ∗

(

tanh

(

0.01 ∗
xi − µ(Xtrain)

σ(Xtrain)

)

+ 1

)

(7)
• Z-Score Norm

x′
i =

xi − µ(Xtrain)

σ(Xtrain)
(8)

Another normalization technique was proposed by He
et al. [40] named Reduction of high-scores effect (RHE)

normalization. Here, Xtrainbf
indicates to use only the bona

fide comparison scores for calculation of the mean and
standard deviation.

• Rhe-Norm

x′
i =

xi −min(Xtrain)

µ(Xtrainbf
) + σ(Xtrainbf

)−min(Xtrain)
(9)

Additionally, rescaling the feature vector x to unit length
is tested. Note that for the cases where only a single recog-
nition scheme is considered, the Unit Length Norm would
result in ones ( i.e. x

||x|| = 1 for the case where x is a scalar).

Therefore the normalization is omitted for these cases.

• Unit Length Norm

x′
i =

xi

||xi||
(10)

The ISO/IEC 30107-3:2017 [1] defines decision thresh-
old dependent metrics for presentation attack detection such
as Attack Presentation Classification Error Rate (APCER)
and Bona Fide Presentation Classification Error Rate
(BPCER):

• Attack Presentation Classification Error Rate

(APCER): Proportion of attack presentations incor-
rectly classified as bona fide presentations in a spe-
cific scenario

• Bona Fide Presentation Classification Error Rate

(BPCER): Proportion of bona fide presentations in-
correctly classified as presentation attacks in a spe-
cific scenario

The PAD performance is reported in table 3 in terms of
detection equal error rate D-EER (operating point where
BPCER = APCER), BPCER20 (BPCER at APCER <=
0.05) and BPCER100 (BPCER at APCER <= 0.01).

4.1. Experimental Results

For the score level fusion experiments described above,
results are obtained by conducting an exhaustive cross
combination that includes all of the aforementioned fu-
sion and normalization strategies. Per database, 214 − 1 =
16 383 method constellations (since 14 different recognition
schemes are used) exist, all of which are further evaluated
using 6*7=42 Norm-Fusion combinations. Doing so allows
for a broader perspective on which score level fusion tech-
niques tend to work well very often. The dorsal hand vein

Figure 2. Boxplots including cross combinations of normalization- and
fusion-strategies. Note that every boxplot contains 16 383 values for 214−1

possible method constellations. To see what number on the x axis corre-
sponds to which norm-fusion-combination, table 4 serves as a lookup table.
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database was not included in these experiments since for
every attack case there is at least one recognition scheme
that achieves 0.00% IAPMR, meaning that at least one
single method would suffice to separate bona fide from
attack samples, thus annulling the reason of performing
score level fusion.

Since the SCUT database has a lot more samples than
the other databases, the experiments in this section only
considered comparisons of samples with IDs 1 and 2 per
subject in order to keep the experiments computationally
feasible in a reasonable amount of time. In order to split the
comparison scores into train and test data, 2-fold cross val-
idation is used. The best working constellation per database
can be seen in in table 3. It is worth noting however
that for the PLUS LED and PLUS Laser database often
multiple method constellations would be eligible while still
achieving 00.00% D-EER. Hence, the reported constella-
tions are chosen to require as few methods as possible
and preferably use a computationally inexpensive norm-
fusion combination. Each boxplot in figure 2 represents
16 383 method constellations for a particular normalization
and fusion method, evaluated on a certain database. Every
number on the x-axis corresponds to a certain norm-fusion-
combination which can be deciphered using the lookup table
4. One particular mode was chosen for every database since
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TABLE 3. SELECTION OF BEST WORKING METHOD CONSTELLATIONS IN TERMS OF DETECTION ERROR RATE. NOTE THAT FOR THE PLUS
DATABASES, THERE ARE OFTEN MULTIPLE ELIGIBLE OPTIONS. THIS IS ONLY ONE CONSTELLATION THAT USES AS LITTLE RECOGNITION SCHEMES

AS POSSIBLE.
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S
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L

V
F

PLUS-LED
0.00 0.00 0.00 svm-rbf z-norm X X

thick
PLUS-LED

0.00 0.00 0.00 sum-rule z-norm X X
thin

PLUS-Laser
0.00 0.00 0.00 sum-rule no-norm X X

thick
PLUS-Laser

0.00 0.00 0.00 svm-lin z-norm X X X
thin

IDIAP VERA
1.14 0.91 1.82 fisher-lda unit-length X X X X X X X X X

full
IDIAP VERA

3.18 2.27 13.18 svm-lin rhe-norm X X X X X X X X X X X X X
cropped

SCUT-SFVD
0.33 0.00 0.17 svm-lin min-max X X X X X X X

full
SCUT-SFVD

0.76 0.67 0.67 svm-rbf rhe-norm X X X X X X X X X
roi-resized

the overall trend is roughly the same for every sub-database.
One can see that the score level fusion - presentation attack
detection works well on the PLUS data. This observatuion
coincides with the threat analysis, where the PLUS attacks
had a hard time deceiving the keypoint, texture and minutiae
recognition schemes, therefore all contributing valuable in-
formation for the PAD. The three peaks that can be seen at
5, 11 and 17 correspond to simple fusion rules together with
unit-length norm. Interestingly though does the best working
constellation for the IDIAP Vera full database include the
unit-length norm together with the Fisher linear discriminant
classifier. The overall trend that can be seen when looking
at the IDIAP and SCUT boxplots indicates that the simpler
fusion rules (more on the left side) are not so often a good
choice, while the more complex fusion schemes (more on
the right) often yield reasonable D-EERs.

5. Summary

This study conducted an extensive threat analysis in-
cluding three publicly available finger vein databases and
one private dorsal hand vein database. The threat analysis
was carried out using 14 vein recognition schemes that
can be categorized into four types of algorithms based
on what type of feature they extract. Experimental results
show that all three finger vein databases pose a threat
to most of the binarized vessel network based methods,
while algorithms from the other categories behave more in-
homogeneous. The general purpose keypoint scheme SIFT
tends be very resistant against the PLUS attacks, while
the other two finger vein databases seem to pose a threat,
having IAPMRs ranging from 14% - 44%. The other general
purpose keypoint recognition scheme, SURF, seems to be
very unimpressed by the presented attacks overall. Similar
to the SIFT recognition scheme, the texture based methods

LBP and CNN tend to be only susceptible to the IDIAP
and SCUT attack samples. Minutiae based methods as well
as the DTFPM keypoint scheme show minor ( 5% - 16%
IAPMR) receptiveness for the PLUS attacks and higher
(21% and above) for the IDIAP and SCUT attacks. The
second part of this research tries to use the in-homogeneity
from the recognition schemes in order to perform presen-
tation attack detection. To do so, comparison scores from
different recognition schemes are combined using a range
of different score level fusion techniques. After exhaustive
cross-combination of all recognition schemes together with
normalization and fusion schemes, the best working method
constellations show indeed that presentation attack detection
can be achieved.
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