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Abstract

The times where access authorization checks for high security areas by us-
ing parts of the human body was solely possible on the TV screen are long
over. Biometrics, as the generic term is called, has emerged to be a widely
researched topic. Yet verifying a person’s claim of identity via a behavioural
or physical characteristic remains still a complex task.

One particular physical characteristic that is in use for this manner is the
structure of blood vessels in the hand region. However, the last decade has
brought forward several ideas on how to deceive an automatic verification
system by using fake finger or hand veins as an input. The act of presenting
such a forged finger or hand to a biometric sensor is known as presentation
attack. To counteract such attacks, various approaches have been published
during the last few years. The majority of the presented solutions to cir-
cumvent this problem operate on still images, though. Very scarce literature
exists on achieving attack detection when dealing with video data.

This thesis focuses on looking for distinctive characteristics in consecutive
frames of a given video sequence in order to perform presentation attack
detection. Experiments include two video data sets that were recorded in
the Multimedia Signal Processing and Security Lab from the University of
Salzburg. The data sets contain blood vessel structures in the finger as well
as on the dorsum of the hand, respectively, and include several attacks and
illumination variants.

To do so, it is first evaluated whether the attacks would actually be able
to deceive a real system. Afterwards, experiments are conducted that test
already existing attack detection methods as well as methods that have been
developed in the course of creating this thesis on their performance by using
the two above mentioned data sets.
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1 Introduction

Tasks such as logging into a computer system or withdrawing money from a
teller machine require the user to authenticate themselves in order legitimate
their access. Traditionally, this is being done by using either token based
authentication (cards, badges, keys), knowledge based authentication (pass-
words, personal identification number or PIN ) or a mixed form of the former
two authentication methods (e.g. card together with a PIN). These methods
however have several shortcomings that could lead to security breaches: Too
weak passwords are easy to guess, too long passwords hold the risk of being
forgotten, keys can be lost or stolen, badges can be duplicated and sometimes
PIN codes are written directly on the card. Also these classic authentication
methods could potentially be shared with other persons. Considering these
shortcomings of established authentication methods, it is often difficult for a
computer system to verify whether the operating user is authorized to do so
or not [66].

An alternative to the well established authentication methods is given by a
field of research named biometrics which uses one or more properties that
are inherent to the users body or to their behaviour for authentication. It
is crucial to note that there exists another, similarly named field of research
that refers to statistical analysis of biological data [33]. Throughout this
thesis however, the term biometrics will be used to denote the process of
authentication to a system by using biometric features of the human body,
also known as a biometric trait.

James Wayman defines the meaning of biometrics or biometric authentica-
tion as: “The automatic identification or identity verification of an individ-
ual based on physiological and behavioral characteristics [89].” Some key
elements of this definition demand further elaboration:

The word automatic suggests that there is an automated process reaching
from reading a biometric trait to making a decision. This process is com-
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monly denoted as a biometric system. Essentially such a biometric system
consists of four parts. (i) Data Acquisition: A biometric reader captures the
biometric sample data that is presented to it, at the same time digitizing
the data so that digital signal processing techniques can be applied in the
next steps. (ii) After application of appropriate preprocessing to the digi-
tized data, features are extracted in order to a) reduce the amount of data to
be stored and b) allow a certain variance during the acquisition phase. (iii)
A database where the extracted features of biometric samples are stored as
so called biometric templates and finally (iv) a decision making or compari-
son module that is able to compare newly acquired biometric samples with
already registered templates.

Data Acquisition

Name (PIN)

User Interface

Quality Checker Feature Extractor

Template Storage

Template

Data Acquisition

Name (PIN)

User Interface

Feature Extractor Matcher
(single match)

claimed
identity

User Interface

Identification

True/False

1

Template Storage

Verification

Enrollment

Feature Extractor Matcher
(N matches)

User's identity or
"user non identified"

N

Template Storage

Data Acquisition

Figure 1.1: Modes of a biometric system, recreated from [32].

A biometric system is able to operate in two modes, namely identification
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and verification. Both of which presuppose an initial step named enrollment.
Figure 1.1 shows a block diagram of all modes of operation which was recre-
ated from Jain et al. [32]. Enrollment: In order to perform any comparison
at all, individuals need to be known or enrolled to the system. Therefore,
as an initial step, preferably high-quality biometric samples have to be ac-
quired and stored as a template. Verification: In verification mode, a user
claims to be a certain enrolled individual and the biometric systems tries to
answer the question whether the person is who they claim to be. This can be
considered a one-to-one comparison since the system only needs to make the
comparison between the presented biometric sample and the enrolled tem-
plate corresponding to the claimed identity. Identification: In identification
mode, the biometric system conducts a one-to-many search with the goal
to identify the individual that presented its biometric data to the system.
Therefore the system tries to answer the question to whom the biometric
data belongs.
Historically in the field of biometrics, there has been inconsistent usage of
the terms recognition and authentication. Biometric recognition is a generic
term that can be used in the context of verification as well as identification
task [90]. Recognition is also the successor of the word authentication which
should not longer be used since it is labelled deprecated according to the
standard for information technology on biometrics vocabulary [3] (i.e. ISO
/ IEC 2382-37:2017). The content of this thesis focuses solely on the veri-
fication task rather than identification, hence biometric recognition can be
treated as a synonym to biometric verification throughout this thesis.

According to [30, 32, 31], any physiological or behavioural characteristic can
be a biometric trait as long as it possesses the following properties:

• Universality: any relevant person should have the characteristic.
• Distinctiveness: any two persons should be sufficiently different in

terms of the characteristic (i.e. have a high inter-class variability).
• Permanence: the characteristic should be sufficiently invariant over a

period of time (i.e. have a low inter-class variability).
• Collectability: the characteristic can be measured quantitatively.

Furthermore, the following properties need to be considered before choosing
a biometric trait for a practical application [32]:

• Performance: refers to the achievable recognition accuracy and speed,
the resources required to achieve the desired recognition accuracy and
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speed, as well as the operational end environmental factors that affect
the accuracy and speed.

• Acceptability: indicates the extent to which people are willing to accept
the use of a particular biometric trait in their daily lives.

• Circumvention: reflects how easily the system can be fooled using
fraudulent methods.

Jain et al. [31] evaluated these properties for a selection of biometric traits
based on the authors opinion using a three state scale consisting of low,
medium and high. This selection includes face biometrics, fingerprint, hand
geometry, iris texture, keystroke dynamics, signature and voice character-
istics. Table 1.1 depicts their perception of these biometric traits in terms
of the properties introduced above. This judgement suggests that there is
no golden solution that fits every practical application. It is important to
note however that this evaluation was published in 2004 and both processing
power as well as methods for circumvention have developed since then.
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Face H H M H L H H
Fingerprint M H H M H M M
hand Geometry M M M H M M M
Iris H H H M H L L
Keystroke Dynamics L L L M L M M
Signature L L L H L H H
Voice Characteristics M L L M L H H

Table 1.1: Comparison of several biometric identifier in terms of the prop-
erties mentioned above. The evaluation is based on the perception of the
authors in [33] and is reported using a three state scale where L, M and H
corresponds to low, medium and high.
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1.1 Hand-Based Vascular Pattern as
Biometric Trait

Another biometric identifier that has not been named so far is the vascular
pattern in the hand region. Here, the network structure of blood vessels
inside the human hand is used as biometric trait. According to [82], hand-
based vascular pattern is a generic term that refers to on the following four
locations: Finger vein, palm vein, hand vein and wrist vein. Similar to the
hand, vascular pattern could also be extracted from the human eye either
from the backmost layer of tissue, i.e. the retina, or from the visible area
around the iris, also known as sclera [81]. The acquisition processes for eye
based vascular pattern however are somewhat uncomfortable to the user and
are solely addressed for the sake of completeness since both hands and eyes
are the most popular regions used in the context of vascular biometrics [80].

Generally researchers assume that every subject (which can be either every
finger or every hand) has a high distinctiveness to any other subject on earth
and can therefore be labelled unique. In 2016 Ye et al. [96] conducted a large
scale experiment on finger vein recognition involving over 350.000 subjects
collected from Chinese middle schools that supports that assumption.

Since vessels in the hand area are often not visible neither to the human
visual system nor to consumer imaging devices such as standard smartphone
cameras, research has been going on to reveal these blood vessels using other
approaches: Although not for the purpose of biometric recognition but med-
ical imaging of the hand vascular structure in general, magnet resonance
angiography, that is, injection of a contrast material followed by magnet
resonance imaging, can be used for capturing blood vessels in the hand [15].
Iula et al. [29] used ultrasound scans to extract 3D palm vein patterns with
the purpose of performing biometric recognition. While in the referenced
research the authors label the results as not satisfactory, in later works the
actual usefulness of this imaging technique for biometrics was shown [17, 28].

In 2018, a publication [49] used photoacoustic tomography (PAT, also
called photoacoustic imaging) to visualize the palmar patterns of the human
hand for medical analysis. PAT makes use of the photoacoustic effect which
describes the conversion of electromagnetic energy into sound energy. When
confronted with pulsed laser light, any material that absorbs that radiation
experiences a slight change in temperature which causes the material to ex-
pand and contract itself. This change in volume, and therefore also pressure,
represents an acoustic source emitting ultrasound waves. While standard
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ultrasound imaging scans echos, this type of imaging measures ultrasound
that is generated by various tissues in the body itself. Later that year, a
different research group also used PAT for biometric recognition using palm
vessels [88]. In 2020, researchers from the same group used PAT for finger
vein recognition [97].
Lin and Fan [45] used the fact that veins and surrounding tissues such as fat,
skin and bones differ in temperature and that the surrounding tissues possess
a temperature gradient. They used a commercial infrared camera that is
designed for thermal imaging of the back of the hand in a wavelength of
3400-5000 nanometers which is in the range of the so called mid-wavelength
infrared. It was shown that this technique holds potential to be used for
biometric recognition.
Another cost efficient acquisition technique that is being used in both com-
mercial as well as academic area in is to use illumination in the wavelength
range from 750 to 950 nm (see table 3.2 in [37]), which is a sub-band of
the so called near-infrared spectrum. This particular wavelength bandwidth
is based on the observation that both the oxygen saturated as well as the
deoxygenated hemoglobin in the blood has a higher molar attenuation coef-
ficient than other surrounding tissues like bones and flesh in this particular
frequency range. In other words: Blood vessels absorb more light in the near
infrared spectrum than its neighbouring tissues, resulting in dark structures
in images if the illumination source is strong enough to penetrate the human
skin. Additionally, an appropriate imaging device that is sensitive to near-
infrared light is needed. Consumer cameras are usually equipped with an
infrared blocking filter which could be removed in order to use such a device
for imaging. There also exist infrared passing filters which block everything
else except for infrared illumination that could be applied for quality en-
hancement [37]. This acquisition technique is also the one that will be used
in the later part of this thesis.

Blood vessels in general are divided into arteries and veins depending on
whether they deliver oxygen saturated blood (arteries) or they transport al-
ready consumed deoxygenated blood (veins) back to the heart. Although
veins and arteries absorb more or fewer near infrared light depending on the
exact wavelength that is being used as illumination source, the predominant
term to refer to this type of biometric trait happens to be vein recognition
[82].

Typically one differentiates between two perspectives, depending on which
side of the finger or hand the imaging sensor is placed. Capturing the back-
side of the hand, or the dorsum, is denoted as dorsal. When image acquisition
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Dorsal

Palmar / Ventral

Transillumination Reflected Light

Figure 1.2: Perspectives (top row) and positioning of light source (bottom
row illustrations) for vein acquisition. Illustration adapted from [68].

takes place on the inside of the hand, it is called ventral or palmar. In [36], it
was tested whether comparison of dorsal and palmar finger vein samples from
the same finger would yield a high similarity score, though without success.
One reason for the failure was that the acquisitions also included wrinkles
on the skin around the knuckles which are inherent to a certain side of the
finger and influence the feature extraction.

Furthermore, the light source can also be positioned in various ways. The case
where the light source is placed on the opposite side of the imaging sensor,
therefore going all the way through the hand, is denoted as transillumination.
This form of illumination also includes the case where the the light source
is placed on the side in an 90 degree angle to the imaging sensor. Another
illumination variant is denoted as reflected light. Here the light source is
placed on the same side where also the imaging device is placed and as the
name suggests the light which is not absorbed by the users hand but reflected
is then captured again to by the imaging sensor [37]. Figure 1.2 illustrates
where the light sources, the hand, and the imaging sensor is placed when
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using the former mentioned illumination variants.

1.2 The Presentation Attack Problem
Security considerations for biometric systems are of high importance not only
because biomtric data is inseparably linked to an individual and thus this
data needs to be protected from being leaked, but also a faultless operation
without fraudulent interference is expected. However, as illustrated in figure
1.3, several potential attack vectors exist. One particular attack scenario
that is relevant for the scope of the present thesis (dashed box) is known as
presentation attack. Here, a replica of a biometric sample is presented to the
biometric reader with the goal of either impersonate someone or not being
recognized, thereby interfering with the intended use of the biometric system.
These kind of replica are defined by the ISO standard for biometric presen-
tation attacks [1] as the generic term presentation attack instrument and can
take various forms including face masks, replayed videos on smartphones,
fingerprint mutilations, contact lenses etc.

Data
Capture

Signal
Processing Comparison

Data
Storage

Decision

1 3 5 9

2 4 8

6

7

Presentation
Attack at the

Sensor

Modify
Biometric
Sample Override

Signal
Processor

Modify
Probe

Override
Comparator

Modify
Score

Override
Decision

Modify Biometric Reference

Override or modify database

Figure 1.3: Possible points of attack in a biometric system as illustrated in
the ISO/IEC 30107-1:2016 [1].

A potential security breach for a commercial dorsal hand vein system was
reported in a document [22, 21] by the Future of Identity in the Information
Society (FIDIS) consortium. They conducted experiments where backside
of a human hand was captured and then the extracted vein pattern were
printed on a piece of paper in order to first enroll their presentation attack
instrument and afterwards making verification attempts. However this way
to circumvent the system was only successful when the system internal live-
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ness detection was disabled.

In 2013 [53], the first 1 reported successful attempts to fool a finger vein
recognition algorithm was reported. They created a small scale presentation
attack database from an existing finger vein database consisting of samples
from seven individuals. For the generation of the presentation attacks, they
printed the selected finger vein templates from the existing database on two
types of paper and on overhead projector film using a laser printer.
Tome et al. [79] created presentation attacks by using a subset consisting of
50 subjects from an publicly available finger vein recognition dataset, that
was initially released at the same time. Likewise, as Nguyen et al. in 2013
[53], a laser printer was used for presentation attack creation and additionally
the contours of the veins were enhanced using a black whiteboard marker.
One year later, in 2015, the first competition on counter measures to finger
vein spoofing attacks was held [78] by the same authors as in [79]. With
this publication, their presentation attack database was extended such that
every biometric sample from their reference database has a corresponding
spoofed counterpart. This was the first complete finger vein presentation
attack database freely available for research purposes.

A selection of other approaches for the creation of hand and finger vein
presentation attack instruments is described hereafter:

Instead of simply printing a vein sample, [60] suggested to print the sam-
ple on two overhead projector films and sandwich a white paper in between
the aligned overhead films.

Another experiment was shown in [59]. Here dorsal hand veins were en-
rolled as intended. As presentation attack instrument, a smartphone and
additional infrared illumination was used to first capture dorsal hand veins
and afterwards the previously captured hand veins were shown on the smart-
phone display.

In 2016, researchers published [58] a working example of what they call
’wolf attack’. This type of attack has the goal to exploit the working of
a recognition toolchain to construct an attack sample that will generate a
high similarity score with any biometric template stored. They showed that
their master sample worked in most of the finger vein verification attempts,
therefore posing a threat to this particular recognition toolchain used.

1Several sources [16, 83, 79, 78] refer to a publication or its corresponding set of pre-
sentation slides from Prof. T. Matsumoto that fooled a commercial finger vein recognition
system already in 2007, however no primary source could be found online neither in English
nor in German at the time this thesis was created.
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Although not aimed to be an attack instrument, [55] published prelim-
inary results for a finger phantom that uses 3D print material, soap and
titanium dioxide. Even though the vein structure is yet to be developed,
this approach holds the potential for being used as a presentation attack
instrument once custom 3D finger vein phantoms can be generated.
German hackers [40] used an extracted hand vein pattern that was encased
by beeswax to spoof a commercial hand vein recognition device in a live
demo at a hacking conference. The hand vein pattern was acquired from a
distance of a few meters, which finally works towards giving an answer to
a question what most publications do not consider, namely: "How does one
acquire someones hand vein pattern without them noticing?". Besides that,
they suggested that hand dryers in the restroom could be manipulated to
secretly capture hand vein images.

Detailed descriptions of the presentation attack databases used in this
thesis are given in chapter 5.

1.3 This Thesis
The main goal of the present master thesis is to investigate the usage of ex-
tracted vital information, such as heart rate, from video sequences of vascular
patterns in hand regions, in order to perform presentation attack detection.
For doing so, one dorsal hand vein and one finger vein video data set, both of
which were acquired in the Multimedia Signal Processing and Security Lab
at the University of Salzburg, are being used for this evaluation. This task
can further be divided into three sub tasks and the corresponding research
questions (RQ) be defined as:

(i) Finding applicable methodologies for presentation attack detection in
finger and hand vein biometrics using video sequences.
RQ1: What is the state of research for vein presentation attack detec-
tion using video sequences?

(ii) Evaluation of threat emitted by a given finger vein and hand vein
database by using a common threat evaluation protocol and a vari-
ety of different recognition methodologies.
RQ2: Are the attack databases used in this thesis capable of deceiving
state of the art recognition methodologies?

(iii) Evaluation of liveness detection methodologies on the finger vein and
hand vein dataset.
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RQ3: How effective are the methodologies from RQ1 when performing
presentation attack detection on the data sets introduced in RQ2?

The remainder of this thesis is structured as follows: Chapter 2 gives
an overview of related hand vein presentation attack approaches, exclud-
ing methodologies that try to reconstruct vital signs from consecutive video
frames. RQ1 will be covered in chapter 3. The experimental set up and
recognition algorithms for RQ2 are described in chapter 4. Chapter 5 ex-
plains the data sets and 6 contains the experimental results of both threat
analysis (RQ2) and liveness detection (RQ3). Finally a summary of the
present thesis is given in chapter 7.
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2 Still Image Presentation
Attack Detection

Presentation attack detection in vascular hand biometrics is a widely re-
searched topic where various publications exist. However, the scope of this
thesis is restricted to using video sequences as input data to achieve presen-
tation attack detection. Other works analyze properties like texture, quality
or spatial frequency from still images. Therefore this chapter aims to give an
overview of related publications that operate on a single-image basis. The
methods are divided into approaches that were designed for finger or dorsal
hand veins, respectively. However, judging by quantity of publications that
descend from both categories, finger veins seems to be the more popular field
of research. The methods are ordered chronologically.

Finger Vein Probably the first shown to be working solution for finger
vein presentation attack detection was proposed by Nguyen et al. [53] in
2013. In this pioneer work, spatial information as well spatial frequency is
extracted from every vein image by using Fourier transform, Haar wavelet
and Daubechies wavelet transform to calculate three different scores. Using
a support vector machine (SVM), the three scores are combined to arrive at
a final decision.

In 2015, the 1st competition on counter measures to finger vein spoofing at-
tacks [78] was held where three teams participated along with the organizing
team that delivered a baseline method. The baseline uses a method coined
Fourier spectral bandwidth energy, in which first the average vertical energy
from the Fourier spectrum is extracted and afterwards the bandwidth is cal-
culated using a cutoff frequency of −3dB. The methods from the contesting
teams are summarized as follows: (i) Binarized statistical image features
(BSIF), where each pixel is represented as a binary code obtained by using
filters that are learned using statistical properties of the images. (ii) One
team uses monogenetic scale space based global descriptors, that capture
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local energy and local orientation at a coarse level. (iii) The third team par-
ticipated with two approaches, one fusing local phase information generated
by Local Phase Quantization (LPQ) with a Weber Local Descriptor, and the
other one using a local binary pattern approach. All approaches employ an
SVM which led to decent attack detection results on the attack database.

Also in 2015, Triunagari et al. [77] presented a procedure that is based on
Dynamic Mode Decomposition (DMD) which originally descends from the
area of computational fluid dynamics. They proposed a windowed version
(W-DMD) extracts texture information from an input image that was shown
to be superior to other texture descriptors.

Later that year, Raghavendra and Busch [63] published a study where they
used steerable pyramids for texture analysis together with SVM classifier on
a private finger vein attack database. The effectiveness was demonstrated by
comparing their approach to other presentation attack detection schemes.

In [39], Kocher et al. tested a variety of Local Binary Pattern (LBP) texture
descriptors on its applicability to discriminate between real and fake finger
vein samples. In addition to the baseline LBP scheme, seven LBP extensions
are evaluated in their research. Their conclusion was that more sophisticated
LBP variants do not necessarily imply an increase in detection accuracy and
baseline LBP is perfectly suited for the task of detecting finger vein presen-
tation attacks.

The first convolutional neural network (CNN) approach for detecting fraud-
ulent finger vein samples was introduced in 2017 by [64]. Here, a pre-trained
network which is often referred to as AlexNet [41] is used and extended by
seven additional layers that alternate between fully connected and dropout
layers. Their results clearly outperform handcrafted methods, although only
tested on private data sets. A very similar approach was published in 2018
[65] by the same authors as a chapter in a book. Another CNN based ap-
proach in 2017 was published by Nguyen et al. [52]. Multiple experiments
were carried out using a CNN that was adjusted using transfer learning. They
applied principal component analysis dimension reduction after the CNN em-
bedding and finally used an SVM for classification. Later in 2017, Qiu et al.
[61] designed a shallow network expecially for the finger vein presentation
attack detection task, named FPNet. They employed data augmentation to
artificailly increase the amount of training data since they claim that existing
finger vein attack datasets are of insufficient scale.
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Also in 2017, Bhogal et al. [10] analyzed the applicability of non-reference im-
age quality measures for the presentation attack detection task. In total, they
included 6 image quality metrics in their study that were tested separately as
well as in combination. Classification is done using k-nearest-neighbour clas-
sification. Results show that the use of quality metrics is dataset dependent,
however accuracy values above 99% can be achieved. In 2018 this work was
extended in [76] by using natural scene statistics (NSS) and adding support
vector machine classification. Experiments were conducted for a variety of
biometric traits, including finger veins and experimental results showed imn-
provements to their prior work. Two years later parameters of asymmetrical
generalized Gaussian distributions, which count to NSS, were used in Debiasi
et al. [18] for a presentation attack detection study for finger and hand vein
data.

Qiu et al. [60] used a method named Total Variation Decomposition to
disassemble a given finger vein sample into a structure and a noise compo-
nent. They then applied blockwise LBP feature extraction to feed a cascaded
SVM model and could achieve perfect results on multiple datasets.

In 2019, Singh et al.[71] proposed a single image decomposition method
that divides a given input image into a normal-map and a diffuse-map that
contains 3D shape and material properties, respectively. This is achieved
using the so called Sfs-Net [70]. Features are extracted from the resulting
components using texture LBP, BSIF and LPQ. For classification, SVMs are
employed whose results are analyzed independently as well as using score
level fusion.

Later in 2019 Maser et al. [47] evaluated the use of Photo Response Non-
Uniformity, a method commonly used for sensor identification by estimation
of an image sensors ’fingerprint’, in order to detect presentation attacks.

Another CNN-based approach was proposed in 2020 by Yang et al. [95].
They created a lightweight unified CNN model named FVRAS-Net to ac-
complish presentation attack detection as well as extract features for the
recognition task at the same time.

Two recent publications that descend from the same research unit con-
tributed additional hand-crafted approaches to the finger vein attack detec-
tion research. Lee et al. [44] analyzed the usage of three LBP variations
together with three classification schemes and Ashari et al. [5] suggested to
use histograms of oriented gradients.
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Dorsal Hand Vein For the domain of dorsal hand vein biometrics, Wang
et al. [87] proposed a presentation attack detection scheme that is based
on spatial frequency. They divided the 2D frequency spectrum into three
regions and calculated the spectral energy for each region. Using an SVM, a
classification accuracy of up to 99% was reported.

In 2014, Wang et al. [85] proposed the following: First a training split con-
sisting only of real hand vein data is used to generate a projection space using
principal component analysis (PCA). Test data samples, now also including
attack vein images, are then projected into this space to extract 1D noise
information. Next, an autoregressive (AR) model is established in order to
estimate the power spectrum of the extracted information which is then used
for classification. In another publication from the same authors in 2016 [86],
a similar procedure was reported.

In 2017, Jiang et al. [34] suggested to use a contrast ratio on self created at-
tack samples. However it was not shown whether their attack samples would
be able to deceive a hand vein recognition system.

In the same year, Bihlare et al. [9] developed an approach that first filters
dorsal hand vein images with Laplacian of Gaussian filters and afterwards
extracts histograms of oriented gradients from pixel blocks at three different
block sizes. Classification is achieved for every scale using support vector
machines. A combined decision is made using a majority voting.
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3 Presentation Attack
Detection using Video
Sequences

Altogether this thesis includes four methods for presentation attack detec-
tion, where each operates by looking for vital signs in adjacent video frames,
which are described in this chapter. All of the methods are evaluated on their
performance on the video data sets described in section 5.1. The experiments
and results can be found in chapter 6. The current chapter is dedicated to
introduce the aforementioned methods. While the methods in section 3.3 and
3.4 were developed by the author in the course of this thesis and published
in [68], the methods described in section 3.1 and 3.2 descend from different
publications. With the exception of the algorithm that uses Eulerian Video
Magnification (described in section 3.1), all methods build upon a common
basis that transforms a given input video sequence into a one-dimensional
time series. To do so, every frame (either as a whole, or a given region of
interest where the rest of the frame is simply ignored) is averaged in terms
of pixel grayscale values.

This can be seen as a form of Plethysmography which refers to the act
of measuring changes in volume in various areas of the body such as lung
capacity or blood volume. Sometimes it is also possible to make measure-
ments in volume by analysing optical signals that are acquired through imag-
ing devices, hence named Photoplethysmography (PPG). Blood has, when
illuminated with infrared light, a higher absorption coefficient than its sur-
rounding tissue components. Therefore, when using strong enough infrared
light which penetrates the skin (either in transmissive or reflected light illu-
mination) parts of the illumination get absorbed by the blood and are not
recaptured again by an imaging sensor. Since the amount of blood oscil-
lates with every cardiac cycle, a series of consecutive images captured with
a high enough rate results in subtle variations in the detected light intensity
[54]. In the medical area, this non-invasive method has been widely used
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for monitoring purposes. A simple way to potentially extract vital infor-
mation out of such a generated time series is to look for recurring peaks or
looking for a dominant peak in the frequency domain that would indicate
heartbeat. However, wearable photoplethysmography sensors, such as pulse
oxymeters, are appended tightly to the human skin, eliminating unwanted
extra illumination from external light sources. Also monitoring devices do
not need to resolve vein structures and therefore simple illumination sensors
are sufficient. Thus, since for the biometric recognition task vein images are
captured from a distance, it is potentially prone to errors. Ding [19] for exam-
ple showed that when using the average minima and maxima from the time
series as features for classification it can be potentially tricked by a blinking
LED that imitates pulse. Hence, the methods in sections 3.2, 3.3 and 3.4 try
to avoid this issue by applying hand crafted transformation operations into
another feature space. The resulting feature vector for every video sequence
is then classified as either bona fide or attack video sequence.

3.1 Eulerian Video Magnification
This approach from Raghavendra et al. [62] can be split in two main parts
that are applied in succession. The first part is Eulerian video magnification
(EVM). The underlying algorithm was initially published by Wu et al. [93]
and the core idea of EVM is to artificially amplify tiny motions in video
sequences. The wording Eulerian is derived from fluid mechanics and is
meant to differentiate this particular approach, which amplifies the variation
of pixel values over time, from motion estimation approaches that track pix-
els over time (which, as reference to fluid mechanics, they call Langragian
approaches). In short, EVM consists of three steps that are also shown in
figure 3.1: (i) First, every frame is separately decomposed into spatial sub
bands using a Laplacian pyramid. Frames of every pyramid level are still
treated as a video such that the 3D signal can be processed with respect to
the temporal axis. (ii) Second, the resulting sub band video signals are pro-
cessed using temporal filtering by applying an ideal band-pass with a lower
and upper cutoff frequency λl and λh. This operation is carried out on every
pixel over the whole video sequence. Additionally, a spatial cutoff frequency
λc needs to be defined beyond which the factor α has less or no effect. Next,
the filtered signal is amplified using an amplification factor α, which is other
than indicated in figure 3.1 always the same factor in the implementation
for this thesis, and added to the unfiltered sub band signal. (iii) Finally, the
signal is reconstructed by collapsing the pyramid.

The second part of the algorithm proposed by Raghavendra et al. [62] is
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Figure 3.1: Block diagram of EVM algorithm; Taken from Wu et al. [93].

the computation of the so called optical flow. The term optical flow describes
a pixel-wise displacement field between two images where either an element
in the image moves, the camera position changes or a mix between many
motions. It describes the velocity with which a certain pixel moved from
its initial position in one image, to a different position in a second image
[12]. For both, Motion Magnification 2 and Optical Flow 3, available Matlab
implementations are used. An example of such a video magnification and
corresponding optical flow estimation is given in figure 3.2.

Figure 3.2: Left and center: Frame 1 and frame 7 from a motion magnified
video sequence; Right: Optical Flow computed between the left images. The
source video sequence used for the creation of this figure was taken from the
database described in section 5.1.2.

The authors of [62] used video sequences of length 1.67 seconds recorded
with a frame rate of 15 frames per second, resulting in 25 frames for each
sequence. Let a single video sequence be denoted as V and the EVM pro-
cessed video as VEVM = {FE1, FE2, ..., FE25}, where FEn are its processed
frames. Then, using the optical flow operation OF , the flow in vertical My

2https://people.csail.mit.edu/mrub/evm/#code
3https://people.csail.mit.edu/celiu/OpticalFlow/
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and horizontal Mx direction is calculated using the first and last frame as
seen in equation 3.1.

[Mx, My] = OF (FE1, FE25) (3.1)
To arrive at a single number representing one particular video sequence,

a motion magnitude MotionMag is computed as seen in equation 3.2.

MotionMag =
∑
j

∑
k

(√
[(Mx)2 + (My)2]

)
(3.2)

Finally, a video sequence can be classified either bona fide or attack sam-
ple by simple thresholding (equation 3.3).

De =

bona fide, if MotionMag ≥ T

attack, otherwise
(3.3)

Herzog and Uhl [24] adapted this approach to evaluate its functionality
on the dataset described in section 5.1.2. They concluded, however, that
applying additional motion to the attack instruments strongly reduces the
ability to detect presentation attacks using this approach.

3.2 PPG-based by Bok et al.
This approach was proposed by Bok et al. [11] where they used it for sepa-
rating real finger vein video sequences from forged ones. The starting point
for this approach is the one-dimensional time series that was generated from
calculation of the average pixel brightness in every frame as described in the
beginning of this chapter. The basic idea of this approach is to transform
the time series into Fourier space using the discrete Fourier transform and
then use the magnitudes from individual frequency components as a feature
vector. To ensure that the used frequency components are always the same,
zero padding is applied to the time series prior to transformation into Fourier
space, such that the following equation 3.4 for frequency resolution ∆f is sat-
isfied, i.e. a fixed spacing of 0.04 Hertz. The variable nts denotes the number
of samples in the time series, fps denotes the frames per second with which
a video sequence was captured and zp is the zero padding.

∆f = fps

(sts + zp) = 0.04Hz (3.4)

As a next step, frequency components less than 1.0 and greater than or
equal 3.0 Hertz are discarded, since normal heart rate of people appears to
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be in the range of 60 and 180 beats per minute. What is left are 50 frequency
components. By taking the magnitude of those frequency components, a 50-
dimensional feature vector is constructed. For classification a support vector
machine with linear basis function kernel is used. Figure 3.3 illustrates the
feature vector extraction from the time series.

Figure 3.3: Left image: Time series containing averaged brightness values;
Right image: Fourier domain, upside triangles have a spacing of 0.04 Hertz
and are used for feature vector construction.

3.3 PPG-based using a windowed majority
voting

As a starting point for this method, again the time series containing average
pixel illuminations from a grayscale video sequence is used as described at
the beginning of this chapter. As a next step, a rectangular window of
size ws is applied to the time series and shifted over its length with a step
size of ss data points (averaged frames) in the time series sequence. To
achieve detrending and also to remove other artefacts that appear in the lower
frequencies, a steep high-pass filter with cutoff frequency of fcut = 0.5 Hz is
applied to every window. Afterwards a zero padding of zp zeros is done by
simply attaching zeros at the end of the signal. This is done to increase the
resolution in frequency space after the next step. The windowed, filtered and
zero padded signal is then transformed into Fourier space using the discrete
Fourier transform.

For every window, the global argmax(F), that is, the frequency where
the magnitude spectrum has its highest peak, is temporary stored. From
this sequence of maximum frequency per window, a histogram with bin size
bs = 0.05Hz is generated. Values below 0.5 Hz and above 2 Hz are ignored
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and therefore do not contribute to the histogram. The values in the histogram
are then normalized since some windows may have its peak outside the range
and also video sequences do not necessarily need to be of same length. The
final feature vector for this method is given by the normalized histogram and
depicts a form of majority voting per window. The feature vectors, which are
of dimension 31, are then classified using an SVM. The process of generating
a feature vector with this method is shown in figure 3.4.

W
indow

ing + H
ighpass

+ Zero Padding

Figure 3.4: Feature vector creation using a windowed majority voting of the
most dominant frequency and forming a histogram.

3.4 PPG-based with windowed analysis of
harmonics

For this method, similar to the method described in section 3.3, the time
series of averaged brightness values per frame is windowed, filtered using a
high-pass filter, zero padded and finally transformed into frequency space us-
ing discrete Fourier transform. Instead of simply picking the frequency where
the spectrum has its maximum magnitude, also the following observation is
used.

Wei et al. [91] realized that blood pressure measurements do not only
contain information about the heart rate, but also include harmonics, that
is, integer multiples of a dominant fundamental frequency, whose magnitudes
can be mathematically modelled through a decaying exponential function.
This approach uses this observation for the construction of a feature vector
that, besides to the single most dominant frequency in the spectrum like in
3.4, also takes into account the magnitudes of its assumed harmonics.

Therefore, let us define the global argmax(F) as fHR and the max(F)
as mHR, where F is the magnitude spectrum (i.e. phase information of
the frequency spectrum is ignored). If fHR is the heart rate, then due to
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the observations made in [91], one would expect local maxima at the har-
monic frequencies (integer multiples of fHR) with a certain magnitude as well.
Therefore, for the first h harmonics (i.e. n ∗ fHR , n ∈ {2, ..., h}) a search
window of ±fHR

5 is defined. Choosing h depends on the sampling frequency
since it has a direct influence on fmax, which is the frequency at half the
sampling frequency fS. In addition to fHR and mHR, the local argmax and
corresponding maxima in the search window are temporary stored as the a
quotient with respect to the global argmax & maxima as fi andmi. The final
feature vector xv for every video sequence v is constructed by calculating the
arithmetic means and medians (Md) for all stored values over every window
as seen in equation 3.5.

xv =
(
mHR , m1 , ... , m4 , Md(mHR) , Md(m1) , ... , Md(m4),

fHR , f1 , ... , f4 , Md(fHR) , Md(f1) , ... , Md(f4)
) (3.5)

Exceeding fmax with a search window counts as 0 for the entries in ques-
tion. This case can only occur if fHR ∗ 5 + fHR

5 ≥ fmax, which is usually
out of range for a reasonable heart rate. Similar to the previous PPG-based
approaches, the feature vectors are then classified using a support vector ma-
chine. Figure 3.5 depicts the process of extracting the information from fHR
and its harmonics.

W
indow

ing + H
ighpass

+ Zero Padding

Feature vector
construction

Figure 3.5: Construction of feature vector for the approach that analyses
fHR and its harmonics.
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4 Recognition Algorithms and
Framework for Threat Analysis

This chapter describes the general setup used for the threat evaluations in
chapter 6 to answer RQ2. This setup includes the evaluation protocol that is
being used to do so as well as the used recognition toolkit, its settings and the
algorithms it provides. The used databases are described in chapter 5. Since
these databases were not captured using commercial vein scanning devices
but are collected using self built scanners, the databases simply consist of
digital photographs. Therefore, in order to perform comparison experiments,
one images is always treated as the one that would have been enrolled to
a biometric system and another one is used for performing a verification
attempt. In figure 4.1, the comparison pipeline is depicted where Image A is
the quasi-enrolled template and Image B the one for performing a verification
attempt. In the case where A and B are the same image, the similarity score
would always be perfect. This case is avoided since in a real life scenario, two
vein acquisitions made in different sessions will never yield identical digital
images. When using two different images from the same subject (either the
same finger or the same hand) one calls this case genuine attempt. The case
where image A and image B descend from different subjects is usually denoted
as zero-effort impostor or simplified impostor attempt. Finally, a third case
is given by using a biometric sample from an actual human (also called bona
fide sample) as image A and set a forged biometric sample (presentation
attack) as image B with the goal of achieving a high similarity score such
that the biometric system would be deceived. This case is denoted as attack
attempt.

In order to evaluate the level of threat that presentation attack sam-
ples pose to various feature extraction and comparison schemes, a commonly
known threat evaluation protocol is used that is described in section 4.1.

The threat evaluation experiments in this thesis employ twelve feature
extraction schemes, together with appropriate pre- and postprocessing steps
where the extracted features are finally compared using corresponding com-
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Image A Preprocessing
Comparison

 Algorithm

Feature
Extraction

Similarity Score

Image B Preprocessing Feature
Extraction

Figure 4.1: Comparison Pipeline

parison algorithms that yield a single similarity score. With the exception of
one feature extraction and comparison algorithm (convolutional neural net-
work described in 4.4.12), a publicly available vein recognition toolkit [38] is
used that is described in section 4.2.

4.1 Threat Analysis Evaluation Protocol
To evaluate the level of threat exhibited by a certain database, an evaluation
scheme which is known as “2 scenario protocol” [79, 59, 13], is adopted in
this work. The two scenarios are briefly summarized hereafter (descriptioon
taken from [69]):

– Normal Mode: The first scenario employs two types of users: Gen-
uine (positives) and zero effort impostors (negatives). Therefore, both
enrollment and verification is accomplished using bona fide finger vein
samples. Through varying the decision threshold, the False Match
Rate (FMR, i.e. the ratio of wrongly accepted impostor attempts to
the number of total impostor attempts) and the False Non Match Rate
(FNMR, i.e. the ratio of wrongly denied genuine attempts to the to-
tal number of genuine verification attempts) can be determined. The
normal mode can be understood as a recognition experiment which has
the goal to determine an operating point for the second scenario. The
operating point is set at the threshold value where the FMR = FNMR
(i.e. Equal Error Rate, EER).

– Attack Mode: The second scenario uses genuine (positives) and pre-
sentation attack (negatives) users. Similar to the first scenario, enroll-
ment is accomplished using bona fide samples. Verification attempts
are performed by comparing presentation attack samples against their
corresponding genuine enrollment samples or templates. Given the
threshold from the licit scenario, the proportion of wrongly accepted
presentation attacks is then reported as the Impostor Attack Presen-
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tation Match Rate (IAPMR), as defined by the ISO/IEC 30107-3:2017
[3].

4.2 PLUS OpenVein Finger- and Hand-Vein
Toolkit

The PLUS OpenVein Toolkit [38] is a vein recognition framework that was
created with the goal of providing a modular solution for finger an hand vein
recognition to reduce the effort of implementing all necessary steps over and
over again. Due to its modular design, new databases or algorithms can be
added with relative small code and configuration adjustments. It is realised
in Matlab and is available for download for research and non-commercial
purposes from a publicly accessible gitlab repository 4. The software provides
a solution that includes reading input images, application of preprocessing,
feature extraction, postprocessing and comparison of extracted features. The
results can be output in terms of metrics over the whole database as well as
table of similarity scores of the executed comparisons.

The toolkit can be used in “probe only” mode or in “gallery” mode. In the
probe only mode, samples are taken from the same directory and therefore
comparisons of samples with itself are omitted. This mode was used in the
normal scenario from section 4.1. In the gallery mode, samples are taken from
different directories, containing different samples using the same subject and
sample ID (e.g. presentation attacks). Here an option setting also allows
to compare samples with the same ID. This mode was used for the attack
scenario as described in section 4.1. Figure 4.2 visualizes both modes.

A B C
A B C

A' B' C'

Figure 4.2: Comparisons done in probe only (l.) and gallery (r.) mode.
Images A, B, C and A’, B’, C’ are in one directory respectively.

For recognition experiments of an image database one can choose from
multiple comparison protocols, that is, a definition of what samples should
be compared. This allows that for large databases, exhaustively performing

4The Toolkit can be downloaded from https://gitlab.cosy.sbg.ac.at/ckauba/
openvein-toolkit
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every possible comparison can be avoided while the resulting error rates are
still a good approximation. In this thesis, two comparison protocols are used
that are described hereafter. The number of genuine comparisons is denoted
as ngenuine, the number of impostor comparisons as nimpostor. nsubjects is
the number unique subjects. For the case of finger vein recognition, every
individual finger is treated as unique subject. For the general formulas in
this section, is is assumed that every subject has the same number of samples
nsamples.

– FVC: The FVC protocol was named after a competition called finger-
print verification contest where this scheme was adopted from and with
this protocol all samples are compared against all remaining samples
descending from the same subject as genuine comparisons as given by
the equation 4.1. Symmetric comparisons are omitted, meaning that
after the comparison image A with image B is done, the comparison
image B with image A will not be performed. This was chosen due
to the fact that often comparison algorithms are symmetric and would
not yield any new results. It is important to note however that the
correlation based comparison algorithm described in section 4.4.1 for
example is not symmetric.

ngenuine = nsamples ∗ (nsamples − 1)
2 ∗ nsubjects (4.1)

For the Impostor comparisons, the FVC protocol defines that only the
first sample of every subject is compared against the first of the remain-
ing subjects. The number of impostor comparisons is given by equation
4.2 and only depends on the number of unique subjects regardless of
the number of samples per subject.

nimpostor = nsubjects ∗ (nsubjects − 1)
2 (4.2)

– Full: The full protocol defines that every possible comparison is per-
formed while, similar to the FVC protocol, symmetric comparisons
are omitted. Therefore the number of genuine comparisons is given
by equation 4.1 and the number of impostor comparisons is given by
equation 4.3.

nimpostor = (nsubjects ∗ nsamples) ∗ (nsubjects ∗ nsamples − 1)
2 (4.3)

The algorithms described in sections 4.3 and 4.4 are, with the exception
of the CNN related ones, implemented in this toolkit.
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4.3 Preprocessing
As a first step in the comparison tool chain, preprocessing is applied to ev-
ery vein sample in order to enhance the vein structures for easier feature
extraction. Common image preprocessing functions such as re-scaling, con-
version to double-precision floating point since Matlab reads images as 8-bit
unsigned integer format, and 2D Gaussian smoothing filtering is provided by
the Matlab image processing toolbox. More sophisticated algorithms that are
implemented in the OpenVein toolkit and used in this thesis for preprocessing
are explained hereafter.

4.3.1 Contrast Limited Adaptive Histogram Equalisa-
tion

Histogram equalisation, which is the basis of Contrast Limited Adaptive
Histogram Equalisation (CLAHE) [100], has the goal to enhance the contrast
of a digital image based on the assumption that adjusting the histogram of an
image proves useful for many applications. An ideal uniform distribution in a
histogram would result in a linear cumulative histogram. This is achieved by
defining a transformation function T given in equation 4.4 that maps every
pixel value to a new one as given in equation 4.5. The pixel intensity value
k is in the range of 0 to 255 and pn denotes the normalised occurrence of
pixel intensities, i.e. the sum is the cumulative histogram. The histogram
equalised image is denoted by I ′(u, v) and the input image as I(u, v).

T (k) =

kmax ∗ k∑
n=0

pn

 (4.4)

I ′(u, v) = T (I(u, v)) (4.5)

A modification known as adaptive histogram equalisation applies this
technique using only local neighbourhoods around every pixel. The compu-
tation of both the histogram and the cumulative histogram for every pixels
neighbourhood proves costly in terms if performance. Therefore it is sug-
gested that an image should be divided into 8x8 non-overlapping contextual
regions for which a histogram and a corresponding cumulative histogram is
computed. A value for every pixel can then be received by applying bilinear
interpolation of the mappings from the neighbouring contextual regions that
includes the region where the pixel is as well as up to three neighbouring
contextual regions. The weights for the interpolation are chosen according
to the distance to the centers of the regions. The final step for CLAHE is
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to define a threshold and apply a clipping on the histogram bins meant to
limit the contrast. Since the overall number of pixels contributing to the his-
togram must not change, the clipped amount is equally divided and added
to all bins.

Figure 4.3: Top row: Normal image; Middle row: global histogram equali-
sation according to equations 4.4 and 4.5; Bottom row: adapthist function
from Matlab that uses CLAHE with a clipping limit of 0.015.

Figure 4.3 shows examples of global histogram equalisation and contrast
limited adaptive histogram equalisation together with intensity value his-
tograms (second column) and cumulative histograms (third column). It is
important to note that the CLAHE version (bottom row) does not show a
perfect global linear cumulative histogram due to the fact that the adjust-
ment is not made globally but using local multiple context regions and also
interpolation as described earlier.

4.3.2 High-Frequency Emphasis Filtering
Zhao et al. [99] used 2D Butterworth high-pass filtering in the frequency
domain due to the observation that vessel structures in vein images can be
found using high frequency information since they appear relatively dark
with respect to the surrounding tissues, thus having abrupt changes. Let the
Fourier transformed input image be denoted as F (u, v), the filtered image in
Fourier domain as G(u, v) and the Butterworth high-pass filter as H(u, v),
where u and v are pixel coordinates. The transfer function of the Butterworth
high-pass filter of order n is defined as seen in equation 4.6.
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H(u, v) = 1

1 +
(

D0
D(u,v)

)2n (4.6)

D(u, v) refers to the Euclidean distance of the pixel at coordinate (u, v)
to the DC component. Usually 2D Fourier space is shifted such that this
DC component can be found at the center. D0 is a positive constant where
the cutoff frequency can be adjusted. The transfer function T (u, v) of the
high-frequency emphasis filter is further defined as

T (u, v) = a+ bH(u, v) (4.7)
where b is an emphasis factor and the offset a has to goal to retain the

gray level tonality from the lower frequency components. The convolution
theorem tells us that for filtering in Fourier space, both the transformed filter
and the target are simply multiplied. Therefore we derive the equation for
the filtered image in Fourier domain as seen in equation 4.8.

G(u, v) = T (u, v)F (u, v)

=

a+ b

1 +
(

D0
D(u,v)

)2n

F (u, v)
(4.8)

The high-frequency emphasis filtered image can now be obtained by ap-
plication of inverse 2D Fourier transform to G(u, v). Note that if the input
image in Fourier domain was shifted at the beginning, one needs to reverse
that shifting before applying inverse transformation.

4.3.3 Circular Gabor Filtering
Zhang and Yang [98] combined a contrast enhancement algorithm named
gray-level grouping together with circular Gabor filters as a finger vein en-
hancement method. For the experiments in this thesis, the gray-level group-
ing was replaced with CLAHE (described in subsection 4.3.1), therefore it is
not explained in detail. A Gabor filter is defined as the product of a Gaus-
sian function complex sinusoidal signal of certain frequency and direction.
For the case of a circular Gabor filter, the sinusoidal signal has no direction
but starts at the center and expands simultaneously in every direction. The
circular Gabor filter G(u, v) can therefore be mathematically defined as given
in equation 4.9.
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G(u, v) = g(u, v)exp
[
i2πfc

√
u2 + v2

]
(4.9)

Where g(u, v) denotes an isotropic Gaussian envelope as given in equation
4.10.

g(u, v) = 1
2πσ2 exp

[
−u

2 + v2

2σ2

]
(4.10)

The resulting filter function can be decomposed into a real and an imagi-
nary part using the Euler formula. In [98], only the real part was used which
is also called even-symmetric circular Gabor filter due to the cosine func-
tion. The formula for the even-symmetric circular Gabor filter (Gc(u, v)) is
therefore given by formula 4.11.

Gc(u, v) = g(u, v)cos
[
2πfc
√
u2 + v2

]
(4.11)

Figure 4.4 shows a visualization of the real circular sinusoidal function in
the first column. The second column shows the isotropic Gaussian envelope
with which the sinusoidal function is multiplied and the third column depicts
the resulting even-symmetric circular Gabor filter.

Figure 4.4: Left image: Real part of a circular sinusoidal function; Mid-
dle image: Isotropic Gaussian; Right image: Even-symmetric Gabor filter.
Parameters: ∆F = 1.12, σ = 5.

The filter has two parameters σ and fc. Their relation is described as
seen in equation 4.12. Here, ∆F denotes the bandwidth in octave. A good
value for σ is suggested as 5 pixel and for ∆F as 1.12 octave.

σfc = 1
π

√
ln2
2

2∆F + 1
2∆F − 1 (4.12)

The filtered image F (u, v) can be obtained by convolution of the filter
Gc(u, v) with the input image I(u, v).
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F (u, v) = Gc(u, v) ∗ I(u, v) (4.13)

4.4 Feature Extraction
The second step in the comparison toolchain (figure 4.1) is feature extraction.
A feature is a generic term which can be any information about the contents
of an image including the image as a whole or local neighbourhoods. The goal
of feature extraction is to transform a digital image from image space into
feature space. By doing so, often (but not always) the amount of information
needed to represent an initial image is reduced (e.g. some feature extraction
algorithms used in this thesis transform a grayscale image into a binary
image, which reduces the bits per pixel from 8 bit down to 1 bit). Also
every capturing of a vein image is a little bit different due to rotation of the
hand or finger. Feature extraction can help to reduce this kind of inter class
variability. This thesis employs twelve feature extraction schemes that can
be categorized into three types of algorithms based on what type of feature
they extract:

– Binarized Vessel Networks (subsections 4.4.1 - 4.4.7): Here, binarized
versions of the digital images are extracted that are meant to separate
vein structures from everything else. Usually features from this cate-
gory are afterwards compared using a correlation measure as described
in section 4.4.1.

– Keypoints (subsections 4.4.8 - 4.4.10): Keypoints are interesting points
in an image, where the term interesting depends on the context. Two
general purpose keypoint extraction methods and one that was espe-
cially tailored for the vein recognition task is used in this thesis. Every
keypoint is stored by describing its local neighbourhood and its loca-
tion.

– Texture (subsections 4.4.11 & 4.4.12): Image texture is a feature that
describes the structure of an image. Shapiro and Stockman [75] define
image texture as something that gives us information about the spatial
arrangement of color or intensities in an image or selected region of an
image. While two images can be identical in terms of their histograms,
they can be very different when looking at their spatial arrangement of
bright and dark pixels.
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4.4.1 Maximum Curvature
Miura et al. [50] presented a finger vein feature extraction method that looks
at curvature in the cross-sectional profiles in 4 orientations: vertical, hori-
zontal, and both diagonal orientations. The resulting binary image, where
white pixels are the vein networks and black pixels are the background, is
obtained in three steps:

(i) The goal for every cross-sectional profile is to find valleys that indicate
veins. Figure 4.5 shows an example of a vertical cross-sectional profile (white
line) with three valleys A, B and C that indicate vein structures. The initial
vein image F (x, y) is therefore mapped to a cross-sectional profile Pf (z) where
z is a pixel position in a profile. To obtain the center pixels of the valleys, the
curvature of this profile is calculated and the local maxima are calculated.
The curvature κ(z) is computed as seen in equation 4.14.

κ(z) = Pf (z)′′[
1 + Pf (z)′2

] 3
2

=
d2Pf (z)
dz2[

1 +
(
dPf (z)
dz

)2
] 3

2
(4.14)
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Figure 4.5: Vertical cross-sectional profile of vein image with valleys indicat-
ing vein structures.

Note that the actual implementation in the used toolkit applies filtering
with the derivative of a Gaussian smoothing filter to generate Pf (z)′ and
Pf (z)′′. Doing so removes pixel artifacts and makes sure that only strong
veins are found. The local maxima of every profile are denoted as z′i. For
every local maxima, a score is assigned that is calculated as seen in equation
4.15, where Wr(i) is is the width of the region where the curvature around
κ(z′i) is positive and it represents the width of the found vein.
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Scr(z′i) = κ(z′i) ∗Wr(i) (4.15)
These scores Scr(z′i) are then iteratively added onto a new plane V (x, y)

(i.e. an empty image) for every cross-sectional profile in the vertical, hori-
zontal and both diagonal directions. Illustrations for this first step can be
seen in figure 4.6.

Figure 4.6: Illustrations of the score assignment for every valley center point,
taken from [50].

(ii) In the second step, vein pixels are connected and noise should be
eliminated. This is done by applying the following rule: For each of the four
orientations, a temporary connection array C1−4 is created that is filled by
applying a filtering operation as seen in equation 4.16 that looks at neigh-
bouring pixels along one orientation. Note that this equation only gives an
example for the horizontal orientation. For the other orientations, appropri-
ate neighbouring coordinates need to be considered.

C1(x, y) = min{max
(
V (x+ 1, y), V (x+ 2, y)

)
,

max
(
V (x− 1, y), V (x− 2, y)

)
}

(4.16)

All temporary connection images C1−4 are then combined into a single
vein feature image G(x, y) as using the maximum operator for each pixel:
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G(x, y) = max{C1, C2, C3, C4} (4.17)
(iii) To generate the final binarized vein feature imageGbinary(x, y), thresh-

olding is applied. The threshold is chosen as the median of the pixel values
in G.

Gbinary(x, y) =

1 if G(x, y) ≥ median(G)
0 if G(x, y) < median(G)

(4.18)

For comparison of two generated binary feature images, a customized
version of the comparison algorithm described by Miura et al. in [51] is used.
Essentially, a 2D correlation is computed between a registered image R and
an input image I as seen in equation 4.19. The height and width of one image
is denoted by h and w, assuming that both, registered and input image are
of same size. To compensate smaller misalignments, a margin of cw from the
horizontal and ch from the vertical border of the registered image is removed
and shifted in x- and y-direction within the boundaries of the input image.

C(k, l) =
h−2ch−1∑
y=0

w−2cw−1∑
x=0

I(k + x, l + y) ·R(cw + x, ch + y) (4.19)

Let (k0, l0) be the coordinates where C(k, l) has its maximum. The final
similarity score S of registered image and input image is computed as seen
in equation 4.20. Doing so ensures that the similarity score is within the
interval [0, 0.5].

S = Cmax∑k0+h−2ch−1
y=k0

∑l0+w−2cw−1
x=l0 I(x, y) +∑h−2ch−1

y=ch

∑w−2cw−1
x=cw

R(x, y)
(4.20)

4.4.2 Principal Curvature
A related approach to the algorithm described in section 4.4.1 was proposed
by Choi et al. [14]. This approach uses the largest eigenvalue from the
Hessian matrix of an image in each point to generate a binarized vein image.
As a first step, the gradient field of an image, G(x, y), is computed using
partial derivatives in x and y axis of image L(x, y) the as seen in equation
4.21. The partial derivatives of G(x, y) are denoted as gx(x, y) and gy(x, y).

G(x, y) = ∇L(x, y) =
(
L(x, y)
∂x

,
L(x, y)
∂y

)
=
(
gx(x, y), gy(x, y)

)
(4.21)
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The gradient field is then normalised by dividing the gradient at every
point by its magnitude

∥∥G(x, y)
∥∥ =

√
gx(x, y)2 + gy(x, y)2. Also, a threshold-

ing is applied, which eliminates small noisy components in the normalisation
process. The thresholded and normalised gradient is given in equation 4.22,
where the threshold value γ is set as a percentage of the maximum gradient
( γ = percent

100 ∗ max(G(x, y)) ). If the gradient is lower than the threshold
value, it is set to zero.

GT (x, y) =


∇L(x,y)
‖G(x,y)‖ if

∥∥G(x, y)
∥∥ ≥ γ

(0, 0) if
∥∥G(x, y)

∥∥ < γ
(4.22)

As a next step, a Gaussian smoothing filter with parameter sigma σ
is applied to the two gradient images gTx(x, y) and gTy(x, y). Note that
the index T should indicate that this step happens after thresholding and
normalisation. After filtering, second order derivatives are calculated from
the filtered first order derivatives gFx(x, y) and gFy(x, y), in order to create
a modified Hessian matrix Hm as given by equation 4.23.

Hm(x, y) =
∂gF x(x,y)

∂x
∂gF x(x,y)

∂y
∂gF y(x,y)

∂x

∂gF y(x,y)
∂y

 (4.23)

Let the eigenvalues of Hm be denoted as λ1, λ2, where |λ1| ≥ |λ2|. The
principal curvature is now given by the bigger eigenvalue λ1. To generate a
binarized vein image, thresholding is applied. While [14] propose using Otsu’s
method [57] for thresholding , the Matlab implementation in the OpenVein
toolkit uses median thresholding similar to the Maximum Curvature method
in section 4.4.1.

For comparison of the generated feature images, the correlation based
similarity measure described in section 4.4.1 is used.

4.4.3 Wide Line Detector
The Wide Line Detector method [26] for vein feature extraction considers a
circular window around a given pixel F (x0, y0) to decide whether it belongs
to a vein structure. To do so, a set of pixels is defined as the neighbourhood
region Nx0,y0 , such that every pixel included in this set is within a certain
radius r as defined in 4.24.

N(x0,y0) = {(x, y)|
√

(x− x0)2 + (y − y0)2 ≤ r} (4.24)
As a first step, for every pixel F (x, y) included in the radius, the difference

to the kernel origin, F (x0, y0), is calculated. If the difference is smaller than
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a certain threshold t, the helper variable s(x, y, x0, y0, t) is set to 1 as seen in
equation 4.25.

s(x, y, x0, y0, t) =

0 if F (x, y)− F (x0, y0) > t

1 otherwise
(4.25)

After the helper variable s has been calculated for every included position
around the origin pixel, the sum of all s(x, y, x0, y0, t) in the neighbourhood
is built.

m(x0, y0) =
∑

(x,y)∈N(x0,y0)

s(x, y, x0, y0, t) (4.26)

Finally, to create a binarized image V (x, y), the computed sum is thresh-
olded using a threshold value g.

V (x0, y0) =

0 if m(x0, y0) > g

1 otherwise
(4.27)

For comparison of the generated feature images, the correlation based
similarity measure described in section 4.4.1 is used.

4.4.4 Repeated Line Tracking
Another approach for vein feature extraction, that was proposed by Miura et
al. [51], moves along darker pixels in cross sectional profiles which indicate
vein structures. The path is stored in a feature image, called locus space Tr,
with the same size as the vein image F (x, y). This procedure is repeated N
times where the starting point (xs, ys) is determined using a uniform random
distribution. Eligible starting positions are all pixel within a finger region
Rf . After every repetition, the locus space is updated such that the pixel
positions from the current path are incremented by one. This results in
a feature image where bright spots indicate that multiple iterations of line
tracking went this path. As a final step, the locus space is binarized. This is
achieved by the following steps.

The randomly determined starting point (xs, ys) is the initial coordinate
for the current tracking point (xc, yc), which is always the point at the current
position. Next, a moving-direction for left-right Dlr and up-down Dud is
determined.

Dlr =

(1, 0) if Rnd(2) < 1
(−1, 0) otherwise

(4.28)
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Dud =

(0, 1) if Rnd(2) < 1
(0,−1) otherwise

(4.29)

Rnd(n) is a uniformly distributed random number in the real interval (0, n).
The vector values assigned to Dlr and Dud in equations 4.28 and 4.29 are
denoted as (Dx, Dy). After determining the moving-directions, the set of
neighbouring pixels of (xc, yc), Nr(xc, yc), is selected as shown in equation
4.30.

Nr(xc, yc) =


N3(Dlr)(xc, yc) if Rnd(100) < plr

N3(Dud)(xc, yc) if plr ≤ Rnd(100) < plr + pud

N8(xc, yc) if plr + pud + 1 ≤ Rnd(100)
(4.30)

Here, plr and pud are probabilities in the real interval of (0,100). The
authors of [51] suggest to define plr as 50 and pud as 25, assuming that
the finger vein image is oriented horizontally and therefore vein structures
mainly progress along the horizontal axis. N8(x, y) is the set of eight neigh-
bouring pixels of the current pixel (xc, yc) and N3(D)(x, y) is the set of three
neighbouring pixels of (xc, yc), whose direction is either by Dlr or Dud. The
construction of the set of neighbouring pixels for the N3 cases is given in
equation 4.31.

N3(D(x, y) = {(Dx + x,Dy + y),
(Dx −Dy + x,Dy −Dx + y),
(Dx +Dy + x,Dy +Dx + y)}

(4.31)

Figure 4.7 illustrates the pixels around the current pixel (xc, yc) that are
chosen as neighbouring pixels for every possible case.

(xc,yc) (xc,yc) (xc,yc) (xc,yc) (xc,yc)

N8(xc,yc) N3(Dlr)(xc,yc) N3(Dlr)(xc,yc) N3(Dud)(xc,yc) N3(Dud)(xc,yc)
Dlr = (1,0) Dlr = (-1,0) Dud = (0,1) Dud = (0,-1)

Figure 4.7: Set of neighbouring pixels around (xc, yc). Shadowed pixels be-
long to the set.
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In every round, the path that was made along the veins is tracked in a
temporary locus space Tc. A pixel to which the current tracking point (xc, yc)
can move, needs to be within the region of the finger Rf , must not be a pixel
that is already in the path of this round (i.e. in the set of the temporary
locus space Tc) and must also be in the set of neighbouring pixels that was
defined as Nr(xc, yc). This constraint can be formulated using set theory as
given in equation 4.32.

Nc = Tc ∩Rf ∩Nr(xc, yc) (4.32)
In the case that Nc is not empty, a pixel is determined where the current

tracking point (xc, yc) should move based on a so called line-evaluation func-
tion Vl as given in equation 4.33. The line that this function evaluates is a
cross sectional profile of width W , which lives at a distance of r away from
the point (xc, yc). As can be seen in figure 4.8, the equation Vl is meant to
find the deepest valley in the cross section.

Figure 4.8: Illustration of RLT approach. Screenshot from [51].

Vl = max
(xi,yi)∈Nc

{
F (xc + r cosθi −

W

2 sinθi, yc + r sinθi + W

2 cosθi

+ F (xc + r cosθi + W

2 sinθi, yc + r sinθi −
W

2 cosθi

− 2F (xc + r cosθi, yc + r sinθi)
} (4.33)

If Vl is positive, the current tracking point (xc, yc) is updated to the
point where Vl is maximal (xi, yi). Now the process is repeated starting from

40



equation 4.30.
If Vl is negative or zero or there are no eligible options where the path could
go, i.e. the set Nc is empty, the line tracking round is over, meaning that the
global locus space Tr(x, y) is updated by incrementing all path coordinates
from the temporary locus space (x, y) ∈ Tc by one. A new line tracking
operation starts again by randomly selecting a new initial coordinate (xs, ys).
This is repeated N times. Finally, a binarized vein image is created by
applying a similar thresholding function as given in equation 4.18.

For comparison of the generated feature images, the correlation based
similarity measure described in section 4.4.1 is used.

4.4.5 Gabor Filters
Gabor filters are texture descriptors that analyze a certain spatial frequency
in a certain direction around the filter origin. The approach that is used in
the OpenVein toolkit was proposed by Kumar and Zhou [42] and uses a filter
bank consisting of an even symmetric Gabor filter in N orientations. An
even symmetric Gabor filter consists of a sinusoidal part which only uses the
cosine part, multiplied with an Gaussian part. The Gabor filter hθn(x, y) is
given in equation 4.34 where θn denotes the angle which the filter is rotated.

hθn(x, y) = exp

−0.5 xθn

σ2
x

+ yθn

σ2
y

 cos

(
2π
λ
xθn

)
(4.34)

Here, λ is the spatial wavelength of the filter and it defines, together with
the bandwidth parameter bw, the variance σ due to the relationship given in
equation 4.35.

σ = λ

π

√
ln(2)

2
2bw + 1
2bw − 1 (4.35)

The variance in x-direction σx is assigned to the computed σ, while the
variance in y-direction σy is further divided by a dilation factor γ. The
rotated coordinates xθn and yθn are obtained by application of a rotation
matrix Rn to (x, y)T , i.e. (xθn , yθn)T = Rn · (x, y)T , where Rn is defined as
follows.

Rn =
(
cos θn − sin θn
sin θn cos θn

)
(4.36)

The filter orientations θn are fixed into N steps as given in equation 4.37.

θn = nπ

N
, n ∈ {0, 1, ..., N − 1} (4.37)
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For creation of the filters, a filter size fs has to be defined in pixel,
which must be an uneven number. Figure 4.9 shows an example filter bank
consisting of four orientations of a Gabor filter.
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Figure 4.9: Four orientations of a Gabor filter; From left to right:
0π
4 ,

π
4 ,

2π
4 ,

3π
4 ; Parameters: γ=2,λ=16,fs=25,bw=2,N=4

For each of the N filters in this filter bank, a feature map is generated by
convolution with an input image F (x, y). To combine these feature images
into a single image f(x, y), the maximum value over all orientations at posi-
tion (x, y) is taken, as given in equation 4.38. The convolution operation is
denoted as ∗ and hθn(x, y) represents the Gabor filter with zero mean, that is,
the arithmetic mean over filter is subtracted from every filter pixel position.

f(x, y) = max
∀n=1,2,...,N−1

{
hθn(x, y) ∗ F (x, y)

}
(4.38)

Lastly, a morphological top-hat function and adaptive thresholding is
applied to obtain the final feature image. For comparison of the generated
feature images, the correlation based similarity measure described in section
4.4.1 is used.

4.4.6 Isotropic Undecimated Wavelet Transform
The Isotropic Undecimated Wavelet Transform, as described in Starck et al.
[73], is a special kind of wavelet transform is given by the so called à trous
algorithm, which is described below. This type of wavelet transform does
not spatially shrink, i.e. it does not get decimated in terms of the number of
pixels, thereby motivating the term undecimated [74].

The wavelet transform produces at each scale j a set of wavelet coefficients
wj[x, y]. The 2D image input signal is denoted as cj[x, y], where j = 0. The
wavelet coefficients wj are generated by subtracting two subsequent scaling
levels of cj[x, y] as seen in equation 4.39.
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wj+1[x, y] = cj[x, y]− cj+1[x, y] (4.39)

To generate coefficients from another scale cj+1[u, v], discrete convolution
(denoted with symbol ∗) is applied to the coefficients from level j and a filter
function h(j)[x, y] as given in equation 4.40.

cj+1[x, y] = cj[x, y] ∗ h(j) (4.40)

The filter h(j) is chosen such that in 1D h
(j)
1D =

[
1
16 ,

4
16 ,

6
16 ,

4
16 ,

1
16

]
which

can be extended to 2D by calculating the dot product with itself h1D · hT1D.
This yields the filter as given in equation 4.41.

h(j) =


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 (4.41)

For each scaling level j, 2j zeros get inserted in between every filter co-
efficient in h(j)

1D. On border cases, the signal cj[x, y] gets mirrored such that
cj+1[x, y] remains the same size after filter convolution. The original image
signal c0[x, y] can be reconstructed as shown in equation 4.42 where J is
the highest used scale factor, however the implementation in the OpenVein
toolkit uses only the wavelet coefficients wj from the scale levels 2 and 3. The
final feature image f [x, y] is obtained by addition of those coefficients from
the two scale levels as seen in eq. 4.43 and applying thresholding afterwards.

c0[x, y] = cJ [x, y] +
J∑
j=1

wj[x, y] (4.42)

f [x, y] = w2 + w3; (4.43)

For comparison of the generated feature images, the correlation based
similarity measure described in section 4.4.1 is used.

4.4.7 Anatomy Structure Analysis-Based Vein Extrac-
tion

One vein network based recognition scheme that extracts two different vein
structures (a vein network V and a vein backbone B) from the same input
image was described by Yang et al. [94]. This is the only vein network based
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recognition algorithm used in this thesis that comes with its own comparison
scheme. Therefore, first the vein extraction process is described followed by
the comparison approach.

For the first step, a curvature image C(x, y) is created by looking in local
cross sectional profiles of an input image I(x, y). It is determined, which
angle θxy the cross sectional profile needs to have, to achieve a perpendicular
direction to the vein structure at a given pixel position. This is done by
estimating a so called orientation map using least mean square orientation
estimation as described in [25]. With every pixel having an estimated ori-
entation θxy, local cross sectional profiles perpendicular to the angle θxy are
extracted that are of length 2∗w+1, where w is a parameter that is supposed
to be approximately half the average vein thickness, measured in pixel. Let
(x0, y0) be the point around which the cross sectional profile is extracted and
θxy its orientation from the orientation map. The local cross sectional profile
g(i) is the constructed as seen in equation 4.44 where i = −w, ..., 0, ..., w.

g(i) = I(x0 − i cos(θxy), y0 + i sin(θxy)) (4.44)

Next the curvature of the local cross sectional profile g(i), κg is computed.
To create a curvature image C(x, y), this is done for every pixel position. The
curvature at a point C(x0, y0) corresponds to the curvature κg at the position
w + 1.

C(x0, y0) = κg(w + 1) = g(w + 1)′′[
1 + g(w + 1)′2

] 3
2

(4.45)

For generation of the vein network V , morphological preprocessing is ap-
plied to the curvature image C that includes filling (i.e. fill holes with an
area smaller than a predefined threshold), thinning (also known as skele-
tonization), denoising, and connecting sekeltonized gaps. V therefore is a
binarized image that includes vein structures with a thickness of one pixel.
The second feature image that is generated is called vein backbone B. The
idea of the vein backbone image is to use vein patches with large contrast to
the background since they are more likely to appear in different imaging ac-
quisitions of the same subject. Due to the fact that vein structures with more
contrast also have large curvature, the vein backbone feature imageB is cre-
ated by thresholding the curvature image C(x, y) by a statistic value, namely
its average curvature value Cm. The binarization process can therefore be
described as seen in equation 4.46.

B(x, y) =

1 if C(x, y) ≥ Cm

0 if C(x, y) < Cm
(4.46)
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To reduce intra-subject misalignments such as translation, a shift correc-
tion is applied based on the maximal matched pixel ratio (MPR). The MPR
is defined as the ratio of the number of matching pixel to the total number of
pixel in the matching patterns [72]. Effectively this is a correlation measure
that is well suited for comparing binarized images. The MPR is calculated
between the backbone images of an enrolled Be and a probe Bp sample for
multiple horizontal and vertical shifts. The offset where MPR has its maxi-
mum is then used in the following step, which is to perform comparison of the
vein networks Vp and Ve, denoting the vein network for the probe and enroll-
ment respectively. Yang et al. named this step in the comparison approach
elastic matching, because the points in the skeletonized probe vein network
are not strictly compared with their corresponding pixel at the same location
in the enrollment vein network, but a square neighbourhood N(x0, y0) with
side length 2r is defined around the point in question (x0, y0).

N(x0, y0) = {(x, y)|x0 − r ≤ x ≤ x0 + r, y0 − r ≤ y ≤ y0 + r} (4.47)

The elastic matching score Em of two vein networks is defined by the
number of matched points P p

m divided by the number of all vein points P p

in V p as can be seen in equation 4.48.

Em(V p, V e) = P p
m

P p
(4.48)

Due to non symmetry of comparison scores Em(V p, V e) and Em(V e, V p),
the similarity score Se is built by taking the maximum of both cases as given
by equation 4.49.

Se = max
(
Em(V p, V e), Em(V e, V p)

)
= max

(
Np
m

P p
,
P e
m

P e

)
(4.49)

To receive the final similarity score S between two input images, the
elastic matching score Se is further combined with a measure of overlap λ
between the two backbones Bp and Be. Equation 4.50 shows the computation
of this overlap measure, where np and ne denote the number of vein points
in the backbone feature images and n0 is the number of overlapped points
that is computed as shown in equation 4.51. The operator • denotes point
wise multiplication of the two backbone images.

λ = 2n0

np + ne
(4.50)
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n0 =
∑
xy

Bp •Be (4.51)

The final score S, as seen in eq. 4.52, therefore weights the elastic match-
ing score by the degree of overlap in the backbone image. The square root
is meant to make the score distribution more consistent.

S =
√
λSe (4.52)

4.4.8 Scale Invariant Feature Transform
The algorithm described by David Lowe [46] was designed to find and de-
scribe keypoints. To use such keypoints for vein recognition, first keypoints
need to be found and afterwards a description of that point is generated. For
comparison, the point descriptors, which are essentially feature vectors of di-
mension 128, are compared using Euclidean distance. The feature extraction
part is done in four major stages as described hereafter.

(i) Scale space extrema detection: First, the so called scale space of an
image is computed. The scale space of an image I(x, y) is defined as the
function L(x, y, σ) which is created by convolution of a Gaussian function
G(x, y, σ) (eq. 4.53) in various scales (increasing values of σ).

G(x, y, σ) = 1
2πσ2 exp (−

(
x2 + y2

)
/2σ2) (4.53)

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (4.54)
Next difference-of-Gaussian (DoG) images are computed by effectively

subtracting the nearby scales separated by a factor k as seen in equation
4.55. Keypoint candidates are found by looking for local extrema in three
dimensions including 8 surrounding pixel from the same DoG image and 9
pixel from the two neighbouring DoG images. This procedure is done for
multiple resolutions of the initial input image, which is consecutively down-
sampled by a factor of two for each octave level. Parameters in [46] such as
number of octaves and images per octave are determined empirically.

D(x, y, σ) =
(
G(x, y, kσ)−G(x, y, σ)

)
∗ I(x, y)

= L(x, y, kσ)− L(x, y, σ)
(4.55)

(ii) Keypoint localization
After finding keypoint candidates, for every candidate a 3D quadratic (order
2) function is fitted using Taylor series expansion of the scale space function
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D to get a more accurate interpolated location of the extremum. Let the can-
didate point be denoted as x0 = (x0, y0, σ0) in equation 4.56 and x = (x, y, σ)
is used to describe the offset to a point in the surrounding neighbourhood of
x0.

T (x) ≈ D(x0) + ∂D(x0)
∂x

T

x + 1
2xT

∂2D(x0)
∂x2 x (4.56)

The extremum of x, denoted as x̂ = (x̂, ŷ, σ̂), can be determined by setting
the derivative of function T (x) with respect to x = (x, y, σ) equal to zero.

x̂ = −∂
2D(x0)
∂x2

−1
∂D(x0)
∂x

(4.57)

Note that ∂2D(x0)
∂x2 corresponds to the Hessian matrix and ∂D(x0)

∂x is often
referred to as Jacobian. Both are computed using neighbouring function
values of the scale space function around the candidate point (i.e. standard
discrete derivative filter). This results in a 3x3 system of equations. The
offset x̂ is added to the position of the candidate point to get the sub-pixel
estimate of the extremum. Also the function value of the extremum, D(x̂) is
evaluated and if this value is below a threshold of 0.03, the candidate point
is discarded due to low contrast.

Further eliminations of candidates are made for points along edges. The
idea is that candidate points along edges will have a large principal curvature
across the edge in the DoG image, but have a relatively small principal
curvature in the perpendicular direction. Therefore, at the location and
scale of the candidate point in question, a Hessian matrix is computed, since
its eigenvalues are proportional to the principal curvatures. Note that only
the one DoG image D from the scale space is used for analysis on which the
candidate point lies. The Hessian therefore is computed as seen in equation
4.58.

H =
[
DxxDxy

DyxDyy

]
(4.58)

As described, the goal is to sort out candidates were one eigenvalue is
much larger than the other, i.e. have a high ratio r = α/β. Let α be the
bigger eigenvalue and β the other eigenvalue of the Hessian matrix. Using
the connection of the trace and the determinant to the eigenvalues as seen in
equations 4.59 and 4.60 it is avoided to explicitly compute the eigenvalues.

Tr(H) = Dxx +Dyy = α + β (4.59)

47



Det(H) = DxxDyy −DxyDyx = α · β (4.60)
Instead, the following ratio of trace and determinant is used:

Tr(H)2

Det(H) = (α + β)2

αβ
= (rβ + β)2

rβ2 = (r + 1)2

r
(4.61)

Doing so allows for checking whether the ratio of principal curvatures
is below a certain threshold defined by r. Otherwise the candidate point is
discarded. Therefore equation 4.62 needs to be fulfilled. The ratio r is chosen
to be 10.

Tr(H)2

Det(H) <
(r + 1)2

r
(4.62)

(iii) Orientation assignment
Every remaining candidate is now a treated as a keypoint, whose orientation
is determined as a next step. For this, the Gaussian smoothed image L with
the closest scale to the interpolated scale from the keypoint is used. The
parameter σ is therefore omitted in the notation. The gradient magnitudes
(eq. 4.63) and orientations (eq. 4.64) are computed for every position as
given in the following equations.

m(x, y) =
√(
L(x+ 1, y)− L(x− 1, y)

)2 +
(
L(x, y + 1)− L(x, y − 1)

)2
(4.63)

θ(x, y) = tan−1
(
L(x+ 1, y)− L(x− 1, y)
L(x, y + 1)− L(x, y − 1)

)
(4.64)

With this information, an orientation histogram is built using a neigh-
bourhood around the keypoint. The histogram divides 360 degrees of orien-
tation into steps of 10, resulting in 36 bins. Each orientation that contributes
to the histogram is weighted by its corresponding gradient magnitude and
by a Gaussian-weighted circular window with a σ = 1.5 times the current
scale around the keypoint. The bin with the highest count, and also any
bin with count ≥ 80% of the highest count, is assigned as the orientation of
the current keypoint. Note that for any additional bin where the count lies
within the 80% of the maximum count, a new keypoint is created that only
differs in orientation.

(iv) Keypoint descriptor
Now that every keypoint has a location, a scale and an orientation, a de-
scriptor of the local area around the point is created that describes the local
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neighbourhood. This resulting descriptor will be the feature vector that can
be used for comparison. On the Gaussian smoothed image L, where the
scale of the keypoint σ̂ is used to select the amount of Gaussian blur, a
16x16 pixel grid is considered around the location of the estimated keypoint
position (x̂, ŷ). Similar to step (iii), the gradient magnitude and orienta-
tion needs to be calculated and gradient orientations are rotated relative to
the determined keypoint orientation. This 16x16 field of gradients is further
weighted using a Gaussian function with a σ = 0.5 times the width of the
descriptor window such that less weight is assigned to the magnitudes that
are far away from the estimated keypoint location.

16x16 grid around the keypoint (centered orange square)
Orientation histogram for every 4x4 sub block, having 8 bins. 

Resulting in 4x4x8=128 dimensional feature vector

Figure 4.10: Left: 16x16 grid around the estimated location of the keypoint
(centered orange square). Right: Orientation histogram for every 4x4 sub
block, having 8 bins each.

The grid is further divided into patches of 4x4 pixel that build an orienta-
tion histogram with 8 bins (steps of 45 degree). Similar to the previous step,
the contribution of each orientation is given by the gradient magnitude times
the value of the Gaussian function at this location. Figure 4.10 depicts the
idea of having 4x4 pixel patches where every patch generates an orientation
histogram. The length of the arrows, although of similar length in the figure,
indicate the bin height in the histogram. The final feature vector for one
keypoint is then constructed by concatenation of the 16 histograms, yielding
in total a feature vector of 4x4x8=128 dimensions. The feature vector is
normalized to unit length. To achieve a sort of illumination invariance, every
entry larger than 0.2 is set to 0.2 before the vector is renormalized again to
unit length.

Keypoints descending from a reference image IR and a test image IT , are
compared using Euclidean distance of the 128-dimensional feature vectors.
The keypoints that have the smallest distance, if smaller than some threshold,
are considered as a match. However, if the ratio of distances from the first-
best match to the second-best match is greater than 80%, the keypoint from
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IT is rejected.
The similarity score is generated by the ratio of the number of compared

points m to the number of maximal possible compared points, which is either
the number of keypoints that are enrolled ke or the number of keypoints from
the probe vein image kp, as seen in eq. 4.65.

S = m

min(ke, kp)
(4.65)

4.4.9 Speeded Up Robust Features
Inspired by the SIFT keypoint detection and description method (section
4.4.8), Bay et al. [7] developed a slightly different keypoint algorithm named
SURF (short for Speeded Up Robust Features). Similar to other keypoint
schemes, first suitable candidate points are detected and afterwards a high
dimensional feature vector is created for every such point that describes the
local surrounding area around that point.

(i) Interest point detection
Analogous to the SIFT algorithm, a scale space is created that is divided
into octaves where each octave contains a series of filter response maps of
same resolution but increasing scale, caused by increasing Gaussian σ. While
in SIFT the scale space is built from differences of Gaussian filtered images,
SURF uses the determinant of the Hessian matrix that is created from the
filter responses of convolving an image I(x, y) with Gaussian second order
derivatives. The Hessian matrix H(x, y, σ) can therefore be defined as

H(x, y, σ) =
[
Lxx(x, y, σ)Lxy(x, y, σ)
Lyx(x, y, σ)Lyy(x, y, σ)

]
(4.66)

where Lxx/xy/yy(x, y, σ) are the responses from convolving Gaussian second
order derivatives with an image I(x, y). The Gaussian second order deriva-
tives are approximated by upright filter boxes (see figure 4.11) to reduce
computation time.

Figure 4.11: Left side: Discrete second order derivatives of Gaussian function.
Right side: Approximations using rectangular boxes. Taken from [7].
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The responses to the approximated filters are obtained in an efficient
manner by using a so called integral image [84] IΣ(x, y) that is initially created
from a given input image I(x, y) as seen in equation 4.67. With such integral
images, only four additions are needed to compute the sum of any pixel
intensities in a rectangular shaped area.

IΣ(x, y) =
j≤x∑
j=0

i≤y∑
i=0

I(i, j) (4.67)

The determinant is computed as given in equation 4.68, where D denote the
approximated L using the simplified boxes.

det(H) = DxxDyy −
(
0.9Dxy

)2
(4.68)

Keypoints are found quite similar as in the SIFT algorithm. Maxima in 3D
space of Hessian determinants (considering neighbouring pixel on the same
scale as well as in neighbouring scales) are considered as interest points. In
order to achieve more accurate results, scale and image space interpolation
is done by 3D Tailor series expansion.

(ii) Descriptor generation
For every found interest point, a descriptor is created that describes the local
area around that point. To achieve rotation invariance, a reproducible orien-
tation needs to be found as a first step. To do so, Haar wavelet responses are
computed in x and y direction within a circular neighbourhood with radius
6s around the keypoint, where s is the scale at which the keypoint was de-
tected. The two Haar wavelets are depicted in figure 4.12. Every point in this
circular region has now a Haar wavelet response for both directions that are
further weighted with a Gaussian function centered at the keypoint location.
The two responses for every point are now viewed as a 2-dimensional vector
that can be represented on a 2D grid. For estimation of an orientation vector,
a sliding orientation window of size π

3 is rotated as depicted on figure 4.12
and all the responses within this window are summed up. The orientation
where the summed up response vector has the highest magnitude is chosen
as the keypoint orientation.

Next, a square region with a window size of 20s is created around the
keypoint which is rotated using the orientation that was assigned before.
This region is then split up into smaller 4x4 sub-blocks. In each of the 16
sub-blocks, a 5x5 regularly spaced grid of sample points is interpolated. Let
now dx and dy be Haar wavelet filter responses using sample points over the
whole square region, where the filters are rotated in the same direction as the
square. These responses are then weighted by a Gaussian (σ = 3.3s) centered
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Figure 4.12: Left to center: Haar wavelet filters in x and y direction where
black parts are weighted -1 and white parts +1. Right to center: Circular
area around keypoint and sliding orientation window (shadow in circle) of
size π

3 with summed orientation. Images taken from [6].

at the keypoint location. Afterwards the 5x5 responses dx and dy per sub-
block are summed up for each of the 16 blocks. Additionally, the absolute
values of the responses, |dx| and |dy| are also summed up separately. These
four sums per sub block build a feature vector

(∑
dx,

∑ |dx|,∑ dy,
∑ |dy|).

Each sub-block is now described by a 4-dimensional feature vector. For
final description of the keypoint, the 4-dimensional feature vectors from all
16 blocks are concatenated, resulting in a 64-dimensional feature vector for
every keypoint. Finally this feature vector is normalized to unit length.

Comparison and similarity score computation is done in the same way as
described for the SIFT algorithm.

4.4.10 Deformation-Tolerant Feature-Point Matching
Another keypoint-based feature extraction and comparison method that was
tailored for finger vein recognition task was proposed by Matsuda et al. [48].
This method defines its own inherent preprocessing step, which includes the
creation of an even symmetric Gabor filter bank as described in section 4.4.5.
To create a single preprocessed image from a given input image, the pixel
intensities at every pixel position get ordered based on their value. At every
pixel position (x, y) the average of the third and fourth largest pixel intensity
is computed to generate the preprocessed image F (x, y).

Next, keypoint candidates are found. This is achieved via eigenvalue
analysis of the Hessian matrix (see equation 4.69, where the indices indicate
second order derivatives) at every pixel position in F (x, y).

H(x, y) =
(
∂Fxx Fxy
∂Fxy Fyy

)
(4.69)

The idea is that in order to find distinctive points on veins such as turning
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points of bifurcations, points are desired where the curvature is high in all
directions. Since the eigenvalues of the Hessian matrix yields the principal
curvature λ1 and the minimum curvature λ2 (where λ1 > λ2), a minimum
curvature mapMCM can be created by using the smaller eigenvalue at every
pixel position as seen in 4.70.

MCM(x, y) = max(λ2, 0) (4.70)

Candidate keypoint positions are then found at the positions where the
MCM has local maxima. To describe every keypoint with a feature vector,
first a vein pattern map V PM is created that contains the principal curva-
tures at every pixel position as given in equation 4.71. This is done using
the larger eigenvalue.

V PM(x, y) = max(λ1, 0) (4.71)

A square area around the keypoint location in the V PM (named the
descriptor area) is divided into WxH blocks. For each block, a histogram
consisting of N bins, representing 180

N
degrees, is created. The pixel value

of V PM is added to the bin that contains the direction of the eigenvector
corresponding to the larger eigenvalue λ1. The final feature vector hence
consists of WxHxN entries and is normalized to unit length. Due to the
possibility of longitudinal finger rotations in sample captures, the descriptor
area is normalized in size depending on how far the keypoint is located from
the finger line of center. The process is visualized in figure 4.13.

Figure 4.13: Keypoint descriptor generation. Taken from [48].

Matsuda et al. also propose a comparison scheme for the just generated
keypoints, that consists of two steps: (i) First, for both the enrolled image
(denoted E) and the input image (denoted I) a non-rigid transformation is
estimated. To do so, a feature distance FDij is computed for every keypoint
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i = 1, ..., n1 in the enrolled image with every keypoint j = 1, ..., n2 in the
input image using Euclidean distance.

FDij =

√√√√dim∑
d=1

(
vii,d − vej,d

)2
(4.72)

Equation 4.72 shows the formula for feature distance calculation, where
dim = WxHxN and vi and ve denote feature vectors from input and en-
rollment images that are of dimension dim. Each point i is assumed to
correspond to the point j that has minimum feature distance FD.

For every point pair at locations (xe, ye) for the point in the enrolled image
and (xi, yi) in the input image, a displacement vector (dx, dy) is calculated
by simple subtraction, i.e. dx = xe − xi and dy = ye − yi. The displace-
ment vectors are then sorted into a 2D histogram with bin-axes dx and dy.
Since the displacement is expected to happen more or less uniformly on a
global level, keypoint correspondences whose displacement vector is outside
a certain radius from the mode (i.e. most occurrence) are discarded as er-
rors. This kind of histogram filtering is done once on a global level, using all
displacement vectors, and once on a local basis, where for every remaining
(after global filtering) keypoint correspondence only a subset consisting of
correspondences within a defined radius are considered. A transformation
from enrolled image to input image is estimated using the thin-plate spline
model as described in [8].

(ii) After registration, each transformed enrollment point is assigned to
an input point that has minimum feature distance. However, to count as a
matched point, two conditions (eq. 4.73 & 4.74) need to be met:

EDij ≤ RED (4.73)
Where EDij represents the Euclidean distance between the coordinates

of the transformed enrollment point and the coordinates of the input point.
RED is a parameter and symbolizes a radius for a disk within both, enrolled
and input point need to be for condition 1.

FDij < TFDi (4.74)

TFDi = FDavi
− αFDσi

(4.75)
Where FDavi

is the average and FDσi
the variance over all FDij made for

a fixed enrollment image i. The variable α is a parameter. If both conditions
are met, the corresponding points count as a match, i.e. a counter of matched
points m is incremented by one.
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The final similarity score is obtained by dividing the number of matched
points m by the sum of enrollment image keypoints n1 and input image
keypoints n2.

S = m

n1 + n2
(4.76)

4.4.11 Local Binary Patterns
One popular texture descriptor is Local Binary Patterns (originally described
by Ojala et al. [56]) which has been used in several variations in the domain
of finger vein recognition [43] as well as finger vein presentation attack detec-
tion [44, 39]. The basic idea of LBP is that every pixel in the feature image
F (xc, yc) is obtained by comparison of a pixel in the input image I(xc, yc)
with its local neighbourhood. Usually, the neighbourhood is chosen to be
the surrounding eight pixels of a center pixel I(xc, yc) as shown in figure
4.14. F (xc, yc) is now calculated by comparing every surrounding pixel to
the center pixel and temporary storing a binary value depending on whether
the difference is positive or negative. This results in an ordered set of bi-
nary values that encodes the difference of the pixel in question to its local
neighbourhood. This can be formulated as seen in equation 4.77

F (xc, yc) =
7∑

n=0
s
(
I(xn, yn)− I(xc, yc)

)
· 2n (4.77)

where (xn, yn) represent the gray scale intensity at certain position around
the center pixel as seen in figure 4.14 and the function s(x) is defined as given
in equation 4.78.

s(x) =

1 if x ≥ 0
0 if x < 0

(4.78)

The implementation used in this thesis uses LBP encapsulated in a three
step feature extraction pipeline: (i) Creation of a filter bank that uses Gabor
filters of size sf ∗ sf in various orientations θj and scales σk with subsequent
filtering. This results in multiple (j∗k) of images in Gabor feature space. (ii)
All resulting images are then processed using the LBP algorithm described
above. (iii) As a third step, every LBP processed image is divided into blocks
of size sb ∗ sb. The image intensities from every block are represented in a
normalised histogram. Lastly, every histogram from every feature image is
concatenated to build a final feature vector whose dimensionality depends on
the number of resulting images in Gabor feature space j ∗ k, the block size
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(x0,y0) (x1,y1) (x2,y2) 90 101 130 0 0 1

(x7,y7) (xc,yc) (x3,y3) 80 127 128 0 1

(x6,y6) (x5,y5) (x4,y4) 130 135 127 1 1 1

Decimal: 124

I(xc,yc) F(xc,yc)
Binary Pattern: 01111100

Figure 4.14: Left: fixed index assignment around a center pixel I(xc, yc);
Right: comparison of the center pixel to the neighbouring pixels with result-
ing binary code that defines the resulting intensity at pixel (xc, yc) in the
feature image F .

sb and the number of blocks that a single image can be divided into, i.e. the
resolution of the input image.

Gabor Filters are created by multiplying two orthogonal spatial sinu-
soidals (i.e. sine and cosine) with an Gaussian envelope as explained in
previous sections (4.3.3 & 4.4.5). Multiple scales are obtained by variation
of the σ in the Gaussian part, rotations by application of a rotation matrix
as done in section 4.4.5. Figure 4.16 shows components of Gabor filters in
four rotations and three scales as well as an example for the resulting feature
images after filtering and applying the LBP algorithm.

0 50 100 150 200 250
0

0.1

0.2

0.3

Figure 4.15: The block histogram from the upper left block.

Figure 4.15 shows the block histogram of one block from one feature
image. Choosing a block size that results in fractions of full blocks (as seen
on the right) does not pose a problem as long as the whole image data set is
of same resolution. For comparison of two given vein images, the respective
concatenated histograms of the enrolled he and probe hp vein image are
evaluated on their similarity using histogram intersection. The formula for
histogram intersection is stated in equation 4.79 where n is the length of the
histogram feature vector.
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real part Gabor filters imaginary part Gabor filters absolute Gabor filters

resulting feature images after LBP algorithm

Figure 4.16: Upper row: components of a Gabor filter bank in four orienta-
tions and three scales. Bottom images: Feature images after Gabor filtering
and LBP algorithm.

HI = 1−
∑n
i=1 min

(
hei , h

p
i

)
∑n
i=1 h

e
i

(4.79)

To arrive at a final similarity score S, the calculated value for histogram
intersection HI is inverted (S = 1

HI
) to ensure that more similarity results in

a higher similarity score to be consistent with the other recognition schemes.

4.4.12 Convolutional Neural Network
The only non hand-crafted approach for vein recognition that is included in
the experiments of this thesis is given by a convolutional neural network that
uses triplet loss as loss function. The task of a loss function is to guide the
net during the training procedure on how to update its internal parameters
such that it learns a desired behaviour. The network in use was described
and implemented by Wimmer et al. [92].
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While for many existing applications CNNs are trained to classify a given
input into a set of pre-defined classes, this approach is not an ideal solution
for biometric recognition where subjects (classes) may be added in the future.
By using a concept known as triplet loss this problem can be avoided, because
here the net learns to quantify the similarity between images. For doing so,
always three images (triplets) are needed as input: a so called anchor image
A, a positive P which is from the same class as the anchor image, and a
negative N which is an image descending from a different class. The net
is now trained to minimize the distance between images A and P , while
maximizing the distance between A and N . The idea is illustrated in figure
4.17.

Figure 4.17: Training the CNN using triplet loss. Taken from [92].

The triplet loss function can be formalized using squared Euclidean dis-
tance, i.e. the square root is omitted, as seen in equation 4.80.

L(A,P,N) = max
(∥∥f(A) − f(P )

∥∥2 −
∥∥f(A) − f(N)

∥∥2 + α, 0
)

(4.80)

The variable α is a margin between positive and negative pairs and its
goal is to prevent that images of a single class get projected to a single point
in the embedding space, i.e. allow inter-class variability. The function f(x)
denotes the embedding that maps a vein image from image space to the
output space R256.

To avoid that, by random selection, triplets are chosen where the classes
(subjects) are naturally different enough to fulfill the constraint in equation
4.80, only so called hard triplets are chosen. Only triplets that also fulfill
equation 4.81 are therefore allowed for training. Doing so ensures that every
calculation contributes to the training procedure.

58



∥∥f(A) − f(P )
∥∥2 + α >

∥∥f(A) − f(N)
∥∥2 (4.81)

The network architecture is a SqueezeNet [27], which is a small pre-trained
network, specifically created to have few parameters and small memory re-
quirements. The input images are resized to a fixed size of 3x244x244, where
each color channel is set as the gray scale value. The size of the last con-
volutional layer is adapted such that a 256-dimensional embedding (output
vector) is produced.

The similarity score S between two vein images can therefore be obtained
by computing the inverse Euclidean distance between their 256-dimensional
embedding as given in equation 4.82, where ei and pi stand for embeddings
of an enrolled and a probe image, respectively.

S = 1∑256
i=1 (ei − pi)2 (4.82)

The inversion causes similar vectors to have a higher score and vice versa.
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5 Databases

In this chapter all the databases used in this work are described. Section
5.1 covers the two video databases for the presentation attack detection ex-
periments to answer RQ3. In section 5.2, two publicly available still image
finger vein presentation attack data sets are described that are used to obtain
reference results for the threat analysis (RQ2 ), i.e. to compare the "effective-
ness" of the attack samples with ones that are already well established in the
research community. Unfortunately no such presentation attack databases
are available for dorsal hand vein images that could be used as a reference.

5.1 Video databases for presentation attack
detection

The presentation attack detection methodologies from chapter 3 are evalu-
ated on two video data sets that were captured using near infrared illumi-
nation. Both data sets descend from the Multimedia Signal Processing and
Security Lab at the University of Salzburg and are described in this section
hereafter.

5.1.1 Palmar Finger Vein Data Set (PLUS-FV)
This palmar finger vein video data set was captured in summer 2020 using a
subset of the PLUSVein-FV3 [35] as bona fide samples. The subset used for
collecting this presentation attack database comprises of 6 fingers (i.e. index,
middle and ring finger of both hands) from 22 subjects that were captured
3 times. Every used sample was captured in palmar perspective and with
two types of light sources, namely LED and Laser. Therefore, presentation
attacks were also created for both illumination variants. The imaging sensor
in use is the PLUS OpenVein finger vein sensor, which is same as the one
that has been used to collect the PLUSVein-FV3 database. The presentation
attacks are created for sensors that operate in transillumination mode, i.e.
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imaging sensor and source of illumination are placed on opposite sites of the
finger. The design for the presentation attack instrument was inspired by
a talk that was given by german hackers on a hacking congress [40]: An
extracted vein pattern is printed in a white paper using a ’HP LaserJet 500
colour M551’ laser printer which is then sandwiched in between a top and
bottom part made of beeswax. Both parts can be seen on figure figure 5.1
(e). The goal is that the beeswax mimics the tissues inside a human finger.
The bottom part, which is presented towards the illumination source, is of
elliptic shape. The idea is that it diffuses the penetrating light and therefore
ensuring uniform illumination. The task for the rectangular top part is to
blur the vein pattern that lies in between the two beeswax parts.

a b c d e f

Figure 5.1: (a) original image from PLUSVein-FV3 ; (b) & (c) extracted
vein patterns thick and thin; (d) 3D printed moulds; (e) cast top and bottom
made from beeswax; (f) presentation attack instrument usage.

For acquisition, the elliptic part is facing towards the imaging sensor.
Both parts are cast of yellow beeswax using the moulds shown in figure 5.1
(d). In figure 5.1 (f) one can see the final presentation attack instrument.
The vein patterns are extracted using principal curvature (PC - described in
section 4.4.2) feature extraction in two thicknesses, denoted thick and thin
as can be seen in figure 5.1 (b) & (c).

Presentation attack video sequences were captured over a duration of 10
seconds each with a frame rate of 15 fps. Since real fingers sometimes tend to
not be perfectly still during video acquisition, two different types of presen-
tation attack video sequences were created: Still, where the wax presentation
attack instruments lie motionless in the sensor over the duration and Trem-
bling, where small movements were applied to the attack instruments with
to goal of creating a natural trembling effect. Such video sequences were
created for all 396 (22 subjects x 6 fingers x 3 sessions) used samples from
the reference database in LED and Laser illumination, with both thicknesses
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of the extracted vessel patterns. In addition to every video sequence, a single
still image was acquired that can be used for the threat analysis to answer
RQ2. Since original PLUSVein-FV3 has no videos, new bona fide acquisi-
tions had to be made as well. Unfortunately only for 16 subjects, new bona
fide acquisitions (in LED and Laser variant, together with a still image) could
be made. Table 5.1 lists the final numbers of this database.

Presentation Attacks Bona Fide
Thick Thin PLUSVein-FV3 NewStill Trembling Still Trembling

Image 22x6x3 22x6x3 22x6x3 22x6x3 22x6x5 16x6x5
Video 22x6x3 22x6x3 22x6x3 22x6x3 / 16x6x5

Table 5.1: Overview of the scale of the PLUS finger vein data sets. Note
that every acquisition was made in LED and Laser illumination.

Image 5.2 shows examples of both illumination variants of the original
PLUSVein-FV3 dataset (left column), presentation attacks using thick vein
patterns (center column) and newly acquired bona fide samples (right col-
umn).

Figure 5.2: Examples; Top row: LED illumination; Bottom row: Laser il-
lumination; Left column: PLUSVein-FV3 ; Center column: Presentation at-
tack using thick vein patterns; Right column: Newly acquired bona fide.
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5.1.2 Dorsal Hand Vein Data Set (PLUS-HV)
The dorsal hand vein presentation attack data set used in this thesis was
originally created for a publication by Herzog and Uhl [24]. The imaging
installation used to capture the video sequences is the one that was also
used in [23]. It contains a Canon EOS 5D MarkII DSLR with removed IR
blocking filter ans additional 850nm pass-through filter as imaging sensor,
which is placed at the ceiling of a wooden box. The capturing device was
designed for being able to capture both transillumination and reflected light
illumination. For reflected light illumination, 6 950nm LEDs are attached
next to the imaging sensor at the top side of the box. On the bottom of the
capturing device, a near-infrared surveillance lamp including 50 940nm LEDs
is responsible for transmissive illumination. The database contains both
hands from 13 participants, that were captured with both lighting versions.
Therefore the bona fide basis of this database consists of (13 attendees x 2
hands) 26 genuine video sequences for both illumination variants.

For every genuine video sequence, attack counterparts were created using
five presentation attack instruments:

– Paper: A single frame where the dorsal hand vein area was cropped as a
region of interest, printed using a laser printer and put on a cardboard
tray for easier insertion to the imaging sensor

– Paper Moving: the presentation attack sample from Paper moving back
and forth to simulate heartbeat, using a pace of approximately 70 to
90 beats per minute

– Smartphone: The dorsal hand vein region of interest, displayed in a
smartphone (Samsung Galaxy S8) display

– Smartphone Moving: The presentation attack sample from Smartphone
with a programmed sinusoidal translation oscillation along the x axis

– Smartphone Zooming: The presentation attack sample from Smart-
phone with a programmed sinusoidal scaling oscillation in every direc-
tion (i.e. a slight zooming effect)

To achieve the rhythmic moving and zooming on the smartphone, [24]
created an Android application that loops these operations. Both variants of
motion, i.e. translation and scaling, are meant to simulate a heart-beat-like
variation of illumination on the dorsum of the hand. In total, the whole
database consists of (13x2x2 bona fide + 13x2x2x5 presentation attack) 312
video sequences, all of resolution 1920x1080. Figure 5.3 shows examples of
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bona fide and presentation attack frames in both illumination variants. The
sequences are of varying length. Bona fide videos range from 14.75 to 25.29
seconds, presentation attack sequences from 10.41 to 21.49 seconds. Every
sample was captured with a constant frame rate of 30 frames per second.

Figure 5.3: Example frames from dorsal hand vein video sequences; Top row:
transillumination; Bottom row: reflected light; Left column: bona fide video
frame; Center column: paper presentation attack; Right column: smartphone
presentation attack

5.2 Public finger vein image databases for
threat analysis comparison

In this section, two publicly available finger vein still image presentation
attack databases are described: The IDIAP VERA FingerVein database [78]
and the South University of China Spoofing Finger Vein Database [60]. These
two data sets are well established in the finger vein research community
and therefore serve as a benchmark for the threat analysis experiments to
answer RQ2. Consequently, the same threat evaluation experiments that
are executed on the finger vein database from section 5.1.1 are also carried
out on the databases from this section. Doing so allows a more meaningful
assessment on how hazardous the attacks used for this thesis actually are.

5.2.1 VERA
The VERA FingerVein Database for fingervein recognition 5 was the first
larger presentation attack database available for research purposes. It con-

5Available here: https://www.idiap.ch/en/dataset/vera-fingervein
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sists of left and right hand index fingers of 110 subjects that were captured
in 2 acquisition sessions. This makes a total of 440 images from 220 unique
fingers, where each finger has two samples. Every sample has one presen-
tation attack counterpart. These Presentation attacks were created by first
applying a histogram equalisation method (similar to one as described in
section 4.3.1) and then printing the preprocessed samples on quality paper
using a laser printer. As a next step, the vein contours were enhanced us-
ing a black whiteboard marker after which the samples were again provided
to the biometric sensor to finally acquire the presentation attack samples.
Every of the 880 (bona fide + presentation attack) samples is provided in
a full version and in a cropped version. The full set consists of the raw im-
ages captured with size 250x665. For the cropped set, images were further
truncated by removing 50pixel margin from the border, resulting in images
of size 150x565. This cropping procedure is meant to cut the finger contours
since otherwise the geometric shape of the finger would be also considered
and would therefore introduce a bias in the results for finger vein recognition.

5.2.2 SCUT
The South University of China - Spoofing Finger Vein Database 6 was col-
lected from 100 persons that scanned 6 fingers (namely index, middle and
ring finger from left and right hand) in 6 acquisition sessions, making a total
of 3600 bona fide samples. Presentation attacks were generated by printing
each finger vein image on two overhead projector films that are aligned and
stacked. In order to reduce overexposure, a strong white paper (200g/m2) is
sandwiched in-between the two overhead projector films. With similar inten-
tions as with the VERA database, namely reducing the impact of the finger
contours, the SCUT is available in a full version and ROI version. While in
the full set every image sample has a resolution of 640x288 pixel, the samples
from the ROI set are of variable size. Since certain recognition algorithms
from chapter 4 can not be evaluated on image samples that do not have a
fixed size, samples have been resized to 474x156 which corresponds to the
median of all heights and widths from the ROI set.

6Available here: https://github.com/BIP-Lab/SCUT-SFVD
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6 Experimental Setup and
Results

This chapter contains the experiments in this thesis and describes the corre-
sponding experimental setup. The experiments are divided into the following
main parts: Section 6.1 explains how the data from the Multimedia Signal
Processing and Security Lab (section 5.1) is preprocessed such that only the
region of interest remains. An extensive evaluation on the attack potential of
the data sets is given in section 6.2. Experiments for performing presentation
attack detection are carried out in section 6.3.

6.1 Attack Database Preparation
Due to the circumstance that the raw hand vein data contain a lot of back-
ground from the imaging installations and also the finger vein data always
contains batches of three fingers from the same hand, some preprocessing is
required as a first step such that only the vein regions remain.

6.1.1 Finger Vein
ROI extraction for the finger vein data is done in a similar way as described
in [35] and is visualized in figure 6.1: First, images are split into three parts to
have index, middle and ring finger in separate images. This is done using fixed
image coordinates since the imaging installation provides a certain template
where each finger must be. Next, the finger outline is detected using edge
detection and consecutive morphological processing techniques. With the
help of the finger outline, a center line is calculated which is used to rotate
the finger image accordingly such that as a final step the finger ROI can be
cropped using a defined box as seen in sub image (d). Every finger sample
is of size 192x736 pixel.

When cropping the ROI in videos, rotation parameters are only deter-
mined for the first frame and then used for all consecutive frames in the
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a) b) c) d)

Figure 6.1: Cropped finger vein attack sample. a) Raw acquisition from
capturing device. b) single finger isolated c) already aligned finger, rotated
such that the center line is aligned with the pixel grid d) fixed ROI.

same video sequence. This ensures that possible finger motion such as trem-
bling is preserved while it prevents ROI jumping artefacts.

6.1.2 Hand Vein
The imaging installation used for capturing the dorsal hand vein data has
two screwed pins where, during the imaging process, the middle finger of the
subject is placed inbetween. Hence every hand and every attack sample is
placed on the same predetermined position. The pins can be seen in figure
6.2. While in [68] a fixed 600x600 ROI for both bona fide and attack sample
was used, a slightly different approach was used for the experiments in this
thesis because it has been found that the attack samples are of different scale.

360px

360px

Figure 6.2: Right: Cropped attack sample. Left: Corresponding original
frame, where the rectangle was found by cross correlation using various scales.

Therefore, as a first step, one exemplary frame from a paper attack video
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sequence was manually cropped such that the maximum area can be used
while ensuring that only little to no background is visible as can be seen
in right image in figure 6.2. Using 2D cross correlation on this manually
cropped sample in various resolutions and a frame from its origin video, a
scaling factor of 1.4225 together with coordinates for cutting the bona fide
video could be determined. The box in the left image in figure 6.2 shows the
found best fit for the scaled attack sample. The determined parameters were
then used for cropping every video sequence from the hand vein data set.
The final size of every sample is now 513x513 pixel (d360 · 1.4225e = 513).

6.2 Attack Database Threat Evaluation
It is essential to test the actual functionality of given presentation attacks
before developing countermeasures against them. To do so, experiments
in this section employ twelve vein recognition methodologies introduced in
section 4.4 together with a common threat analysis protocol described in
section 4.1 to evaluate whether the attack data sets used in this thesis would
be able to deceive a real system, therefore providing an answer to RQ2.

6.2.1 OpenVein Toolkit Settings
The recognition experiments using the OpenVein toolkit can be configured in
a modular way. Prior to feature extraction, preprocessing schemes described
in 4.3 can be chosen to be applied to every biometric sample. Table 6.1 gives
an overview of what preprocessing schemes are used in the experiments.

Preprocessing Settings OpenVein Toolkit
Method MC PC GF IUWT RLT WLD ASAVE DTFPM SIFT SURF LBP
Gaussfilt X
HFE X X X X X X X X

CLAHE X X X X X X X X X X
CGF X X X X X X
Resize X X X X X X X X X X

Table 6.1: Preprocessing settings OpenVein toolkit

When dealing with feature extraction schemes that generate a feature im-
age that depicts extracted binarized vessel networks, one can choose from a
variety of morphological postprocessing algorithms to be applied on the gen-
erated feature image. Table 6.2 lists which postprocessing steps are applied
after feature extraction in the experiments. The toolkit uses the standard
Matlab functions for the postprocessing steps.
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Postprocessing Settings OpenVein Toolkit
Method MC PC GF IUWT RLT WLD ASAVE

AreaOpen X X X X
InverseAreaOpen X X X X

Thinning X
Spur X

Dilation X

Table 6.2: Postprocessing settings OpenVein toolkit for feature extraction
schemes that extract a binarized vessel structure from the vein image.

Note that the order of pre- and postprocessing steps is indicated by the
ordering inside the tables. Since configuration files for all of the recognition
schemes were already existent from members of the Multimedia Signal Pro-
cessing and Security Lab, the files have been adopted for the experiments in
this thesis with no further modifications.

6.2.2 Finger Vein
This section contains the threat evaluation of the finger vein attack samples.
As main metrics, the equal error rate (EER) and impostor attack presen-
tation match rate (IAPMR) from the two scenario protocol as described in
section 4.1 are reported. For every finger vein video sequence, an additional
image was captured as mentioned in section 5.1.1. The experiments in this
section include the images that correspond to the video sequences where the
attack fingers remain still. Comparison is done using the Full protocol as
described in section 4.2. As first experiment, the samples from the origi-
nal PLUSVein-FV3 database are used as bona fide samples. The results are
reported in table 6.3. For the training of the CNN, samples from the PRO-
TECT [20] data set are used since they descend from the same sensor as the
PLUSVein-FV3 capturings.

One can see that methods that use a binarized vessel structures as features
images for comparison (i.e. the first seven methods) have IAPMRs that are
with the exception of ASAVE and RLT always above 30% which means that
every third attack sample would be wrongly accepted. About 9 out of 10
attack samples would be accepted by MC and IUWT for the case of the
thin LED attack instrument, posing the overall highest false accept rate for
this experiment. The keypoint and texture based methods seem to be fairly
unaffected by the attack samples, having IAMPRs that are often around
zero.

The PLUSVein-FV3 database does not include any video sequences and
therefore new acquisitions had to be made that are used as bona fide samples
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EER & IAMPR for PLUS-FV database using PLUSVein-FV3 counterparts as bona fide [%]

MC PC GF IUWT RLT WLD ASAVE DTFPM SIFT SURF LBP CNN
LED

EER 0.61 0.62 1.06 0.53 4.91 1.13 2.35 2.20 0.96 3.43 3.79 2.89
IAPMR
thick 72.29 71.24 37.78 79.35 43.40 69.28 24.31 16.99 0.00 0.00 0.00 0.57

IAPMR
thin 89.52 80.93 60.98 90.03 36.49 84.22 19.07 16.16 0.00 0.00 0.38 0.35

Laser
EER 1.29 1.90 2.65 1.97 6.59 2.80 2.59 2.64 0.91 3.49 4.24 6.85

IAPMR
thick 58.37 55.17 31.80 79.82 23.75 57.73 8.81 5.62 0.00 0.00 0.00 0.00

IAPMR
thin 75.00 64.27 53.41 84.34 17.30 78.66 1.89 6.31 0.13 0.00 0.00 0.05

Table 6.3: Results PLUS-FV threat evaluation using PLUSVein-FV3 samples
as bona fide.

for a second threat evaluation experiment. Again for every video sequence a
corresponding still image is available that is used for the experiments in this
section. Results for this experiment are reported in table 6.4. A significant
drop in EER can be observed which can be explained by the fact that the
bona fide samples have been acquired without supervision. This causes a va-
riety of lightning artefacts which ultimately leads to less recognition accuracy.
However, the overall trend for IAPMRs remains similar.

EER & IAMPR for PLUS-FV database using newly acquired samples as bona fide [%]

MC PC GF IUWT RLT WLD ASAVE DTFPM SIFT SURF LBP CNN
LED

EER 4.24 4.68 5.84 3.86 11.98 4.48 7.84 6.97 2.42 6.57 10.18 6.36
IAPMR
thick 43.03 43.74 32.10 69.84 46.74 51.50 4.41 23.99 0.35 0.35 0.88 0.71

IAPMR
thin 54.86 59.72 47.92 74.83 33.16 70.31 2.26 21.35 0.17 0.00 0.69 0.83

Laser
EER 13.81 17.38 15.92 14.38 26.34 15.21 19.16 11.99 11.19 15.21 15.33 10.62

IAPMR
thick 48.50 48.68 30.16 67.55 47.80 40.21 21.69 35.98 0.71 5.11 3.88 0.48

IAPMR
thin 56.77 56.08 46.35 67.36 39.93 58.85 13.19 37.15 1.04 3.47 6.42 0.62

Table 6.4: Results PLUS-FV threat evaluation using newly acquired samples
as bona fide.

It can be concluded that the PLUS-FV attack samples would pose a threat
to a real system using recognition algorithms from the category that finally
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create a binarized vessel image as extracted features. The keypoint- and
texture-based recognition methods remain, with the exception to DTFPM
to some extent, relatively unaffected by the attack samples.

Comparison to other FV Attack Databases

In order to compare the functionality of the above evaluated finger vein
attack samples (i.e. PLUS-FV database) with already existing finger vein
attack databases, the same experiments for threat evaluation are applied on
the databases described in sections 5.2.1 and 5.2.2. While the PLUS-FV data
sets are evaluated with the full protocol, the two additional databases are
evaluated using the slimmer FVC protocol. The reason for this is to reduce
calculation time for the recognition experiments since the SCUT database is
relatively large. The CNN training and evaluation for these databases is done
using a 2-fold cross validation. Since such learning is non deterministic, the
feature vectors from different splits can not be compared and must be eval-
uated separately. Thus, the reported EERs and IAPMRs are the arithmetic
mean of both folds.

VERA The threat analysis results for the VERA database are reported in
table 6.5. It can be observed that for the ROI samples, the EERs are mostly
higher by a significant amount for the vein pattern based approaches. This
can be interpreted as that the contour of the finger plays an important role
for recognition.

EER & IAMPR for VERA database [%]

MC PC GF IUWT RLT WLD ASAVE DTFPM SIFT SURF LBP CNN
Full

EER 2.66 2.73 6.83 4.95 30.00 6.03 9.11 10.45 4.54 11.39 7.38 6.35
IAPMR 93.18 90.45 85.76 93.18 41.67 93.48 72.58 26.21 14.24 0.91 26.82 17.57

ROI
EER 17.72 20.91 24.55 13.30 27.19 13.18 19.10 6.69 5.43 11.62 6.91 10.18

IAPMR 53.79 49.24 53.94 64.24 38.64 63.48 68.79 81.97 44.55 14.24 73.33 8.63

Table 6.5: Threat evaluation VERA database.

While these kind of algorithms show similar results as for the PLUS
database by having IAPMRs over 90%, keypoint- and texture-based ap-
proaches appear no longer to be unaffected by the attacks. The only recog-
nition algorithms that does not get fooled by these attacks appears to be
the SURF based approach when using the full version of the attack samples.
Another interesting observation is that the EER for the RLT recognition
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scheme is as high as 30%. Since in an publication [4] by authors from the
same research institute that created the VERA set, RLT was reported with
EERs from 11-19%, the results can still be considered sensible.

SCUT-SFVD The threat analysis results for the SCUT database are re-
ported in table 6.5. Similarly to the VERA database, ROI versions of the
samples yield increased EERs for the vein pattern based schemes which in-
dicates that here the contour of the finger is a considerable factor as well.
Altogether the evaluation for the VERA and the SCUT datasets is, with few
exceptions, analogous.

EER & IAMPR for SCUT database [%]

MC PC GF IUWT RLT WLD ASAVE DTFPM SIFT SURF LBP CNN
Full

EER 4.01 4.79 9.40 6.29 14.01 7.60 11.56 8.90 2.37 5.49 8.78 0.74
IAPMR 86.33 84.67 54.90 74.06 40.36 74.21 74.98 73.75 30.43 4.18 45.43 69.80

ROI
EER 22.59 23.41 25.05 11.87 2.94 16.96 6.03 5.63 1.92 9.41 3.51 0.83

IAPMR 27.14 26.08 23.96 16.51 9.46 18.83 59.88 55.08 34.93 7.42 55.36 55.59

Table 6.6: Threat evaluation SCUT database.

When comparing the creation processes for the attack samples from dif-
ferent datasets, it is important to highlight that by reprinting already cap-
tured vein images, important parts of the finger texture get preserved, while
by using an already binarized vein image (i.e. veins extracted using PC),
parts from the actual finger are not modelled sufficiently and are therefore
apparently not able to deceive texture or keypoint based methods.

6.2.3 Hand Vein
To evaluate the attacks for the hand vein data set, similar experiments as
for the finger vein data are conducted. Since exactly one video sequence is
available for each setting, 10 linearly spaced frames throughout the video are
used as different sessions. Doing so however is somewhat biased in terms of
reducing the intra-class variability. Application of the two scenario protocol,
as can be exemplary seen in figure 6.3, does often not yield satisfying results.
Here, the genuine and impostor scores are perfectly separated such that a
whole range of decision thresholds (for the example in the figure that uses
maximum curvature feature extraction somewhere in the interval between
0.11 and 0.18) would be eligible options. The dash-dotted lines represent the
two extreme cases for the decision threshold where the equal error rate is
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still zero, i.e. perfect separation of genuine and zero effort impostor scores.
One can now see that, depending on the decision threshold, the IAPMR
varies from 0.00% to 93.15%. As mentioned, it can not be cancelled out that
this perfect separation is solely due to only having one video sequence for
each setting. To avoid this problem, the threat evaluation for the hand vein
samples is reported using two IAPMR values that correspond to the the two
extreme cases as given in table 6.7 for reflected light and transillumination
respectively.
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Figure 6.3: Exemplary visualization of the two scenario protocol evaluation
applied on hand vein data. Maximum Curvature was used on attacks shown
on a smartphone display with added translational movement. The attacks
descend from data captured in reflected light illumination.

The rows with the arrow pointing right therefore contains IAPMR values
for the last decision threshold before a the false non match rate would in-
crease and the rows with the arrow pointing left contains IAPMR values for
the last decision threshold before the false match rate would increase. For
cases where the EER is not 0.00% the IAPMR values are the same since the
upper and lower threshold coincide. For most feature extraction and compar-
ison schemes, a disparity in IAPMR between the paper and the smartphone
display attacks can be observed. The display attack samples tend to pose
more threat to the algorithms than the paper attacks. A look at one sample
from each attack type descending from the same subject, as shown in figure
6.4, reveals the differences in brightness between the modes. The reason why
moving and zooming attacks are also included in the experiments that use
only still images is to test whether subtle transformations between the used
frames would make any difference. The experiments show however that in
most cases the variance in IAPMR for the two paper attacks and the three
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display attacks is reasonably small such that it can be concluded that it does
not make much of a difference what motion type to use for threat evaluation.
It can be further observed that while MC has an overall high potential to get
tricked by those attacks, other binary vessel methods such as PC, RLT and
WLD have rather diverse amount of vulnerability depending on the type of
attack used. DTFPM, although tailored for finger vein data, appears to be
overall pretty vulnerable as well. The two general purpose keypoint schemes
SIFT and SURF as well as LBP seem to be overall very unimpressed by the
attack samples. The CNN method was not used for hand vein samples

EER and IAPMRs Reflected Light [%]

MC PC GF IUWT RLT WLD ASAVE DTFPM SIFT SURF LBP
EER 0.00 0.00 0.10 0.00 3.25 0.00 0.00 0.00 0.00 0.18 0.00

Attacks
Paper
Still

→ 0.00 0.00 2.66 0.00 0.00 13.50 0.00 0.00 0.00 0.00 0.00
← 92.80 0.00 2.66 0.07 0.00 13.50 17.90 8.18 0.00 0.00 0.00

Paper
Moving

→ 0.00 0.00 2.52 0.00 0.00 10.56 0.00 0.00 0.00 0.00 0.00
← 91.96 0.00 2.52 0.63 0.00 10.56 19.65 23.43 0.00 0.00 0.00

Display
Still

→ 0.00 8.46 12.24 2.45 64.83 0.00 0.00 0.00 0.07 3.08 0.00
← 94.97 67.90 12.24 30.07 64.83 0.00 13.15 54.62 3.57 3.08 0.00

Display
Moving

→ 0.00 7.97 12.38 2.59 65.38 0.00 0.00 0.00 0.00 2.45 0.00
← 93.15 71.33 12.38 37.34 65.38 0.00 19.86 64.13 3.43 2.45 0.00

Display
Zoom

→ 0.49 9.58 11.96 2.73 59.16 0.00 0.00 0.00 0.00 2.38 0.00
← 95.31 73.43 11.96 36.92 59.16 0.00 12.66 58.39 3.36 2.38 0.00

EER and IAPMRs Transillumination [%]

MC PC GF IUWT RLT WLD ASAVE DTFPM SIFT SURF LBP
EER 0.00 0.00 0.00 0.00 2.66 0.00 0.00 0.00 0.00 0.00 0.00

Attacks
Paper
Still

→ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
← 94.90 5.03 0.28 6.01 0.00 11.75 38.95 85.52 0.35 0.00 6.78

Paper
Moving

→ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
← 92.38 4.97 0.42 5.87 0.00 10.77 32.94 79.86 0.00 0.00 3.85

Display
Still

→ 1.40 0.49 24.20 0.56 8.46 10.77 0.00 0.00 0.00 0.00 0.00
← 99.65 33.15 32.87 42.24 8.46 61.82 2.17 96.22 3.64 0.00 0.00

Display
Moving

→ 0.63 0.28 23.01 1.19 7.13 10.84 0.00 0.00 0.00 0.00 0.00
← 98.95 34.83 29.93 40.70 7.13 54.69 5.66 95.03 3.43 0.00 0.00

Display
Zoom

→ 0.14 0.21 22.87 0.21 9.02 10.56 0.00 0.00 0.00 0.00 0.00
← 99.65 33.22 31.47 43.29 9.02 57.55 2.87 96.50 3.43 0.00 0.00

Table 6.7: Results of the threat analysis for the hand vein attacks.
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Figure 6.4: Example attack frames. Top row: Reflected light. Bottom Row:
Transillumination. Columns from left to right: Paper Still, Paper Moving,
Display Still, Display Moving, Display Zooming.

6.3 Attack Detection using Video Sequences
The experiments within this section test the functionality of the attack de-
tection methods described in chapter 3 on the video databases introduced
in section 5.1. Therefore, this section aims to give an answer to RQ3. The
ISO/IEC 30107-3:2017 [2] defines metrics for presentation attack detection
such as Attack Presentation Classification Error Rate (APCER) and Bona
Fide Presentation Classification Error Rate (BPCER):

– Attack Presentation Classification Error Rate (APCER): Proportion
of attack presentations incorrectly classified as bona fide presentations
in a specific scenario

– Bona Fide Presentation Classification Error Rate (BPCER): Propor-
tion of bona fide presentations incorrectly classified as presentation
attacks in a specific scenario

Note that both error rates are functions parameterized by a the decision
threshold. Results for the attack detection within this section are reported as
the Detection Equal Error Rate (D-EER), that is, similar to the normal EER,
the point where APCER = BPCER. It is worth noting that especially for the
hand vein data, where only limited samples are available, both classification
error rates do not necessarily overlap. Hence, the reported error rate is
the interpolated intersection of APCER and BPCER as can be seen in the
zoomed subplot in figure 6.5 where the greenish square demonstrates the
D-EER.
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Figure 6.5: Calculation of D-EER from APCER and BPCER.

Additionally results are shown using receiver operating characteristic (ROC)
curves. In general, ROC curves plot the false accept rate (which is the equiv-
alent of the APCER) on the x axis and the true positive rate (which is the
equivalent of 1-BPCER) on the y axis. In the plots in figures 6.7, 6.8, 6.9 and
6.10, the dashed orange line indicates the D-EER. The plots always show the
whole diagram in the smaller window in the right corner to give depict the
overall trend and a zoomed version in the bigger window. The zoom always
shows the upper left corner of the whole diagram.

With the exception of the EVM approach, a Support Vector Machine is
employed as the final classification step. While the authors in Bok et al.
[11] proposed using a radial basis function kernel, for the experiments in this
thesis only linear kernels are used. The time series signals used for the PPG
methods have zero mean, i.e. the average value was subtracted from every
data point per time series.

For the Bok et al. approach, the corresponding authors captured finger
vein videos of variable length with a frame rate of 30 frames per second
(FPS). They then split the sequences into smaller parts of length 150 frames
with an overlap of 100 frames. Consequently the same is done for the hand
vein videos used in this thesis. For the case of remaining frames at the end
of a video, which do not fit into another video split, they are simply ignored.
The finger vein videos in this work are used as is since they already consist
of 150 frames, although only at a rate of 15 FPS.

The authors that initially used EVM for finger vein attack detection [62]
captured video sequences over a duration of 1.67 seconds at a rate of 15 FPS,
resulting in 25 frames for each video. Because the finger vein videos used in
this thesis are 10 seconds long at frame rate of 15 FPS, they were split into
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six smaller video sequences with 25 frames each. A similar procedure was
undertaken for the hand vein videos which are of variable length. To preserve
the length of 1.67 seconds for each video piece, the initial videos were cut
into frame chunks consisting of 50 frames, since the hand vein videos have a
frame rate of 30 FPS.

EVM settings in this thesis are adopted from [24] for all experiments.
The threshold for the final classification of the motion magnitudes is chosen
such that more motion (i.e. a higher motion magnitude) would indicate
bona fide video samples. However, one can see for example in figure 6.7
that sometimes the classification is inverted. This implies that bona fide and
attack samples could be separated but the bona fide hands are the ones with
the smaller motion. Thus the numbers in brackets in the following tables
show the complementary error rate for values that are above 60%.

6.3.1 Finger Vein
The results for the attack detection experiments using finger vein videos are
reported in table 6.8. Comparing the two vein thicknesses on the attack
samples, it can be concluded that this difference does not have much of an
effect for the attack detection using video sequences.

D-EER Attack Detection Finger Vein [%]

Eulerian
Video

Magnification

PPG
Bok et al.

PPG
Schuiki &
Uhl 1

PPG
Schuiki &
Uhl 2

LE
D

Thick Still 3.57 4.49 3.74 0.52
Thick Trembling 58.51 9.62 11.75 7.05
Thin Still 3.31 1.85 6.60 0.43
Thin Trembling 62.92 (37.08) 23.38 23.38 10.90

La
se
r Thick Still 6.52 12.12 1.05 1.94

Thick Trembling 72.78 (27.22) 26.48 16.84 24.62
Thin Still 7.70 4.80 0.58 0.51
Thin Trembling 73.48 (26.52) 24.97 29.85 22.42

Table 6.8: Results attack detection experiments using finger vein videos.
Values in brackets for the EVM approach indicate the complementary error
rate that would apply if one would assign the label attack sample to higher
motion magnitudes instead of bona fide.

The approaches from sections 3.3 and 3.4 (denoted in the table as PPG
Schuiki & Uhl 1 and 2 ) were initially developed for the hand vein video data
set. Consequently, slightly modified parameters are used for the analysis
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of the time series descending from finger vein videos. The window size for
both methods is set to 50. Because the maximum frequency obtainable with
15 FPS is 7.5 Hertz, as given by Shannon’s theorem fmax ≤ fsample

2 , three
harmonics are considered for the method 2.

While the EVM approach seems to work against attacks with no addi-
tional movement applied with D-EERs in the range of 3-8%, the video se-
quences with applied movement (Trembling) seem to cause difficulties with
error rates up to 58% which is close to guessing. Interestingly a jump in
error rates can be observed for the PPG method Schuiki 2 when compar-
ing moved LED and Laser video sequences. Another interesting observation
can be made when averaging the frequency spectra from every time series as
seen in figure 6.6. Peaks at certain frequencies that seem to be inherent to
the illumination source used appear in every video sequence regardless of its
content (i.e. real or fake finger). A possible explanation could be that this is
some kind of aliasing from the control of the respective illumination source
like pulse width modulation. Summarized it can be said that sound attack
detection could be achieved for the videos without extra motion with all four
methods. However, for the case of videos with trembling effects, the overall
best achieved D-EER is 7.05% which indicates that these attacks are harder
to detect.
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Figure 6.6: Averaged frequency spectra of time series generated finger vein
video sequences. Only thick attack vein patterns are used in the plots since
figures for thin vein pattern are quite similar.

Figures 6.7 and 6.8 contain ROC curves for all finger vein experiments.
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Figure 6.7: Finger vein attack detec-
tion ROC plots LED.
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Figure 6.8: Finger vein attack detec-
tion ROC plots Laser.
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6.3.2 Hand Vein
As mentioned earlier in this section, for the EVM approach and the PPG
method from Bok et al., the hand vein videos were split into smaller pieces.
Previous to splitting, due to various step and peak artefacts at the beginning
of generated time series, the first three seconds from each video are ignored for
all attack detection methods similar to the experiments in [24]. The settings
for the Schuiki 1 & 2 approach are adopted from [68], meaning that a window
size of 150 frames is used per video and five harmonics are considered for the
method 2. The results for the attack detection experiments using hand vein
videos are reported in table 6.9.

D-EER Attack Detection Hand Vein [%]

Eulerian
Video

Magnification

PPG
Bok et al.

PPG
Schuiki &
Uhl 1

PPG
Schuiki &
Uhl 2

R
efl

.
Li
gh

t Paper Still 60.94 (39.06) 9.75 23.08 7.69
Paper Moving 87.10 (12.90) 1.46 0.00 0.00
Display Still 8.06 16.81 11.54 3.85
Display Moving 41.02 7.63 3.85 7.69
Display Zooming 53.08 0.37 0.00 0.00

Tr
an

sil
l.

Paper Still 65.44 (34.56) 15.66 15.38 3.85
Paper Moving 86.81 (13.19) 0.00 19.23 0.00
Display Still 22.01 31.54 0.00 0.00
Display Moving 74.18 (25.82) 19.26 0.00 3.85
Display Zooming 73.63 (26.37) 7.60 0.00 0.00

Table 6.9: Results attack detection experiments using finger vein videos.
Values in brackets for the EVM approach indicate the complementary error
rate.

The results from the EVM approach suggest that this method is not per-
fectly suited for attack detection of the hand vein dataset with only one error
rate being below 10% (8.06% Reflected Light Display Still). The Bok et al.
approach seem to work better on moving and zooming attacks as compared
to the still attacks. Since for the Schuiki 1 & 2 approaches exactly 26 bona
fide and 26 attack sequences are available one should consider that 3.85%
error rate corresponds to one misclassification 1

26 = 3.85% in both classes.
While method 1 (windowed majority voting) sometimes yields perfect sepa-
ration and sometimes has error rates at around 20%, method 2 (windowed
analysis of harmonics) seems to be overall fairly robust.

Figures 6.9 and 6.10 contain ROC curves for the hand vein experiments.
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Figure 6.9: Hand vein attack detec-
tion ROC plots reflected light.
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Figure 6.10: Hand vein attack detec-
tion ROC plots transillumination.
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7 Summary

The research objective of the present master thesis was to to investigate the
distinguishability of videos containing real and fake vein patterns the hand
region by using methods that extract information from consecutive video
frames to classify a given video. Experimental results should be obtained by
using one finger vein and one hand vein video data set captured by the the
Multimedia Signal Processing and Security Lab at the University of Salzburg.
This task was further divided into smaller consecutive steps:

In total, four methods were found to be suitable candidates for the at-
tack detection experiments including two methods that were developed in
the course of this thesis. One method aims to amplify tiny motions which
are often too small to be seen with the naked eye. Employing such an arti-
ficial microscope, in theory, appears especially useful when looking for small
motion artefacts in the hand region that was created by the human blood
flow. The three other methods build upon a common preprocessing step. A
time series is built by averaging the brightness value from every pixel in a
frame. After doing so, the generated time series is then transformed into fre-
quency space using Fourier transform. Essentially the three methods differ
in the approach how a final feature vector is created from the frequency space.

Prior to conducting experiments on the performance of the attack detec-
tion methods on the two video data sets, it was essential to evaluate whether
the attack samples would actually be able to deceive a real recognition sys-
tem. To do so, twelve state of the art vein recognition methodologies that
can be categorized into three categories of algorithms were tested on their
vulnerability to those attacks. The recognition algorithms include texture
based ones, keypoint based ones and ones that try to segment vessel struc-
tures to create a binary image containing only the vein networks. To evaluate
the threat of a given attack set, first a suitable decision threshold is found
that would work well when only considering captures from real fingers. As a
second step, the ratio of wrongly accepted attack samples is calculated using
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the decision threshold from the first step, thus denoted two scenario proto-
col. Additionally, the same threat analysis was undertaken for two already
existing finger vein datasets in order to be able to make a comparison. It can
be concluded that the two data sets under test in this thesis pose a threat to
at least some degree, however mainly to the algorithms that create binarized
vessel structures as a feature image.

Finally, the four attack detection methods were applied on the two video
datasets. Experimental results for the finger vein data suggest that the attack
sequences where additional motion was applied to the attack instruments are
more challenging than the unmoved ones. For the dorsal hand vein data, no
such clear trend regarding type of attack can be identified. The method that
uses harmonic analysis seems to achieve sound hand vein attack detection
overall, considering that 7.69% corresponds to a misclassification of 4 video
sequences out of 52 for this method. Although in any case one of the methods
that were developed in the course of this thesis appears to outperform the
other two methods under test, the achieved results demand further research
in this area.
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