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Abstract
The act of presenting a forged biometric sample to a
biometric capturing device is referred to as presen-
tation attack. During the last decade this type of at-
tack has been addressed for various biometric traits
and is still a widely researched topic. This study
follows the idea from a previously published work
which employs the usage of twelve algorithms for
finger vein recognition in order to perform an ex-
tensive vulnerability analysis on a presentation at-
tack database. The present work adopts this idea
and examines two already existing finger vein pre-
sentation attack databases with the goal to evaluate
how hazardous these presentation attacks are from
a wider perspective. Additionally, this study shows
that by combining the matching scores from differ-
ent algorithms, presentation attack detection can be
achieved.
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1 Introduction
The human body provides various features that have
been found to be well suited for the task of distin-
guishing persons, i.e. have a high inter class vari-
ability. In the field of biometrics such features are
known as biometric traits and include physiological
as well as behavioural characteristics. Popular ex-
amples of such traits are fingerprints, properties of
voice recordings, keystroke dynamics, facial images
or vascular pattern. This research focuses on vascu-
lar pattern in the human finger. Finger vein struc-
tures are captured using special hardware that oper-
ates on the near infrared wavelength spectrum. That
is due to the observation that the oxygen saturated
hemoglobin in the blood has a relatively high mo-
lar extinction coefficient for this particular part of the
wavelength spectrum. The veins in the finger there-
fore absorb the light, resulting in dark lines in the
acquired image. Although the need for special hard-
ware adds an extra layer of security, researchers in
this area [1], [2] shed light on the fact that finger
vein recognition systems can potentially be fooled
with forged samples. Maliciously forged samples
that are intended to interfere with the operation of
the biometric system are known as presentation at-
tacks. Such presentation attacks can be created as
easy as printing previously captured finger vein im-
ages on a piece of blank white paper [2].

Countermeasures for such attacks are referred to
as presentation attack detection (PAD). Presentation
attack detection methods in general operate either
on single images (the interested reader is referred
to table 14.1 in [3] which provides a comprehensive
overview including hand crafted methods that em-
ploy image quality, generic texture and spatial fre-
quency components as well as convolutional neural
network based methods), on consecutive images (i.e.
video sequences ) [4] or utilize more than one bio-
metric trait, therefore increasing the effort to deceive
every single biometric capturing device [5].

In order to evaluate the effectiveness of such PAD
algorithms, either private data sets or publicly avail-
able databases are used. Currently, three finger vein
presentation attack databases are available for the
research community: The Idiap Research Institute
VERA Fingervein Database (IDIAP VERA) [6], the
South China University of Technology Finger Vein
Database (SCUT-SFVD) [7] and the Paris Lodron
University of Salzburg Finger Vein Spoofing Data Set
(PLUSVein-Spoof) [8].

For the sake of demonstrating the actual level of
threat emitted from created presentation attack data
sets, a common threat evaluation methodology is

what is known as ”2 scenario protocol” which is
described in section 3.1. Most authors that utilize
this protocol use Maximum Curvature [9] finger vein
template generation together with cross correlation
template comparison. For the IDIAP VERA set, one
recent publication [10] tests Wide Line Detector [11]
and Repeated Line Tracking [12] as template gener-
ation algorithms in addition to the aforementioned
Maximum Curvature. In case of the SCUT-SFVD,
a publication [13] reports a pass rate that is de-
fined as successful attacks divided by the total at-
tacks using a recognition method that is not fur-
ther described. The publication that introduced the
PLUSVein-Spoof database [8] contains a vulnerabil-
ity analysis that employs twelve different finger vein
recognition schemes in order to evaluate how haz-
ardous the presentation attacks are from a broader
perspective.
This research aims to re-evaluate the threat emit-
ted by SCUT-SFVD & IDIAP VERA by consider-
ing a greater pool of feature extraction and match-
ing schemes, such as in [8]. Additionally, experi-
ments are carried out whether score level fusion from
various matching schemes could be used as PAD.
Therefore the remainder of this paper is structured
as follows: Section 2 presents a description of the
databases used in the later sections. In section 3,
the scheme for a comprehensive vulnerability analy-
sis is adopted from [8] and performed on the IDIAP
VERA and SCUT-SFVD databases. In section 4 var-
ious combinations of the similarity scores from the
matching schemes in section 3 are evaluated for their
applicability as PAD method. Section 5 reports the
conclusion of this research.

2 Databases
This section describes the finger vein presentation at-
tack databases used in the later parts of this research:

A) The Idiap Research Institute VERA Fingervein
Database (IDIAP VERA): The IDIAP VERA fin-
ger vein database consists of 440 bona fide im-
ages that correspond to 2 acquisition sessions
of left and right hand index fingers of 110 sub-
jects. Therefore considered as 220 unique fin-
gers captured 2 times each. Every sample has
one presentation attack counterpart. Presenta-
tion attacks are generated by printing prepro-
cessed samples on high quality paper using a
laser printer and enhancing vein contours with
a black whiteboard marker afterwards. Every
sample is provided in two modes named full
and cropped. While the full set is comprised of
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the raw images captured with size 250x665, the
cropped images were generated by removing a
50pixel margin from the border, resulting in im-
ages of size 150x565.

B) South China University of Technology Spoofing
Finger Vein Database (SCUT-SFVD): The SCUT-
SFVD database was collected from 6 fingers (i.e.
index, middle and ring finger of both hands) of
100 persons captured in 6 acquisition sessions,
making a total of 3600 bona fide samples. For
presentation attack generation, each finger vein
image is printed on two overhead projector films
which are aligned and stacked. In order to re-
duce overexposure, additionally a strong white
paper (200g/m2) is put in-between the two over-
head projector films. Similar to the IDIAP VERA
database, the SCUT-SFVD is provided in two
modes named full and roi. While in the full set
every image sample has a resolution of 640x288
pixel, the samples from the roi set are of variable
size. Since the LBP and the ASAVE matching al-
gorithm can not be evaluated on variable sized
image samples, a third set was generated for this
study named roi-resized where all roi samples
have been resized to 474x156 which corresponds
to the median of all heights and widths from the
roi set as can be seen in figure 1.

100 150 200 250 300 350 400 450 500

Pixel

Height

Width

Width and Height of SCUT-SFVD ROI Samples

Figure 1: The image resolutions of the SCUT-SFVD
roi samples vary, therefore all roi samples have been
resized to the median resolution.

C) Paris Lodron University of Salzburg Finger
Vein Spoofing Data Set (PLUSVein-Spoof): The
PLUSVein-Spoof database uses a subset of
the PLUSVein-FV3 [14] database as bona fide
samples. For the collection of presentation
attack artefacts, binarized vein images from
6 fingers (i.e. index, middle and ring finger
of both hands) of 22 subjects were printed on
paper and sandwiched into a top and bottom
made of beeswax. The binarization was ac-
complished by applying Principal Curvature
[15] feature extraction in two different lev-
els of vessel thickness, named thick and thin.
The original database was captured with two
types of light sources, namely LED and Laser.
Therefore, presentation attacks were created for

both illumination variants. While the original
database was captured in 5 sessions per finger,
only three of those were reused for presentation
attack generation. Summarized, a total of 396
(22*6*3) presentation attacks per light source
(LED & Laser) and vein thickness (thick & thin)
with corresponding to 660 (22*6*5) bona fide
samples are available. Every sample is of size
192x736.

3 Threat analysis
This work follows the idea from a previous publi-
cation [8] in which a new finger vein presentation
attack database (database C from section 2) is ex-
amined for the actual level of threat which its pre-
sentation attacks emit to a variety of recognition al-
gorithms. In order to do so, an evaluation proto-
col which is described in section 3.1 is used. The
goal from the experiments in this section is to trans-
fer this threat analysis and apply it on two addi-
tional publicly available finger vein presentation at-
tack databases (databases A and B from section 2).
In total, this study includes twelve different finger
vein recognition schemes that can be categorized into
three classes of algorithms, based on the type of fea-
ture they extract from acquired finger vein samples:

• Binarized vessel images: Seven feature extraction
schemes are used which finally store a binary
image of the extracted vessel structures as fea-
ture. The overall goal for these kind of fea-
ture extractors therefore is the separation of vein
structures from the remaining parts of the finger
as well as from the background. Maximum Cur-
vature (MC) [9] and Repeated Line Tracking (RLT)
[12] try to achieve this by looking at the cross
sectional profile of the finger vein image. Other
methods such as Wide Line Detector (WLD) [11],
Gabor Filter (GF) [16] and Isotropic Undecimated
Wavelet Transform (IUWT) [17] also consider lo-
cal neighbourhood regions by using filter con-
volution. A slightly different approach is given
by Principal Curvature (PC) [15] which first com-
putes the normalized gradient field and then
looks at the eigenvalues of the hessian matrix
at each pixel. All so far described binary image
extraction methods use a correlation measure to
compare probe and template samples which is
often referred to as Miura-matching due to its in-
troduction in Miura et al. [12]. One more sophis-
ticated vein pattern based feature extraction and
matching strategy is Anatomy Structure Analysis-
Based Vein Extraction (ASAVE) [18], which in-
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cludes two different techniques for binary vessel
structure extraction as well as a custom match-
ing strategy.

• Keypoints: The term keypoint refers to an inter-
esting point in an image, where the term interest-
ing strongly depends on the given application.
This research uses three keypoint based feature
extraction and matching schemes. One such
keypoint detection method, known as Defor-
mation Tolerant Feature Point Matching (DTFPM)
[19], was especially tailored for the task of fin-
ger vein recognition. This is achieved by con-
sidering shapes that are common in finger vein
structures. Additionally, modified versions gen-
eral purpose keypoint detection and matching
schemes, SIFT and SURF, as described in [20]
are tested in this research. The modification in-
cludes filtering such that only keypoints inside
the finger are used while keypoints at the fin-
ger contours or even in the background are dis-
carded.

• Texture information: This study includes two
methods that can be counted to texture-based
approaches. One being a Local Binary Pattern
[21] descriptor that uses histogram intersection
as a similarity metric. The second method is
a convolutional neural network (CNN) based ap-
proach that uses triplet loss as presented in [22].
Similarity scores for the CNN approach are ob-
tained by computing the inverse Euclidean dis-
tance given two feature vectors corresponding to
two finger vein samples.

3.1 Evaluation protocol
In order to evaluate the threat emitted by the
databases under question, a scheme that is known as
”2 scenario protocol”, which was also used for threat
analysis in [8], is adopted for this research. The two
scenarios are briefly summarized hereafter:

• Licit Scenario (Normal Mode): The first sce-
nario employs two types of users: Genuine
(positives) and zero effort impostors (negatives).
Therefore, both enrollment and verification is
accomplished using bona fide finger vein sam-
ples. Through varying the decision thresh-
old, the False Match Rate (FMR, i.e. the ratio
of wrongly accepted impostor attempts to the
number of total impostor attempts) and the False
Non Match Rate (FNMR, i.e. the ratio of wrongly
denied genuine attempts to the total number

of genuine verification attempts) can be deter-
mined. The normal mode can be understood as
a matching experiment which has the goal to de-
termine an operating point for the second sce-
nario. The operating point is set at the threshold
value where the FMR = FNMR (i.e. Equal Error
Rate).

• Spoof Scenario (Attack Mode): The second
scenario uses genuine (positives) and presen-
tation attack (negatives) users. Similar to the
first scenario, enrollment is accomplished using
bona fide samples. Verification attempts are per-
formed by matching presentation attack sam-
ples against their corresponding genuine enroll-
ment samples or templates. Given the thresh-
old from the licit scenario, the proportion of
wrongly accepted presentation attacks is then
reported as the Impostor Attack Presentation
Match Rate (IAPMR), as defined by the ISO/IEC
30107-3:2017 [23].

3.2 Experimental results
Table 1 contains the outcomes from the evaluation
protocol described in section 3.1 for every match-
ing algorithm described earlier in section 3. Hor-
izontal lines indicate a change of algorithm cate-
gory. The first seven rows correspond to feature ex-
traction schemes that extract a binary vessel image
as feature, the intermediate three algorithms repre-
sent keypoint based schemes and the last two are
generic texture based methods. Similar to the ref-
erence paper [8], all feature extraction schemes ex-
cept for the CNN based matching scheme are evalu-
ated using the PLUS OpenVein Toolkit [24]. Matching
is achieved using the ’FVC’ matching mode which
performs all possible genuine comparisons but only
compares one sample of each subject to the one sam-
ple of all the remaining subjects as impostor compar-
isons. While the number of impostor comparisons is
therefore drastically reduced, it is still ensured that
every subject is matched against every other subject
at least once. Symmetric comparisons are omitted in
both cases. This toolkit also provides the option to set
hyper parameters for the feature extraction and the
matching process. These settings have been adopted
from the reference paper as well. Since a related pub-
lication [10], by authors from the same research insti-
tute that published the IDIAP VERA database, also
reported EER and IAPMR values for MC (1-2% EER,
77-89% IAPMR), RLT (11-19% EER, 32-38% IAPMR)
and WLD (3-7% EER, 70-80% IAPMR) using varying
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Method

IDIAP VERA SCUT-SFVD
Full Cropped Full ROI ROI Resized

EER IAPMR EER IAPMR EER IAPMR EER IAPMR EER IAPMR
MC 2.66 93.18 17.72 53.79 4.01 86.33 25.43 26.21 22.59 27.14
PC 2.73 90.45 20.91 49.24 4.79 84.67 25.86 25.73 23.41 26.08

WLD 6.03 93.48 13.18 63.48 7.60 74.21 21.18 21.34 16.96 18.83
RLT 30.00 41.67 27.19 38.64 14.01 40.36 5.34 14.07 2.94 9.46
GF 6.83 85.76 24.55 53.94 9.40 54.90 27.70 24.33 25.05 23.96

IUWT 4.95 93.18 13.30 64.24 6.29 74.06 17.70 20.69 11.87 16.51
ASAVE 9.11 72.58 19.10 68.79 11.56 74.98 – – 6.03 59.88
DTFPM 10.45 26.21 6.69 81.97 8.90 73.75 5.20 52.31 5.63 55.08
SURF 11.39 0.91 11.62 14.24 5.49 4.18 9.69 6.27 9.41 7.42
SIFT 4.54 14.24 5.43 44.55 2.37 30.43 1.75 32.72 1.92 34.93
LBP 7.38 26.82 6.91 73.33 8.78 45.43 – – 3.51 55.36
CNN 6.35 17.57 10.18 8.63 0.74 69.8 – – 0.83 55.69

Table 1: Equal Error Rates (EER) and Impostor Attack Presentation Match Rates (IAPMR) evaluated for
IDIAP VERA and SCUT-SFVD databases using twelve matching schemes. Note that for the CNN approach,
the samples are being resized to a custom size anyway, therefore only values for ROI Resized are reported
for SCUT-SFVD.

matching protocols, one can verify that the used hy-
per parameters can be considered satisfactory. Un-
fortunately, for the SCUT-SFVD no such results for
the methods used in this research have been reported
so far that could be used as a reference. The CNN
based approach was implemented in python. Due to
the fact that this is a learning based approach, 2-fold-
cross validation is applied for the results seen in table
1. Since such learning is non deterministic, the fea-
ture vectors from different folds must be evaluated
separately meaning that EER and IAPMR reported
are the arithmetic mean of both splits.

Binary vessel pattern based matching schemes
reach IAPMRs as high as 93.18% for the case of
the IDIAP VERA and 86.33% for the SCUT-SFVD
database, which signalizes that in the worst case sce-
nario 9 out of 10 presentation attacks would be a
treated as a bona fide sample. When dealing with
non-cropped versions of the databases, meaning that
background is also visible on the finger vein images,
one can often observe a lower EER as compared to
the cropped or ROI versions. This indicates that the
contour of the finger plays a significant role in recog-
nition.

For the database that was introduced in the ref-
erence work, little to no susceptibility at all was re-
ported when using keypoint based or generic tex-
ture based matching schemes. In this study how-
ever, the IAPMRs for the keypoint and texture based
algorithms are very in-homogeneous, ranging from
0.91% (IDIAP VERA full, SURF) up to 81.97% (IDIAP

VERA cropped, DTFPM). Interestingly, even though
one would expect SIFT and SURF to achieve very
similar results, a discrepancy can be observed. While
SIFT in general obtains a lower EER, SURF occurs
to be less prone to presentation attacks. There-
fore it can be concluded that both the IDIAP VERA
and the SCUT-SFVD presentation attacks samples in
many cases pose a threat to the evaluated matching
schemes, however future considerations should not
disregard the fact that exceptions such as RLT (9.46%
IAPMR on SCUT-SFVD ROI Resized) or SURF (con-
sistently low IAPMRs) also exist.

4 PAD using score level fusion
With the observation from the previous section
that different matching schemes vary in their be-
haviour when confronted with presentation attacks,
the question arises whether one could combine mul-
tiple matching methods to achieve presentation at-
tack detection. Therefore this section describes vari-
ous experiments in order to do so. Combining simi-
larity scores from multiple matching schemes is gen-
erally referred to as score level fusion. In total, five
techniques for the fusion of similarity scores are eval-
uated in this research. Let the similarity score from
the ith recognition algorithm be denoted asSi, where
i is in the range from 1 to the number of considered
matching algorithms N . Using simple fusion meth-
ods described below, a resulting fusion score f is ob-
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Figure 2: Cross combination of every normalization technique and every fusion method for at least one
mode of every presentation attack database used in this work. Note that every histogram incorporates 4095
detection error rates corresponding to 4095 possible method constellations possible with 12 matching meth-
ods.

tained. With every comparison attempt now being
described as a combined matching score f , the bio-
metric probe sample can then be classified as either
bona fide or presentation attack sample using sim-
ple thresholding. Three fusion methods have been
adopted from [25]:

• Simple Sum-Rule Fusion

f =

N∑
i=1

Si (1)

• Min-Rule Fusion

f = min(S1, ..., SN ) (2)

• Max-Rule Fusion

f = max(S1, ..., SN ) (3)

Another approach follows the idea of forming a
feature vector ~x = (S1, ..., SN ) by concatenation of
similarity scores. Doing so these new feature vec-
tors are then classified using a Support Vector Machine
(SVM) by applying k-fold cross validation. Experi-
ments in section 4.1 provide results for using a linear
kernel as well as radial basis function kernel.

Arguably, similarity scores from different classi-
fiers do not necessarily need to be in the same range.
Therefore, two popular score normalization schemes
[26], tanh-norm and z-norm, are evaluated together
with the option of omitting score normalization (no-
norm). The formula for the calculation of z-norm is

given by

S′ =
S − µ

σ
(4)

and tanh-norm by

S′ = 0.5 ∗
(
tanh

(
0.01 ∗ S − µ

σ

)
+ 1

)
(5)

where σ is the standard deviation and µ is the arith-
metic mean over all the similarity scores obtained
from the same matching algorithm. S′ here denotes
the normalized similarity score S. The z-norm is well
suited for Gaussian distributed data, which is often
the case for similarity scores in biometric systems.

Experimental results are reported in compliance
with the ISO/IEC 30107-3:2017 standard [23], which
defines metrics for presentation attack detection
such as Attack Presentation Classification Error Rate
(APCER) and Bona Fide Presentation Classification
Error Rate (BPCER):

• Attack Presentation Classification Error Rate
(APCER): Proportion of attack presentations in-
correctly classified as bona fide presentations in
a specific scenario

• Bona Fide Presentation Classification Error Rate
(BPCER): Proportion of bona fide presentations
incorrectly classified as presentation attacks in a
specific scenario

The PAD performance is reported in table 2 in
terms of detection equal error rate D-EER (BPCER
= APCER), BPCER20 (BPCER at APCER <= 0.05)
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CNN

IDIAP VERA 1.67 1.36 2.27 svm-lin z-norm X X X X X X Xfull
IDIAP VERA 4.02 4.09 15.91 svm-lin z-norm X X X X X X Xcropped
SCUT-SFVD 0.75 0.24 0.71 svm-rbf z-norm X X X X X X X X X Xfull
SCUT-SFVD 1.09 0.41 1.21 svm-rbf tanh-norm X X X X X X Xroi-resized
PLUS-LED 0.00 0.00 0.00 svm-rbf z-norm X Xthick
PLUS-LED 0.00 0.00 0.00 svm-lin tanh-norm X X Xthin
PLUS-Laser 0.00 0.00 0.00 svm-lin z-norm X Xthick
PLUS-Laser 0.00 0.00 0.00 svm-lin z-norm X X X Xthin

Table 2: Selection of best working method constellations in terms of detection error rate.

and BPCER100 (BPCER at APCER<= 0.01). For this
research, also the database introduced in [8] is in-
cluded in the experiments.

4.1 Experimental results

For this experiment, results are obtained by evalu-
ating exhaustive cross combination of all described
normalization and fusion techniques. The number of
possible recognition-method-constellations per fu-
sion is given by 212−1 = 4095 considering all twelve
matching schemes from section 3. Similarity scores
are split using 10 fold (for IDIAP VERA and SCUT-
SFVD) and 11 fold (for the PLUS) splitting. The folds
that are currently not evaluated are used for calcu-
lation of the µ and σ for z-norm and tanh-norm nor-
malization as well as training set for the SVM ap-
proaches.

The boxplots depicted in figure 2 show the distri-
butions from the D-EERs for all 4095 method con-
stellations over one specific database. Outliers are
omitted in this plot for better visibility of the overall
trend. Also, only one mode was chosen per database
to keep the figure perspicuous. It can be observed
that finding fusion combinations that are suited for
PAD for the PLUS databases is easier compared to
the other two databases since most of the D-EERs are
below 10% and very compact. Another observation
is that the SVM based fusion approaches in general
outperform the simple sum, max and min fusions,
regardless of the normalization technique applied.

A selection of the best working fusion combina-
tions per database is listed in table 2. Especially
for the PLUS sets, sometimes multiple method con-
stellations achieve similar results. Therefore the se-
lection for the one method reported in table 2 also
considered to require as few methods as possible.
Arguably, the results for the IDIAP VERA and the
SCUT-SFVD are not perfect but the overall trend
shows that score level fusion still holds the poten-
tial to be used as PAD in the domain of finger vein
biometrics.

Altogether, the frequent use of keypoint- and
texture-based recognition methods in table 2 sug-
gests that these are the key elements for the simi-
larity score fusion. This observation coincides with
the study from section 3.2 where the IAPMRs from
these recognition algorithms were in-homogeneous
and possibly contain complementary information.

5 Conclusion
Inspired by a previous publication, this research car-
ried out an extensive threat analysis on two publicly
available finger vein presentation attack databases.
The vulnerability analysis consists of twelve fin-
ger vein feature extraction algorithms together with
their corresponding template matching schemes that
can be categorized into three meta types of algo-
rithms based on the type of feature they extract.
Through observation of the results, it can be con-
cluded that both databases under test provide pre-
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sentation attack samples that in most cases indeed
proof hazardous to established matching schemes.

In the second part of this research, the observa-
tion that not all recognition methods perform equally
prone to presentation attacks was used to perform
presentation attack detection by utilizing score level
fusion. Experimental results verify that fusion of
similarity scores from different recognition schemes
is indeed capable of attaining a sound presentation
attack detection.
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