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Abstract

In the scope of Industry 4.0 cyber-physical systems (CPSs) are the core building-blocks enabling
to connect the real world with the virtual, more specifically both worlds conflate to each other.
This requires to collect data of real world objects and processes.

This cumulative thesis deals with biometric identification of objects in two different domains:
(i) Round wood identification in the wood industry: Efficient tracking of roundwood as well as
quality analysis and measurement are key technologies to improve the wood supply chain man-
agement and roundwood processing to fulfil economical, ecological and social requirements. In
this thesis, we show the basic feasibility of roundwood tracking based on digital log end images.
(ii) Fish identification in intensive aquaculture: The movement from mass to smart fish produc-
tion requires to consider each fish as individual instead of viewing at the total stock of fish in a
sea cage or tank. The goal of smart fish farming is based on the principle of eco-intensification,
which means to improve fish welfare in order to increase the overall profit. We show the feasi-
bility of Atlantic salmon identification based on iris imagery as an approach to move towards
precision fish farming.

For both applications, we investigated the distinctiveness and stability of the utilized bio-
metric characteristics (annual ring pattern of roundwood, fish iris pattern). Both are required
properties and moreover quality criteria of a biometric characteristic.

Furthermore, this cumulative thesis treats physical authentication of medical drugs. Contrary
to object identification, the goal is to determine if an object belongs to certain class of objects
which show the same physical properties. Physical object authentication, as considered in this
thesis, is referred to as classification-based authentication. This cumulative thesis proves the
feasibility of classification-based drug authentication based on packaging material properties.

For each of the three different applications covered in this cumulative thesis: (i) data has been
acquired and pre-processed, (ii) feature extraction and comparison or classification methods
have been adopted and developed and (iii) experimental evaluations have been performed.
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Abstract (German)

Im Rahmen von Industrie 4.0 sind sogenannte Cyber-Physische Systeme (CPS) Kernbausteine,
die die reale Welt mit der virtuellen Welt verbinden, genauer gesagt, beide Welten verschmelzen
miteinander. Dies erfordert das Sammeln von Daten von Objekten und von Prozessen der
realen Welt.

Diese kumulative Arbeit befasst sich mit der biometrischen Identifizierung von Objekten in
zwei verschiedenen Anwendungsbereichen: (i) Identifizierung von Rundholz in der Holzin-
dustrie: Effiziente Rückverfolgbarkeit von Rundholz sowie Qualitätsanalyse sind
Schlüsseltechnologien zur Verbesserung des Rohstoffeinsatzes und der Rundholzverarbeitung,
um wirtschaftliche, ökologische und soziale Kriterien zu erfüllen. In dieser Arbeit zeigen wir
die grundlegende Machbarkeit der Rundholzverfolgung anhand digitaler Stammendbilder. (ii)
Identifizierung von Fischen in intensiver Aquakultur: Der Übergang von Massenproduktion
zu einer smarten Fischproduktion erfordert, dass jeder Fisch als Individuum betrachtet wird,
anstatt des Gesamtbestandes an Fischen in einem Behälter zu betrachten. Das Ziel einer intel-
ligenten Fischzucht basiert auf dem Prinzip der Öko-Intensivierung, d.h. der Verbesserung des
Fischwohls, um damit schlussendlich den Gesamtgewinn zu steigern. In dieser Arbeit zeigen
wir die Machbarkeit der Identifizierung von Lachs anhand von Irisbildern.

Für beide Anwendungen wurde die Unterscheidungskraft und Stabilität der verwendeten
biometrischen Merkmale (Jahresringmuster aus Rundholz, Fischirismuster) untersucht und aus-
gwertet. Beides sind Qualitätskriterien eines biometrischen Merkmals.

Darüber hinaus befasst sich diese kumulative Arbeit mit der physischen Authentifizierung
von Arzneimitteln. Im Gegensatz zur Objektidentifikation besteht das Ziel darin zu überprüfen,
ob ein Objekt zu einer bestimmten Klasse von Objekten gehört, die dieselben physikalischen
Eigenschaften aufweisen. Die in dieser Arbeit berücksichtigte physische Objektauthentifizierung
wird als klassifikationsbasierte Authentifizierung bezeichnet. Wir belegen die Machbarkeit
einer klassifizierungsbasierten Arzneimittelauthentifizierung auf der Grundlage der Eigenschaften
des Verpackungsmaterials.

Für jede der drei verschiedenen Anwendungen, die in dieser kumulativen Arbeit behandelt
werden, wurden: (i) Daten erfasst und vorverarbeitet, (ii) Methoden zur Merkmalsextraktion
und Merkmalsvergleich oder zur Merkmalsklassifizierung entwickelt und (iii) experimentelle
Versuche und Auswertungen durchgeführt.
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1. Introduction

In the past decade the interaction of the Internet of Things (IoT) and the Internet of Services (IoS)
triggered the beginning of the 4th industrial revolution. The move from Industry 3.0 to Indus-
try 4.0 is characterized by an increasing digitization. Nowadays, Cyber Physical Systems (CPS)
are the building block of numerous developments in industry and economy that are identified
or supplemented with the attribute ”Smart”. The main paradigm is the connection between
computational and real world physical entities as well as processes, thereby collecting and us-
ing data to move towards intelligent and autonomous systems in order to support or replace
humans. CPSs constitute disruptive technologies requiring to rethink, change or replace well
established processes and technologies in many domains. In a CPS the communication between
physical entities is established by the IoT. A basic requirement for the IoT is that physical ob-
jects can be identified and addressed. In the scope of this thesis, we define a physical object as
a living or non-living real world object, which is non-electric and it is not able to communicate.
The most common technology to enable identification of such objects in the industry is labeling
using Radio Frequency Identification (RFID) technology. Each object is attached with a RFID
transponder providing an unique object identifier. RFID is a low cost and versatile technology
to set up IoT systems. Another approach comes down to identify objects based on their physical
properties. Apparently, this enables physical marking free identification of objects which shows
advantages in terms of counterfeit protection and zero marking efforts.

One obvious and promising approach to establish physical object identification is to transfer
concepts of human biometrics to other fields of applications. This is of interest as identifica-
tion is a basic requirement to move towards Agriculture 4 .0. Research showed that biometric
identification is feasible for a variety of livestock animals (e.g. cattle [1] or sheep [3] identifi-
cation). Identification of livestock individuals enables to move from mass to smart production
without the need of physical marking. Depending on the application and animal this may has
advantages in terms of animal welfare and reduced costs. Moreover, biometric identification is
counterfeit proof compared to some of the physical marking-based approaches. This cumula-
tive thesis deals with physical object identification and authentication. More specifically with
three different applications in this field, which were topics of different research projects dur-
ing my time as PhD student in the research group headed by Andreas Uhl. The peculiarity
or commonality in all three applications is that instead of physically marking the objects in
the respective application, physical characteristics of the objects are used for identification or
authentication. First, in the wood industry roundwood traceability is a basic requirement to
fulfil economical, social and environmental issues. State-of-the-art approaches for roundwood
log tracking rely on physical marking which suffers from costs and anti-counterfeiting. For the
second application, fish identification in intensive aquaculture is investigated. The movement
from mass to smart production requires continuous monitoring of individual fish. This enables
to move towards eco-intensification, i.e. to improve the overall profit by improving fish welfare
criteria while reducing costs (e.g. feeding, medication). The third application deals with drug
counterfeiting which causes economic loss and poses risks to the patients health. As an alterna-
tive solution to drug package serialization in this thesis a classification-based drug packaging
authentication approach is presented and investigated.

Section 1.1 and Section 1.2 introduce to physical object identification and authentication. In
Chapter 2 for each application an introduction and discussion on open challenges is presented
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Chapter 1. Introduction

followed by our contributions.

1.1. Physical Object Identification

As already noted in the introduction, our work in this field is inspired by human biometrics
and the basic idea to transfer biometric concepts to other fields of applications.

In the past, biometric systems based on various characteristics, like finger ridge structure,
iris or retina pattern, palm, finger- or hand vein pattern, ear shape and many more have been
proposed. Even if biometrics are human related, biometric recognition has been transferred to
various fields of applications. In the past decades, a variety of research has shown biometrically-
inspired approaches for recognition of vegetables, plants, animals and products. Photo and in
general visual identification has a long history in animal individuals identification and has al-
ready been shown to be feasible for a variety of vertebrates (e.g. for primates [8]). In [17] the
authors refer to Physimetrics in case that non-living physical objects are recognized based on
object specific characteristics. Introductory, a short overview on biometric systems and perfor-
mance evaluation is presented followed by a discussion on stability and distinctiveness which
are both main quality criteria of a biometric characteristic.

1.1.1. Biometric systems

According to the ISO standard ISO/IEC 2382-37:2017 [12] a biometric system has the purpose
to recognize individuals based on behavioural or physiological biometric characteristics. In
the context of biometrics, an individual is restricted to humans. For a specific characteristic
biometric features can be extracted in order to establish biometric recognition. The elements of a
biometric system are: Capture, Feature Extraction, Template Generation, Template Comparison
and Decision [18]. In Fig. 1.1 a schematic overview of the biometric toolchain is illustrated.

Sensor

Template

Generation

Biometric 

template
Biometric 

Database

Comparison

Decision 

Enrolment

Probe 

template

Reference 

template

Similarity   score

Figure 1.1.: Biometric recognition toolchain

The first step in the toolchain is to capture a digital representation of the utilized biometric
characteristic, which is referred to as biometric sample. Commonly, biometric characteristics
are captured by an image, which then is the biometric sample. Subsequently, biometric feature
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1.1. Physical Object Identification

extraction is applied to the biometric sample. The overall target means to extract a compact
and distinctive representation of the biometric information. Based on the extracted features,
a biometric template is created. In the schematic overview, the Template Generation block in-
cludes feature extraction and template formation. In order to enable biometric recognition, the
individual needs to be enrolled first, i. e. the biometric template is stored as biometric reference
data record in a biometric database. This is referred to as biometric enrolment. Depending on
the biometric system metadata of the individual is stored in the same database or in a separate
way.

A biometric recognition system either performs biometric verification or identification. For
biometric verification the system makes the decision whether an individual is the individual it
claims to be or not. For this purpose, a biometric template (=probe template) is generated for
the individual, which is then compared to the biometric template of the claimed identity (=ref-
erence template) stored in the biometric database. The result of the comparison is a comparison
score. Based on this score and a system threshold a decision is made, if the individual is the
individual it claims to be. Consequently, biometric verification requires to perform a 1:1 com-
parison. In case of biometric identification, the biometric system has to determine the identity of
an individual without prior knowledge. Thus, it is required to search the corresponding refer-
ence template in the biometric database which relates to a 1:n comparison. A common strategy,
is that the probe template is compared to all reference templates in the database and the com-
parison with the best comparison score specifies the identity of the individual. However, if the
best comparison shows a score below a certain threshold, the system can make the decision that
the individual is not enrolled in the system.

1.1.2. Performance evaluation

As stated, in [7], biometric systems are inherently probabilistic, which is crucial, when consider-
ing the performance of a biometric system. According to the ISO/IEC 19757-2:2019[13] standard
three types of performance evaluation can be assessed: Technology, Scenario and Operational
evaluation.

In case of technology evaluation different algorithms for template generation and compar-
ison are evaluated offline for a specific dataset. The dataset contains a number of biometric
samples for each individual contained in the dataset. The main advantage, is that the evalua-
tion is repeatable and enables to perform detailed investigations. A best practice would be to
utilize technology evaluation to select appropriate algorithms for scenario evaluation. Scenario
evaluation is done online and evaluates live biometric recognition for a set of different individ-
uals, which request to be recognized by the system in a constrained environment. This includes
the sensor and acquisition of biometric samples for the individuals. Thus, the evaluation is
not repeatable due to the variations which result from the acquisition process. Again, scenario
evaluation is done prior to operational evaluation where a biometric system is tested in regular
operation on a set or subset of individuals. Operational evaluation enables to test the system
for issues when using it in a real world scenario.

As outlined, the best practice to develop and evaluate a biometric system is to run technology,
scenario and operational evaluation in a sequence. Because this thesis deals with the feasibil-
ity of object identification for two different applications, we deal with technology evaluation
only. For technology evaluation, for all biometric samples in the dataset biometric templates
are computed and compared to each other which results in a comparison/ similarity score for
each pair of biometric templates. Comparisons scores computed between templates from the
same individual are referred to as genuine scores and scores computed between templates from
different individuals as impostor scores. The corresponding probability distributions are de-
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Chapter 1. Introduction

noted as genuine and impostor score distributions or as intra- and interscore distributions.
The performance of a biometric system is assessed based on the errors it produces. The rel-

evant errors as well as performance metrics differ for biometric verification and identification
systems. For verification performance evaluation the False Match Rate (FMR) and False Non
Match Rate (FNMR) are computed. FMR and FNMR depend on a system threshold which can
be adjusted depending on the security level which is targeted. A general verification perfor-
mance metric is the Equal Error Rate (EER), which specifies the threshold for which FMR and
FNMR are equal. In case of scenario and operational evaluation the FMR is referred to as False
Acceptance Rate (FAR) and the FNMR as False Rejection Rate (FRR). However, the FAR and
FRR include system related failures like the failure to acquire or failure to enrol which are not
relevant in the scope of this thesis. Besides the EER there are other verification performance
measures like the Zero False Match Rate (ZFMR) and Zero False Non Match Rate (ZFNMR). By
computing the FMR and FNMR for varying thresholds an extensive overview on the different
performance metrics can be provided. Visually this is established by plotting the results in a
Receiver Operating Characteristic (ROC) graph or in a Detection Error Trade-off (DET) curve.
A ROC graph plots the true positive rate (1-FNMR) against the FMR. A DET curve plots the
FNMR against the FMR.

For biometric identification the Rank-k recognition rate is a common performance metric.
Commonly, only the Rank-1 recognition rate is of interest. In case of technology evaluation,
closed-set identification is assessed where it is assumed that all individuals are enrolled. In
order to compute the Rank-k recognition rate the cumulative match characteristic (CMC) is
computed. For this purpose, for each individual in the dataset one template is selected as en-
rolled template and another one is selected as probe. The templates from all individuals, which
were selected as enrolled templates, are referred to as gallery set and the probe templates as
probe set. Subsequently, for each probe template the comparison scores to all templates in the
gallery are sorted so that the scores are ordered with descent similarity. For the sorted scores
it is assessed at which index the probe to enrolled template comparison score is ranked. Only
if the corresponding score is ranked before index k the identification was correct. The selection
of gallery and probe templates for each individual is repeated and for Rank-k recognition rate
computation the probability of how often the correct gallery template is ranked better or equal
to Rank-k is computed.

1.1.3. Distinctiveness and Stability

In [7] the authors conclude, that biometric system errors can be reduced, but not eliminated. It
is essential, that errors are computed in a transparent and standardized way. In case of tech-
nology evaluation, performance evaluation can be repeated for different template generation
and comparison algorithms. A remaining issue is that the same algorithm may show different
performances for different datasets. Consequently, the utilized dataset must enable to assess
the performance with respect to different quality criteria of the utilized biometric characteristic.
Subsequently, two main criteria are introduced and discussed with respect to technology eval-
uation. The authors of [7] note that no (human) biometric characteristic is known to be entirely
distinctive and stable.

Distinctiveness is the main prerequisite for a biometric characteristic in order to enable bio-
metric recognition. It expresses that the biometric characteristic enables to distinguish between
different individuals. Stability is the second prerequisite and expresses that the biometric char-
acteristic is stable over time. Apart from the biometric characteristic itself there are various other
factors which impact distinctiveness and stability. This leads to variability which can be either
classified as externally or internally caused. Externally caused variations are diverse but a typi-

4



1.2. Physical Object Authentication

cal source is the biometric system itself. Basically, it is impossible to capture a biometric sample
from a biometric characteristic twice without variation. In case of imaging based sampling
typical variations are geometric distortions (scale, rotation and tilt) as well as illumination dis-
tortions (shadows, varying contrast). Second, template generation as well as comparison may
introduce variation for different samples from the same individual. Further externally caused
variations affect the biometric characteristic itself. Such variations are caused by mechanical or
environmental influences and degrade or change the biometric characteristic to a certain extent.

In order to investigate the feasibility of physical object identification, based on a specific char-
acteristic distinctiveness and stability, need to be assessed. As introduced, the first step is tech-
nology evaluation which requires appropriate datasets suited to assess both, distinctiveness
and stability. This is critical because for assessing the basic feasibility variation is a problem
which can make it difficult to answer this basic question. On the other hand, technology evalu-
ation requires to consider real world feasibility and therefore variation which reflects real world
conditions needs to be included.

The purpose of these considerations is to highlight the importance of the dataset(s) used for
technology evaluation. The composition of the dataset depends on the object, the biometric
characteristic, which is utilized for biometric recognition and the respective application. For
this thesis and the two investigated object identification applications different datasets were
acquired. These datasets enabled to present detailed investigations on distinctiveness and sta-
bility for each application.

1.2. Physical Object Authentication

In the scope of this thesis an object belongs to a specific class and all objects belonging to this
class share common extrinsic characteristics. Thus, we refer to classification-based physical
object authentication. This enables to predict, if a given object belongs to this class or not. The
class of the object, which is authenticated, can be referred to as authentication class.

Basically, authentication works similar to biometric verification, where a probe template is
compared to just one reference template belonging to the claimed identity. However, there are
two main differences: (i) In case of biometric verification the claimed identity is the authen-
tication class composed of just one object. For authentication there is not just a single object
which belongs to a class, there are multiple and different objects which all belong to the same
class. Different objects belonging to the same class are referred to as instances. (ii) Physical
object authentication, as considered in this thesis, refers to supervised classification in the field
of machine learning. Same as for biometric recognition the authentication system requires to
get to know the authentication class first. Thus, the utilized characteristic needs to be sampled
from different object instances of this class. The samples from different instances of the au-
thentication class are utilized to extract features and to train an authentication model using a
specific classifier. The authentication model is used for classification, i. e. to predict, if a given
object instance is authentic or not. Typically, biometric verification and moreover identification
are not learning-based, i.e. the comparison scores are computed directly between the probe
and reference templates by utilizing distance metrics to compute the comparison score of the
corresponding feature sets. Supervised classification tasks are one-class, binary or multi-class
classification. For one-class classification only data of the specific class are utilized for training
and the trained classifier predicts if a given sample belongs to this class or not. For multi-class
classification, samples from n-classes are used for training and the trained classifier predicts to
which of the n-classes a given sample belongs. For binary-classification n=2 and the classifier
predicts to which of the two classes the sample belongs. Multi-class and binary classification
are almost always done in a closed-set scenario. All classes are already known at training time.
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Chapter 1. Introduction

In case of a controlled classification environment this is feasible if it is ensured that only sam-
ples from known classes are requested to be classified. Applications closely related to the top-
ics covered in this thesis are wood species and fish species identification. For example, in [4]
tree species identification for 20 Canadian species has been investigated and in [35] the authors
showed a deep learning approach to distinguish between 20 fish species. Nevertheless, as noted
in [23] for various applications it is more realistic to consider an open-set scenario, i. e. testing
samples from unknown classes are requested to be classified. As such, in an open-set scenario
the classifier should be able to handle unknown data.

Classification-based object authentication can be considered as binary open-set classification
problem. The goal is to predict if an object belongs to the authentication class or not. For training
of the authentication model, the positive class and a limited subspace of other (=known) classes
is available. What remains are many unknown classes. The overall goal is to discriminate
between the authentication class and all other classes including known as well as unknown
classes not available at the training stage. In [23] such a binary open-set classifier is referred to
as 1-vs-set machine.

The training stage is crucial in order to select and tune a classifier. For this purpose, an appro-
priate dataset is required. Contrary to biometric systems, this dataset is not only used to assess
the experimental authentication performance; it may serves as basis to train the authentication
model for a real world application. For our research on classification drug packaging authen-
tication a new dataset was acquired and used to asses the basic feasibility in a binary openset
classification scenario.
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2. Contributions and Discussion

The contributions of this cumulative thesis are arranged according to the investigated applica-
tions. Section 2.1 and Section 2.2 outline our contributions in the field of roundwood and fish
identification, respectively. Section 2.3 describes our work on drug packaging authentication.

2.1. Roundwood recognition

Nowadays supply chain management has become a fixed place in all fields of the industry.
Industrialization attached to globalization made it necessary, to improve raw material as well
as the distribution of the products on an international scale. Efficient tracking of timber as well
as quality analysis and measurement are key technologies to establish intelligent information or
production systems towards wood industry 4.0. State-of-the-art roundwood tracking methods
rely on physical marking (plastic badges or RFID tags). Besides the advantage of bulk reading,
RFID technology is cost intensive and requires specialized sensing technology. Recent trends
like DNA fingerprinting of trees are time consuming and utilized to verify the origin or species
of wood to prevent trade of protected timber species. The first works [5, 6, 11] on biometric log
recognition investigated log tracking within the sawmill, concentrating on the outer shapes of
logs as biometric features by using 2D and 3D scanners to extract geometric wood properties
[5, 6, 10]. The utilized capturing devices are however not applicable at forest site. Furthermore,
[9, 11] showed that knot positions as biometric features are suited to enable traceability between
logs and the cut boards.

By superficially comparing the patterns of human fingerprints to annual ring patterns of
wood log ends, one finds a close resemblance (see Fig. 2). Timber offers characteristics on log
end faces in terms of annual rings, pith position, shape and dimension. This observation raised

(a) Log end (b) Human finger

Figure 2.1.: Similarity between the annual ring pattern and the human finger ridge pattern.

the question, if wood logs can be identified using digital images of log ends referred to as cross-
section (CS) images. A first work on log end biometrics was presented in [2] as an effort to curb
poaching of trees. In the experimental evaluation digital images of tree stumps and the corre-
sponding log ends are utilized, both showing up strong saw kerf patterns. Results show that the
combination of log end shape and saw cut pattern information, represented by Zernike poly-
nomials, achieves a high accuracy for log to stump recognition. Recently and closely related,
biometric tracking of wood boards using surface images was investigated in [20, 21, 15].
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Chapter 2. Contributions and Discussion

Tracking logs based on log end images could get a cutting edge technology. CS-Images can be
taken at any point of the log supply and processing chain using everyday devices, like smart-
phones, low-cost industrial cameras or hightech devices like computed tomography (CT) scan-
ners. This enables to pass information of each single log/tree from the forest-based industries
to the sawmill industry as well as in the sawmill. Expectable impacts are various and affect dif-
ferent levels. Economically, processes in the forest-based industries could change significantly
and from the viewpoint of industry 4.0 the level of automatization will increase drastically. Af-
ter cutting a tree, the log ends are captured and each log is enrolled in a system. At this point,
we could move towards industry 4.0 by analysing the log end images and computing qual-
ity related as well as measurement information, which is attached to a log record in a central
system.

In this thesis, different aspects of roundwood tracking using CS-Images were investigated.
The majority of contributions were elaborated in the scope of the Austrian Science Fund (FWF)
project TRP254 entitled with ”Traceability of logs by means of digital images (TreeBio)”. The
conducted research can be assigned to two research aspects which relate to stability and distinc-
tiveness of the biometric characteristic.

2.1.1. Stability investigations

In [26, 25] we focused on the stability of the annual ring pattern as a biometric characteristic. In
general, the recognition performance of a biometric system is affected by external and internal
variations of the biometric characteristic. Regarding the annual ring pattern three different
variation types emerged from our research: Temporal, Longitudinal and Surface variations.

• Temporal variations of the annual ring pattern correspond to ageing effects in human
biometrics. However, as the annual ring pattern does not age temporal variations relate
to discolourations and deformations caused by environmental influences like light and
humidity.

• Longitudinal variations are caused by the changing CS pattern along the longitudinal axis
of a log. This occurs in reality when logs are cross-cut in the sawmill. Often clean log end
faces are required in order to assess the quality.

• Surface variations emerge when a log is cross-cut and different cutting tools are utilized.
For example, the first cut in the forest is performed with a chain saw and the second cut,
i. e. the clearance cut in the sawmill by a circular saw which changes the appearance of
the pattern. Surface variations are accompanied by longitudinal variations of the annual
ring pattern.

Both works rely on the idea to transfer concepts of human biometrics to roundwood biometrics.
Specifically, the texture feature-based fingerprint recognition approach as proposed by [14] has
been adopted and modified to be applicable for annual ring patterns. The experiments in [26]
focus on temporal and longitudinal CS variations assessed on 35 time-delay captured slices
from one log. As expected, our results show, that with an increasing time span between two
images of the same slice the similarity expressed by the comparison score gets worse. The
same is shown in case of an increasing longitudinal distance between two slices. However,
results indicate, that adjacent slices have a high similarity, i.e. a good comparison score. For
our investigations in [25], further two logs were cut in slices and captured twice, one with
rough surfaces and one with sanded surfaces. Additional, to annual ring pattern features the
impact of including shape features was tested. Results show, that the respective fusion of both
increases the performance in terms of stability. Furthermore, it can be concluded that CS surface
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2.1. Roundwood recognition

variations show no impact and that cutting log ends up to 7.5 centimetres in thickness is no
issue, even if the surface changes. A very interesting result is that knots are disturbing factors
but do not introduce any propagative effects to the annual ring pattern and the CS shape.

2.1.2. Distinctiveness investigations

So far, it was not clear, if log end biometrics will be suited to discriminate between a large
set of tree logs. A first glance at the distinctiveness of wood logs based on CS-Images was
presented in [31]. In addition to fingerprint-recognition based methods the applicability of iris-
recognition based approaches was assessed. For this purpose, two datasets at two different
sawmills were acquired. Together the datasets comprise CS-Images from 150 different wood
logs. Furthermore, the impact of enhancement is assessed. Results show that fingerprint and iris
recognition based approaches can be transferred to the field of wood log tracking and that both
are suited for log identification. In the experiments, the fingerprint based approach and all iris
configurations which used Log-Gabor features achieved 100% recognition rate. Furthermore,
all results indicate that shape information of the CS area is required to achieve an acceptable
recognition rate and that enhancement significantly improves the performance. Same as in [25],
for the fingerprint-based approaches the fusion of annual ring pattern and shape information
improved the identification performance.

Based on this observation, in [33] we assessed the discriminative power of geometric log end
features for the same dataset as in [31]. Geometric features were extracted based on groundtruth
data for the CS boundaries and pith positions. Results show that radial distances from the
pith and centroid center to the CS boundary and Zernike moments show a high discriminative
power. The validation of these features for automated CS boundary detection [34] and pith
estimation [34] showed that Zernike moments achieve the highest reliability. For groundtruth
data the verification performances are comparable to those achieved in [31].

For the experiments in [32] an additional dataset (129 logs) including rotational as well as
scale variations were acquired. Three different strategies for rotational pre-alignment were in-
troduced and assessed. In the experimental evaluation we investigated the basic performance of
the strategies and their impact on the verification and identification performances for different
fingerprint- and iris-based configurations, respectively.

Finally, in [29] we show first results for the hyperspectral images from 200 log end discs,
which is described in the next section. We utilized the fingerprint-based approach to compute
comparison scores between the different spectral CS-Images captured for each disc. Results
indicate that there are up to five spectral bands (one of each spectral range), which contain in-
dependent information from each other. This assumption is supported by the mean interscores
which were computed for each spectral band and showed that higher spectral bands (>760nm)
seem to be better to discriminate between the 200 log end discs. These results are only a first in-
vestigation on this topic and more research based on more sophisticated approaches is required
to draw fundamental conclusions.

2.1.3. Open challenges & future research

Our contributions, achieved within the FWF project ”TreeBio”, indicate the principal feasibility
of roundwood tracking based on log end images. However, there remain various challenges
which need to be investigated in the future. So far, our research focused on RGB CS-Images
which were captured in a restricted setting. In the forest-based and the sawmill industry the
utilized cameras will be divers and the performance of log end biometrics is assumed to be
influenced strongly by acquisition conditions (including sensor type, dirt on the log, type of
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Figure 2.2.: FWF-ANR TreeTrace: Cross-Sensor/ Cross-Modality Tracking & Quality Estimation

sawing, illumination conditions, etc.). In [24] our future vision for biometric log recognition has
been presented. Fig. 2.2 illustrates the basic idea for a system, which works in a sensor inde-
pendent manner and utilizes sensor data for early quality estimation of log quality properties.

The follow-up project ”TreeTrace” (2018-2021), which is a joint Austrian - French FWF-ANR
project (I 3653), is based on this vision. On the Austrian side, University of Applied Sciences in
Salzburg has the lead and our research group of the University of Salzburg is national research
partner.

In this project, we deal with cross-modality and cross-sensor log end tracking and quality
estimation based on CS-imagery captured using industrial scanning devices as illustrated in
Fig. 2.2. Our role in this project is to investigate if log end biometrics are suited to identify logs
based on digital log-end images captured in the forest and a second CS-Image captured by a
camera or computed tomography (CT) scanner at the sawmill. Furthermore, the question is
which imaging modality should be used to for CS-Image acquisition in the forest. Finally, as it
is not clear if log end biometrics are suited to discriminate between a large amount of trees, this
is a further important research questions which will be tackled in the project.

Within this project we already finished the acquisition of a dataset which is referred to as
”100LogsDataset” and was already utilized for our experiments in [29]. 100 wood logs were
collected in autumn 2018 near Corcieux, France and all log ends were fresh cut. We had no
information, if some of the 4 to 5m logs belong to the same tree or not. At forest site from each
log end several images with different rotation were captured. After the transport to Freiburg a
thin slice was cut from each log end and the ends were captured again, same as in the forest.
Exemplary RGB log end images for both log ends from #E001 are shown in the first two and last
two columns of Fig. 2.3, respectively. Subsequently, each log was scanned with a CT scanner.
Two exemplary CT CS-Images from the bottom and top end of log #E001 are shown in the first
two and last two columns of Fig. 2.4, respectively. The slices were transported to Munich and
scanned with two hyperspectral cameras. A detailed description on the hyperspectral imaging
is provided in [29]. Additionally, RGB images with a DSLR camera were taken. Subsequently,
all slices were transported to the Holztechnikum Kuchl in Austria, where they were sanded and
captured again with the DSLR camera. Exemplary RGB CS-Images from the rough and sanded
slices from both log ends of log #E001 are shown in Fig. 2.5. Finally, the slices corresponding to
the bottom end of each log were transported to Munich again where the hyperspectral scanning
was repeated. Expemplary hyperspectral images for the rough discs of log #E001 are shown in
Fig. 2.6. For future research, it is essential, that log end biometrics are extended to work with
mobile devices being applicable in almost every environment. The high variability of the images
to process constitutes one of the technical barriers to be lifted in the future.
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2.1. Roundwood recognition

Figure 2.3.: 100LogsDataset: CT CS-Images from log #E001. The first two images are from the
bottom and the last two from the top end of the log.

Figure 2.4.: 100LogsDataset: RGB CS-Images from both log ends of log #E001 captured in the
forest and at the FVA Freiburg logyard.

Figure 2.5.: 100LogsDataset: RGB CS-Images from discs from both log ends of log #E001 cap-
tured with rough and sanded surfaces.
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Figure 2.6.: 100LogsDataset: Hyperspectral CS-Images for the discs from both log ends of log
#E001 captured with Specim FX10 and FX17.
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2.2. Fish identification

2.2. Fish identification

So far, identification of individual fish was mainly required for aquaculture studies. We envi-
sion, that fish identification is a basic requirement to move towards precision fish farming in
intensive aquaculture as illustrated in Fig. 2.7.
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Figure 2.7.: Vision to move towards precision fish farming in intensive aquaculture

The basic idea is to move from mass to smart fish production requiring to consider each fish
as individual instead of considering the total stock. As illustrated, this should be established by
the Identification & Monitoring component of the system. Based on assigning information to
each fish the possible components could perform biomass estimation, disease detection as well
as feeding optimization. This system is based on the concept of eco-intensification. The idea is,
to improve the health and well-being of the fish to ultimately reduce the alleged adverse effects,
thereby reducing costs and increasing the overall profit. In regard to intensive aquaculture the
vision is a farming decision support system which, performs autonomous tasks on the one
hand and additionally supports the farmer by providing key measures of the stock gathered by
considering each fish individually on the other hand.

State-of-the art approaches for fish identification are invasive and require to tag or mark each
fish [22]. This is costly in terms of time, expensive and very critical as physical markers may
pose health and behavioral problems. For these reasons, we focus on biometric fish identifica-
tion. Research published in the aquaculture community refers to the term photo identification
in case that biometric identification of aquatic individuals using images is performed. So far,
various approaches dealing with fish photo identification were presented. Only a few apply
machine vision and if so, only to assist naked eye identification.

Data acquisition for our ongoing research in this field was collected in the scope of the
AquaExcel transnational access project (TNA) funded by the European Unions Horizon 2020
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research and innovation program under grant agreement No. 652831 (AquaExcel2020). In this
TNA project with the name ”FISHID” we got access to the ”Research Station for Sustainable
Aquaculture” of Nofima in Norway. At the station Nofima provided a tank with #330 juvenile
Atlantic salmon. For the first acquisition session all 330 fish were captured. For image acqui-
sition each fish was anaesthetized first. Subsequently, the fish was moved into an aquarium,
where he/she was captured with a digital camera several times. Then the fish was moved into
a tent on top of which a digital camera was placed. Again the fish was captured several times
with introducing some movement including rotation in-between. Finally, the Dino-Lite USB mi-
croscope was used to acquire iris image of the fish. Only the last 30 fish were tagged and kept
in the tank. These 30 fish were captured again in three further acquisition sessions with approx-
imately two months time delay in-between. Exemplary images for one fish are illustrated in
Fig. 2.8.

(a) Lateral skin pattern in an
aquarium

(b) Lateral skin pattern in a tent (c) Iris image

Figure 2.8.: FISHID - dataset: Exemplary images captured from one fish during the first data
acquisition event in Norway.

For the publication, which is part of this cumulative thesis, the iris dataset was utilized. The
fundamental research question was, if the Atlantic salmon fish iris is suited as biometric char-
acteristic to discriminate between different fish. In [30] we showed the principal feasibility of
Atlantic salmon fish iris identification. In the experimental evaluation the distinctiveness and
stability of the salmon iris were investigated based on the short term and long term data cap-
tured in the TNA project. Besides image acquisition a fully automated identification system was
proposed. This included iris localization using a CNN-based semantic segmentation approach
and rotational pre-alignment prior to feature extraction. Rotational pre-alignment is required
in order to compensate for large rotational differences between two iris images from the same
fish in the long term dataset. Results show, that the fish iris is highly distinctive and enables
to discriminate between the 330 fish in the short term dataset showing identification rates over
95%. However, regarding stability the results for the long term dataset showed that the At-
lantic salmon iris has a low stability and changes over time. This lead to the conclusion that
Salmon iris identification is feasible but it is required to update the biometric template of each
fish regularly.

2.2.1. Open challenges & future work

As outlined in the future work section in [30] research should consider data acquired in realistic
environment. Fish could be forced to pass a narrow tube, where the lateral/ dorsal skin pattern
or the fish iris is captured. If technology evaluation based on such data is successful, the next
step would be to move to scenario evaluation, i. e. to tag a certain amount of fish and to test
under real conditions. Furthermore, due to the low stability of the fish iris a template updating
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approach needs to be implemented and tested. For our research on fish identification, we pro-
ceed with the lateral images captured in the tent and aquarium as shown in Fig. 2.8. Same as for
the iris the body part showing the most promising pattern needs to be localized automatically
and distinctiveness and stability of the pattern need to be assessed. Contrary to the iris local-
ization, it is not clear, which part in terms of size and position is the best part. Furthermore, in
addition to texture-feature based feature extraction CNN-based feature extraction using trans-
fer learning will be tested for technology evaluation. Same as for the fish iris, the next step for
lateral image-based identification would be to move to scenario evaluation. Even if technology
evaluation is successful it is not clear if the quality of lateral images captured in a realistic en-
vironment is suited for identification. Moreover, capturing images in a realistic environment
introduces external variations like affine transformations. It is therefore likely, that solutions for
these variations must be found first on the basis of a new dataset and technology evaluation,
and only then it will move towards a realistic scenario which, can be assessed based on scenario
evaluation.
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2.3. Drug packaging authentication

The third investigated application in this thesis deals with drug anti-counterfeiting. In the past
decade product counterfeiting became a serious worldwide issue. In case of pharmaceutical
products, counterfeits cause economic losses and threaten the consumer/ patient health. Within
the member states of the European Union the Falsified Medicines Directive (FMD) defines the
requirements for a traceability system in the scope of pharmaceutical products. The current
solution relies on printing 2D barcodes on each drug package, which among other data contains
a unique serial number. This number is utilized to track each single drug instance from the
producer to the consumer. The required authentication database is managed by the European
Medicines Verification Organisation (EMVO). It is likely that this database will attract criminals
in order to get compromised, i. e. to enter serial codes of forged packages. On the other hand,
valid serial-codes could be printed on faked drugs.

The Munich and Salzburg based company eMundo had the idea to assess the authenticity of
a drug based on its packaging. The basic assumption or observation was, that the packaging
of a fake drug differs from its original. For this purpose, the general feasibility of fake drug
package detection was investigated in a short term project called ”CounterFighter”. The main
issue at the beginning was that it was not possible for us to get a sufficient amount of fake
drugs in order to develop and test if the package print is suited to discriminate between fake
and original. Thus, we focused on a different research direction which did not require fake
drugs. The basic idea is inspired by the concept of physically-uncloneable-functions (PUFs). A
PUF is a challenge-response function which depends on the physical nature of an object and
cannot be expressed mathematically [19]. We relate to non-electric PUFs and more specifically
to paper-based PUFs. Thereby, the fibre structure of a paper-based product is used as a intrinsic
characteristic to enable physical object identification. This means that the fibre structure in a
specific region of a paper or packaging product is highly unique and enables to discriminate
it from other, i.e. to recognize it again. Regarding drug authentication this means that every
instance of a drug can be identified based on the fibre structure of the cardboard packaging in
a specific region. This is referred to as serialization-based authentication. On the contrary to
serialization-based authentication we investigated if the cardboard fibre structure of a specific
drug shows common features for all instances. As shown in Fig. 2.9 this requires to move from
serialization to classification. In order to investigate the feasibility of classification-based drug
authentication we deal with drug pills packaged in a cardboard housing and blister. Guided

DRUG 

DRUG A 

DRUG A 

DRUG A 

DRUG B

DRUG B

DRUG B

DRUG C

DRUG C

Figure 2.9.: The basic idea for drug authentication is to move from serialization-based to
classification-based authentication.
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by an app the user disassembles the packaging and takes images of the cardboard (CB), blister
top (BT) and blister bottom (BB) textures as illustrated in Fig. 2.10. These textures are denoted
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Figure 2.10.: Schematic illustration of the different modalities which are captured for the
classification-based drug packaging approach.

as modalities and the corresponding texture images are labelled as ICB , IBT and IBB . Fur-
thermore, an image of the product code (IPC) or manually entering the code or selecting the
corresponding drug from a list is required. Together, these images compose an authentica-
tion vector ÂV = (ICB , IBT , IBB , IPC) which is further processed. For preprocessing ICB , IBT

and IBB are segmented to show only texture and the texture pattern is enhanced. For the
subsequent authentication step either a CNN-based or a support vector machine (SVM) based
classifier can be utilized. In case of a SVM-based classifier, as done in our research, for each
modality image texture features are computed which produce a feature vector for each modal-
ity (FVCB , FVBT , FVBB). Typically, for CNN-based classifiers the preprocessed images are di-
rectly utilized as input.

Based on the product code image, the product ID is determined and the corresponding pre-
trained models for each modality (MCB ,MBT ,MBB) are utilized to compute similarity or prob-
ability scores (PCB , PBT , PBB) in the range [0, 1]. The closer to 1 the more likely the texture is
authentic. The closer to 1 the more likely the given feature vector is authentic, the closer to 0
the higher is the probability that the feature vector was computed from fake material. Finally, a
decision function f(PCB , PBT , PBB) = (v, p) needs to be defined, where v ∈ {1,−1} gives the
final authenticity vote of the authentication system and p ∈ [0, 1] specifies a probability score
for the final vote which is then presented to the user.

So far, three publications emerged from our research. In our first work [16] we showed that
9 different drugs from 3 manufacturers and some forged ones can be classified based on their
cardboard fiber texture. Results show, that it is not possible to discriminate between drugs
from the same manufacturer because they likely use the same cardboard packaging material.
For drugs from different manufacturers the results show, that they can be classified with 100%
accuracy. However, the utilzed testset was fairly small and as outlined in the introduction
authentication, especially in the considered application, is not a closed-set multi-class classifi-
cation problem.

Thus for our experiments in [27] a new dataset was acquired and experiments for binary
openset classification were presented. For data acquisition 45 drug from 28 different manu-
facturers were collected from different pharmacies in Salzburg. For each drug between 1 and
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15 package instances were collected. From each instance non-overlapping sections of the card-
board, blister top and blister bottom textures were captured with a digital camera. In the exper-
imental evaluation two fundamental research questions were tackled:

• Positional invariance For the cardboard fiber structure it was not clear, if the fiber struc-
ture shows constant features in different sections and if the features enable to discriminate
between cardboard’s from different drugs.

• Instance generalisation Furthermore, it was not clear, if and how the fiber structure varies
between different instances. Typically, a classifier will be trained with features from one
instances and the questions was if it is able to authenticate the other instances. Instance
generalisation is a specialization of positional invariance and reflects a real world scenario.

Regarding positional invariance, the achieved results indicate, that for all three modalities the
textural features are constant and enable to recognize the same drug class with a high accuracy.
The same can be stated for instance generalisation. Results show that textural features for all
three modalities are constant across different instances of the same drug. However, all images
were captured with a DSLR camera and for a real world application the use of a mobile device
is envisioned.

Thus, for the experiments in [28] the dataset was extended by images captured with two mo-
bile devices. This enabled to investigate a single sensor as well as a cross-sensor scenario, which
relates to a mobile device based drug packaging authentication system. In our previous work
only low level features were utilized, no feature encoding was applied and no modality fusion
was tested. Thus, in addition to the low level features, high level features and feature encoding
were utilized and tested. Furthermore, a simple majority voting for all three modalities was
tested. The experimental evaluation for the single sensor scenario shows, that mobile devices
are principally suited for drug packaging authentication. However, in case of the cross-sensor
scenario results show, that the performance decreases significantly.

2.3.1. Open Challenges

Our research in this field demonstrates the basic feasibility of classification-based drug pack-
aging authentication. Texture images from different parts of the packaging material are suited
to authenticate the corresponding drug, i.e. to distinguish it from other packagings from other
drugs. In case of a real world application, mobile device cameras should be utilized to capture
the packaging textures. In [28] the focus was on mobile device-based as well as cross-sensor
authentication. Results show that the utilized SVM-based approach is not suited for cross-
sensor authentication if the packaging texture scales vary. In case of a mobile device solution
robustness to scale variations is crucial. Without additional equipment, e.g. a distance part,
the textures will be captured at different scales and viewing angles. Even if a distance part is
used, different cameras with different lenses cause varying texture scales, when capturing the
same packaging texture. Future work needs to deal with all issues caused by the unconstrained
imaging conditions in a mobile device scenario. One research direction could be to improve
the scale invariance of the classifier. We have tested two different approaches for a SVM and
CNN-based classifier but the results were not satisfactory: First, we tried to train the classifier
with textures and varying scales in the expected scale variation range. For the second approach
we tried to compensate scale variations in the preprocessing pipeline. This should be achieved
by estimating scale space of the texture and resecaling the textures before training the classifier,
i.e. the target is to train the classifier on a single scale of the considered texture. The training
scale is then utilized as evaluation scale to adapt the scale of the texture prior to classification.
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2.3. Drug packaging authentication

Even if these two approaches have not led to success, CNN-based classifiers are promising
for further studies, because they work better and more robustly than SVM-based approaches in
many other areas of applications. It is planned to make public our dataset to the community in
the near future.
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ABSTRACT
In this work two practical issues of biometric log recognition
using log end images are investigated: Temporal and lon-
gitudinal variances of log cross-sections (CSs). These vari-
ances are related to the requirement of robustness for biomet-
ric characteristics. A texture feature-based fingerprint match-
ing technique is used to compute matching scores between
CS images. Our experimental evaluation is based on the tem-
poral and longitudinal variances of 35 slices of a single tree
log which where captured at four time delayed sessions. Re-
sults indicate, that biometric log recognition using log end im-
ages is robust and is able to overcome both issues. This work
contributes to the development of a biometric log recogni-
tion system by showing that a texture feature-based matching
technique is applicable to log CSs.

Index Terms— Biometric log traceability, Cross-section
analysis, Texture feature-based matching technique

1. INTRODUCTION

Traceability of wood logs is a basic requirement to manage
economical and social issues. In economic terms, traceabil-
ity of wood logs is required to map the ownership structure
of each log. Due to the ecological rethinking social aspects
like sustainability have become more important. So-called
wood certificates like the Pan European Forest Certification
(PEFC) are based on traceability and are a must have for all
end-sellers.

Currently, log traceability is established by physically
marking each log (see [1]). State-of-the-art systems propose
the usage of Radio Frequency Identification (RFID) to reach
traceability from forest site to further processing companies
(see [2],[3]). Another idea relies on biometric recognition of
wood logs. In the works of [4],[5],[6],[7],[8] approaches to
establish biometric log traceability within the sawmill were
presented. The approaches presented in [4],[5],[7] utilized
2D and 3D scanners to extract geometric wood properties. In
[6],[8] a computer tomography scanner was used to extract
knot positions to enable traceability between logs and the cut

THIS WORK IS PARTIALLY FUNDED BY THE AUSTRIAN SCI-
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boards. Due to low recognition rates, these approaches are
not applicable for industrial usage within the sawmill and are
even less suitable to deal with the increasing variety of trees
at forest site. Furthermore, the utilized capturing devices are
expensive and not applicable in the forest based industries.

Similar as for human fingerprint recognition, we assume
that annual ring patterns of log ends can be used to recog-
nize wood logs. Log end images can be captured by digital
cameras at forest site and processing companies. This work
contributes to the development of a biometric log recognition
approach using log end images by investigating two practical
issues: Temporal and longitudinal variances of cross-sections
(CSs) in wood logs. For human biometrics, robustness of
the utilized biometric characteristic is a basic requirement.
In case of CSs robustness is related to the temporal changes
caused by environmental conditions and the longitudinal vari-
ations of the CS pattern within a tree log. Temporal changes
are caused by light and humidity and result in deformations
like cracks and discolourations. Longitudinal variations result
from log end cutting or from capturing different log ends.

For our investigations the FingerCode approach by [9],
[10] is adopted to CS images. Additionally, a Log-Gabor ex-
tension of the fingerprint enhancement approach by [11] is
utilized to enhance the annual ring pattern. Thus, our work
additionally sheds light on the general applicability of texture
features for CS matching. For the experimental evaluation 35
slices of a single log are utilized. Each slice was captured four
times at time-delayed sessions. This testset enables the com-
putation of the temporal variances between time-delayed ses-
sions from each cross-section slice. Longitudinal variances
are computed among the CS images of the 35 slices of the
testset.

At, first Section 2 introduces the computation and match-
ing of Gabor-based features from CS images. The experimen-
tal setup and results are presented in Section 3 followed by the
conclusion in Section 4.

2. CROSS-SECTION CODES (CS-CODES)

The CS-Code computation is based on the FingerCode ap-
proach proposed in [9] and [10]. This technique utilizes
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Fig. 1: CS-Code computation and matching scheme

a Gabor-based descriptor which extracts local ridge orien-
tations of a fingerprint. In the next section the CS image
registration & enhancement procedure is considered in detail.
Subsequently, in Section 2.2 the CS-Code computation and
the matching procedure between CS-Codes extracted from
different CS images is outlined.

2.1. Cross-section registration & enhancement

Due to cutting disturbances annual ring enhancement is a cru-
cial task for any subsequent feature extraction procedure. As
opposed to human fingerprints, the frequency of the annual
ring pattern is strongly varying. Our enhancement procedure
is based on the fingerprint enhancement approach presented
in [11]. CS registration is performed in three steps. The left
image in Fig. 1 shows an example for an input CS image.
The CS border and the pith position have to be determined in
advance (see [12],[13]). For image registration the image is
rotated around the pith position, cropped to the CS bounding
box and finally scaled to 512 pixels in width. Rotation can
be performed to generate rotated versions of each CS image
or to align the CS to a unique position (eg. according to the
center of mass). For CS image enhancement the CS is sub-
divided in half/ non-overlapping blocks (eg. 16x16 pixels).
Enhancement is performed in three consecutive stages: Local
orientation estimation, local frequency estimation and adap-
tive filtering.

At first, for each block principal component analysis of
the local Fourier Spectrum is performed to determine its lo-
cal orientation (see [12]). Commonly, CSs are disturbed due
to cutting. Thus, wrong orientations are slightly corrected
by low-pass filtering the local orientation field with a Gaus-
sian filter. Next, for each block and its local orientation the
dominant frequency is determined. For this purpose, the local
Fourier Spectrum of each block is subdivided into subbands
and sectors. The dominating frequency of a block is deter-
mined by summing up all frequency magnitudes in each sec-
tor subband. It is assumed that the maximum sector-subband
represents the dominating frequency. If the maximum sector
does not correspond to the block orientation the result is ne-
glected. In a further step for each neglected value the local
frequency is interpolated using a Gaussian filter.

In the filtering stage the Fourier Spectrum of each block
is filtered with a Log-Gabor (introduced by [14]) which is
tuned to its local orientation and frequency. Furthermore, ex-

periments showed that a bandwidth of three times the vari-
ance of the Fourier Spectrum and as spread value the block-
size/4 are well suited for filtering. By using the fast inverse
Fourier transform the filtered Fourier Spectra are utilized as
new block values. Boundary effects are reduced by using
half-overlapping blocks. An exemplary result of the regis-
tration & enhancement procedure is depicted in Fig. 1.

2.2. Cross-section code computation & matching

As suggested in [9] a Gabor filterbank is used to extract an-
nual ring pattern features. Because of the constant ridge fre-
quencies in human fingerprints a single Gabor filter and its
rotated versions are sufficient. The frequencies of annual ring
patterns are strongly varying and thus different Gabor filters
are required to capture additional information from the an-
nual ring frequencies in different orientations. For a CS image
width of 512 pixels six different Gabor filters are suggested.
For each Gabor filter eight rotated versions are created. Con-
sequently, the Gabor filterbank consists of 48 filters.

The CS-Code computation is performed in three stages.
In the first stage the enhanced input image is filtered with
each filter in the filterbank. Each filtered image is subdivided
into blocks (e.g. 32x32 pixels). For all blocks the absolute
deviations of the gray values are computed. The absolute de-
viations of each image are stored into a matrix, which can be
denoted as Standard Deviation Map (Stdev Map). In the mid-
dle of Fig. 1, the filtering and Stdev map computation proce-
dure is illustrated. Altogether 48 Stdev Maps are computed
and stored as one-dimensional vectors in a CSV file.

Rotational variances are compensated by repeatedly com-
puting features for rotated versions of the input image. Com-
pared to fingerprints, the rotational misalignment range of a
CS image is not restricted to a certain range. One strategy
to solve this issue, is to perform rotational pre-alignment
in the registration & enhancement stage to restrict the mis-
alignment range. For the utilized testset in our experiments
the misalignment range lies between −15◦ to 15◦ . As
shown in Fig. 1 for each input image a set of CS-Codes
(rot−15, ..., rot0, ..., rot15) is computed.

Matching is performed by computing the minimum
matching score between all CS-Codes from two CS images.
The matching score between to CS-Codes can be computed
with a set of distance metrics. Two bin-by-bin distances (L1-
Norm - L1, L2-Norm - L2), one cross-bin distance (EMD -
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see [15]) and a simple 2D-matching distance are examined.
The 2D-matching distance computes for each block the aver-
age L1 distance between its Stdev value and the Stdev values
of all adjacent blocks.

3. EXPERIMENTS AND RESULTS

In the experimental evaluation temporal and longitudinal vari-
ances are analysed using a testset of 35 CS slices from a single
tree log. The first experiment assesses the temporal variances
between time-delayed captured images from equal CSs. In
the second experiment longitudinal variances between differ-
ent CSs along the longitudinal axis of tree logs are assessed.

Testset: The 35 CS slices are from two sections which
were cut from one spruce tree log with a spacing of approxi-
mately three centimetres. 18 slices were cut from the first and
17 slices from the second section. The slices were cut with a
bandsaw and the thickness of the slices is approximately two
centimetres. Each slice was captured four times (Canon EOS
5D Mark II) with different time spans between each captur-
ing session. For the last session, the slices were stored in a
balanced climate of 21◦ and 60% humidity. All images were
captured under equal light conditions in a photo studio. For a
constant rotational alignment between different sessions pins
were utilized as position markers. The distance between the
CS slice and the camera was fixated using a tripod. In Fig. 2
the four images of Slice #10 are illustrated. Additionally, for
all images the CS borders and pith positions were manually
marked and are available as xy-coordinates.

Fig. 2: Testset example: Slice #10 - Section 2 / Sessions 1-4

Computational details: For each of the four images from
each CS slice 31 CS-Codes (rot−15, ..., rot0, ..., rot15) are
computed. In the registration & enhancement stage the ro-
tated CSs are scaled to 512 pixels in width and for enhance-
ment 32x32 half-overlapping pixels blocks are utilized. The
CS-Codes are computed using 16x16 non-overlapping blocks
for the Stdev maps. The utilized Gabor filterbank is build up
on six different Gabor filters tuned to 8 directions:

G(λ, θ, σ, γ) = G(λ, σ) =

((2.5, 2), (2.5, 2), (3.5, 3), (4.5, 3), (5.5, 3), (6.5, 3)),

θ = {0, 22.5, ..., 135, 157.5}, γ = 0.7

In addition to the 31 CS-Codes of each CS slice, further seven
CS-Codes (rot45, rot90, ..., rot270, rot315) were computed.
These rotations are not in the expected misalignment range
considered in the matching procedure. Thus, these CS-Codes
are utilized to simulate a set of CS-Codes descending from
different tree logs, i.e. used to simulate interclass variances.

Subsequently, three different variances are computed.
Temporal variances are the matching scores among the CS-
Codes of the four different session images from one CS slice.
Longitudinal variances are computed among the CS-Codes
of the images from each session. Finally, interclass variances
are computed among the CS-Codes as described above. The
CS-Code framework and the experiments are implemented in
JAVA.

3.1. Results

The results are assessed in two stages. For each distance met-
ric and the different variances, the corresponding matching
score distributions (SDs) are computed. Note that these cor-
respond to genuine and impostor distributions in biometrics
[16]. First, the intersections between the SDs of the tem-
poral, longitudinal and interclass variances for the different
distances metric are evaluated. Subsequently, we analyse the
temporal and longitudinal variances of the best distance met-
ric.

SD intersection analysis: According to the percent of in-
tersection between the temporal, longitudinal and interclass
SDs the best distance metric is determined. Thereby, the in-
tersections between the temporal/ longitudinal SDs and the
interclass-SD are used as main evaluation criteria. The lower
the overlap between those SDs, the more suitable is the dis-
tance metric to distinguish between CS-Codes from different
tree logs. In case of a real world application a high percentage
of intersection between the temporal and longitudinal SDs is
very important. Only then a biometric system is robust to tem-
poral and longitudinal variances. In Table 1 the percentages

Distance Metric Temp-Long Temp-Inter Long-Inter
EMD 82.25% 24.66% 33.00%
L1 68.51% 1.31% 6.00%
L2 72.10% 3.77% 14.00%

2D-matching 67.53% 2.86% 13.00%

Table 1: Intersections of the score distributions (SDs)

of intersections between the SDs for all evaluated distance
metrics are listed. The lowest overlaps between the tempo-
ral/ longitudinal SDs and the interclass SD are reached using
the L1 norm (see Fig. 3a). Using the L1 norm, there is an
overlap of 1.31% between the temporal and the interclass SD.
Furthermore, the overlap between the longitudinal and inter-
class SD is very low and accounts 6%. Although, the inter-
class variances are generated using the the same testset the
low overlaps between the temporal/longitudinal SDs and the
interclass SD indicate that it is possible to separate CS-Codes
computed from different tree logs. Considering the temporal
and longitudinal SDs, it is a bit surprising that the overlaps
are very high. In this regard, a detailed analysis of the tempo-
ral and longitudinal SDs brings some interesting insights as
follows.
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Fig. 3: Temporal/longitudinal and interclass score distribution (SD) analysis

Temporal variances: In Fig. 3b the subset structure of
the temporal SD (L1 norm) is illustrated. The labelled subset
areas in the chart illustrate the proportions of the matching
scores between different sessions and are stacked one above
the other. The labels specify the indexes of the sessions used
to compute the matching scores. Overall, the highest CS-
Code distances arise in subsets where one session is compared
to Session #4. This results from storing the CSs in a balanced
climate between Sessions #3 and #4. This caused remark-
able visual changes. Due to the decreasing moisture content,
the contrast and intensity of the annual ring pattern changes
and cracks as well as discolourations arise. As expected, the
lowest CS-Code distances are computed between Sessions 1-
2 and 2-3. All in all, the results indicate that an increasing
time span between two images of the same CS deteriorates
the CS-Code distance.

Longitudinal variances: Finally, the longitudinal vari-
ances (L1 norm) are assessed. It can be assumed that with
an increasing longitudinal distance between two CS slices the
CS-Code distance increases too. The chart in Fig. 4 illus-
trates the mean matching scores for different slice distances
grouped session-wise. For each session the mean CS-Code
distances increase with an increasing slice distance. Lastly,
the chart in Fig. 3c illustrates different subsets of the longi-
tudinal SD. The largest subset labelled "Section 1-2" contains
all matching scores between all slices from the first tree sec-
tion to all slices from the second section. In this particular
case, the slice distances range between 1 to 35 slices. The
second subset "Section 1,2" contains all matching scores be-
tween the slices of the two sections. As in Fig. 4, this subset
is further subdivided into subsets according to the slice dis-
tance of the compared slices. The bottom subset area con-
tains all matching scores with slice distance 1. From bottom
up the slice distance increases. Considering the subset peaks,
the chart illustrates that with an increasing slice distance the
CS-Code distances shift remarkable to higher values.
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Fig. 4: Longitudinal variances - matching score analysis

4. CONCLUSION

In conclusion it can be stated that preliminary expectations
about longitudinal and temporal variances of CSs of tree logs
are confirmed by the results of our experiments. In this work
Gabor-features of CS slice images of a tree log are computed
and compared with respect to the temporal and longitudinal
variances. These variances are related to the robustness of
biometric log traceability using log end images. Results show
that with an increasing time span between two images of the
same CS the CS-Code distance increase too. Furthermore, it
is shown that adjacent CS slices show low CS-Code distances
and with an increasing slice distance the CS-Code distances
increase. Finally, our results indicate that biometric systems
using log end images are able to overcome issues caused by
environmental influences and log length cutting or capturing
different log ends.

In future work more matured features should be extracted
and the performance of a biometric log recognition frame-
work using a real world testset should be assessed.
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ABSTRACT

Recent investigations on biometric log recognition using end
face images indicated that shape information is beneficial
for the biometric system performance. This study assesses
the discriminative power and reliability of geometric features
which are computed by means of segmented cross-sections
and their pith positions.

The experimental evaluation is based on cross-section im-
ages from 150 different logs, for which the ground truth of the
boundary and pith position is known. By assessing the verifi-
cation performance for ground truth data and automated seg-
mentation/ pith estimation procedures this work highlights the
basic discriminative power of geometric log end features and
further validates their reliability in case of using automated
procedures.

Index Terms— Geometric Log End Features, Biometric
Log Traceability, Wood Log Cross-section Analysis

1. INTRODUCTION

Biometric tracking of wood logs is a potential approach to es-
tablish traceability without the necessity for physical markers
like plastic badges or Radio Frequency Identification (RFID)
transponders. A biometric log recognition system based on
log end images could be used to track the ownership from the
forest based industries to further processing companies. An-
other application is to discover illegally harvested tree logs
based on cross-section (CS) images of their stumps [1].

In recent publications [2, 3] we have investigated the gen-
eral applicability and robustness of a texture-feature based
approach [4, 5] for a biometric log recognition system. The
experiments were based on CS slices from three different
logs and the results indicated a high degree of robustness to
temporal, longitudinal and surface variations which arise in a
real world application. Based on these findings we explored
the applicability of fingerprint and iris-recognition based
methods to identify 150 different tree logs in [6]. The best
fingerprint-based approach utilized shape information in the
matching procedure. Furthermore, the iris-based approaches

THIS WORK IS PARTIALLY FUNDED BY THE AUSTRIAN SCI-
ENCE FUND (FWF) UNDER PROJECT NO. TRP-254.

rely on polar-transformation which is based on the CS bound-
ary and pith position. Basically, the results showed that shape
information is required to achieve an acceptable verification
and identification performance. So far, all experiments were
conducted using ground truth (GT) data of the CS boundaries
and pith positions.

The present study has the objective to assess the discrimi-
native power of geometric log end features based on GT data
and to validate their reliability in case of performing auto-
mated CS segmentation (SEG) and pith estimation (PE).

For the experiments the test set used in [6] is used and
different geometric features are extracted based on the CS
boundaries and pith positions. In assessing the verification
performance for GT data this work investigates the basic dis-
criminative power of these features. In validating the reliabil-
ity of geometric features, for different configurations of SEG
and PE approaches, this work contributes to the further devel-
opment of a biometric log recognition system.

Section 2 introduces the utilized SEG and PE approaches.
Subsequently, a set of geometric features based on the CS
boundary and pith position is presented. The experimental
setup and results are presented in Section 3 followed by the
conclusion in Section 4.

2. GEOMETRIC LOG END FEATURES

The computation of geometric log end features relies on the
boundary and the pith position of a CS. Furthermore, the pith
position and CS boundary are required for any CS registration
procedures. Scale and rotational variances can be compen-
sated by rotating the CS around the pith position and scaling
the CS to a certain size. Before describing a set of geometric
log end features, we briefly introduce the utilized SEG and
PE approaches.

2.1. Pith Estimation and CS Segmentation

PE is based on the assumption that local orientations of an-
nual ring patches point into the direction of the pith. For
this purpose, local orientation estimates are computed using
two Fourier spectrum analysis approaches: Peak and Prin-
cipal Component Analysis (PCA) as suggested in [7]. The
image is subdivided into blocks and the intersections of their
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local orientation estimates are summed up in an accumulator
array. This array is smoothed with a Gaussian and the maxi-
mum intersection cell is used as pith estimate.

For SEG the pith position (either the GT or the PE re-
sult) is utilized as initial starting point for the similarity based
region growing procedure suggested in [8]. Similar as for
PE, the input image is subdivided into blocks. Four clusters,
each consisting of four blocks, are initialized close around
the pith position. The subsequent region growing procedure
is based on intensity histogram distances between the blocks
of a cluster which are computed using the Earth Movers Dis-
tance (EMD). Blocks along the cluster boundaries that fulfil
the similarity criteria are added to each cluster until no more
blocks can be added. Finally, the clusters are merged and the
respective concave hull is utilized as SEG result.

2.2. Geometric Feature Extraction

Once the CS boundary and the pith position are determined
several geometric features can be computed [9, p.323ff].
Fig. 1a illustrates an exemplary CS image and in Fig. 1b an
overview of important geometric measurements is provided.
Subsequently, the set of utilized features is presented. ACS
and PCS give the area and perimeter of the CS and BB
specifies the minimum bounding box.

HU Moments (H1−7) = seven invariant image moments pro-
posed by [10].
Zernike Moments (Z) = 10 orders of complex Zernike mo-
ments are computed for the CS shape [11, 12].
Circularity (C) = 4Π · (ACS/P 2

CS), describes how similar to
a circle the CS is.
Rectangularity (R) =ACS/ABB , ratio betweenACS and the
area of the minimum bounding rectangle (ABB).
Eccentricity (E) = BBW /BBH , ratio between width and
height of the minimum bounding box.
Pith Eccentricity (PEC) = distance between the centroid
(CM ) of the CS and the pith position (PP ) normalized using
the width of the BBW .
Centroid distances (CD) = centroid (CM) to border dis-
tances per degree (CDφ, φ ∈ {1◦, . . . , 360◦}) normalized by
maxCDφ.
Pith distances (PD) = the pith to border distances per degree
(PDφ, φ ∈ {1◦, . . . , 360◦}) normalized by maxPDφ.

3. EXPERIMENTS AND RESULTS

The experimental setup is chosen to assess two questions.
First, the general biometric performance of geometric fea-
tures is assessed by using GT data. Second, we validate their
reliability in case of different configurations for SEG and PE.

Testset: For the experiments the same test sets (TS1, TS2)
as in [6] are utilized. TS1 consists of 50 tree logs. Each log
was captured four times with and without flash. To investigate

(a) Exemplary CS image

PP

CM

BB

512 Pixel

PEC

A
CS

P
CS

A
BB

PD

CD

(b) Geometric features

Fig. 1: Geometric feature extraction illustration.

the impact of a clearance cut in the sawmill the ends of eight
logs from TS1 were cross-cut and captured once again, with
and without flash. For TS2 105 strongly bended logs were
captured three times without flash. Commonly, bended logs
show a high amount of reaction wood. This leads to elliptical
shaped CSs. For each CS image the pith position and the CS
border were determined manually.

Computational details For each CS image the CS bound-
ary and pith position is determined using four different con-
figurations. Two approaches for SEG and two for PE are uti-
lized. For SEG these approaches distinguish in using grey
value (SEG-G) or RGB histograms (SEG-C) for computing
the EMD between two blocks. In case of PE the Peak (PE-
PEAK) or PCA (PE-PCA) approach for local orientation esti-
mation are utilized. For each configuration and the respective
PE approach different variations for estimating the pith are
assessed. The first variation (P1) estimates the pith using lo-
cal orientations computed from the entire image (see Fig. 3a).
In the experiments P1 is used as seed point for SEG. The sec-
ond variation (P2) is computed by just using local orientations
within the CS boundary (see Fig. 3b). As shown in [7], local
orientation estimates close to the pith are more circular and
thus the third variation (P3) is computed within the half-sized
CS boundary. P1,P2,P3 are computed using half-overlapping
16x16 pixels blocks. The fourth variation (P4) is computed
like P3 with the difference that a block-overlapping factor of
four is utilized.

Additionally, three variations are computed using a saw
cut suppression mode. This mode computes the orientation

Fig. 2: 1st Row (TS1): Respectively, two CS-Images from
two different logs - one captured with flash and one without
flash. 2nd Row (TS2): Four CS-Images from different logs.
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Fig. 3: Illustration of the pith estimation (PE) variations.

distribution for all local orientations in the considered region.
If the most frequent orientation has a frequency remarkably
higher than the mean plus two times the variance the corre-
sponding magnitudes in all Fourier spectra are zeroed and the
local orientation estimates are recomputed. The saw-cut sup-
pressed PE variations are denoted as P2SS ,P3SS ,P4SS .

For all configurations and the GT data the geometric fea-
tures described in Section 2 are computed. For each feature
the matching scores between all CS-Images of both testsets
are computed and finally the matching scores are normalized.

3.1. Results

Initially, the verification performance of geometric features
based on GT data ( i.e. manually determined pith position
and CS boundary) is assessed. The performance is assessed
for each feature separately and for score level fusion [13,
p.225] for different numbers (k) of features. These are de-
termined using Selective Floating Forward Selection (SFFS)
[14] which is configured to minimize the overlap between the
inter- and intraclass distribution.

Second, the accuracies for the SEG/PE configurations and
the PE variations are considered in detail. The most accurate
PE variation is then utilized as pith estimate to evaluate the
verification performance in case of automated SEG and PE.
Basically, the verification performance is assessed consider-
ing the EER and margin of error (MOE) which is estimated
for a 90% level of confidence using subset partitioning [15].

Groundtruth-based Verification Performance The re-
sults in Table 2 show that several features achieve respectable
EERs. In case of E,PEC,RD,CD and Z the EERs are below
10%. The overall best EER is achieved using PD which
shows an EER of 1.4%. In case of SFFS, the results in Ta-
ble 1 show that the best result is achieved with (PD,CD,Z)
EER=0.54%. Based on these results it can be stated that these
features principally have a high discriminative power.

CS segmentation and pith estimation accuracy The SEG
accuracy is specified by the F-Measure between the GT mask
and the SEG result. The PE accuracy is given as the pixel
distance between the GT and the estimated pith position. In
Table 3 the mean and standard deviations for the accuracies of
all configurations are summarized. SEG-C and SEG-G show
a similar segmentation performance although there are big

SEG/PE k=2 k=3 k=4

GT PD,CD PD,CD,Z PD,CD,Z,R
0.74±0.8 0.54±0.5 0.68±0.6

SEG-G/PE-PCA PD,H4 PD,H4,R PD,H4,R,H7

20.12±2.4 20.07±2.6 20.10±2.3

SEG-G/PE-PEAK PD,C PD,E,C PD,CD,E,C
21.84±2.8 22.52±3.2 23.28±3.2

SEG-C/PE-PCA PD,CD PD,CD,E PD,CD,E,H6

15.75±2.6 15.81±3.1 15.88±3.3

SEG-C/PE-PEAK PD,CD PD,CD,R PD,CD,R,E
15.36±3.4 15.34±3.4 15.61±3.1

Table 1: EER±MOE[%]: SFFS-based score level fusion. Z
is not considered in case of SEG/PE.

differences when considering the particular results for each
CS in detail. This can be observed for the P2 results showing
remarkable PE accuracy differences between the SEG-C and
SEG-G configurations.

Overall PE results for SEG/PE the best accuracy is
reached with SEG-G/PE-PEAK and P4SS . The particular
results are illustrated in Fig. 4. For each log end the mean,
min. and max. accuracy for SEG and PE is depicted. The
chart illustrates that the segmentation accuracies for TS1 are
better than for TS2. This is caused by the deformed CSs in
TS2 (see Fig. 2) which likely show reaction wood on their
end faces. This observation is also visible for the PE accura-
cies which are better in case of TS1. Furthermore, it can be
recognized that there is no direct relationship between SEG
and PE accuracy.

However, the results show that for the GT-based configu-
rations the P2 and P2SS variations achieve the best PE accu-
racies. In difference to the GT-based PE results, the accura-
cies for SEG-C and SEG-G using P3 and P4 are remarkably
better. We assume that this is caused by the segmentation er-
rors which influence the performance of P2 and P2SS . Due to
down-scaling the CS border for P3 and P4 the probability of
using wrong orientation estimates is reduced. In comparing
the results for P3 and P4 to P3SS and P4SS the improved PE
accuracy in case of sawcut suppression is recognizable.
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Fig. 4: Mean, min. and max. accuracies for SEG-G/PE-PEAK
and P4SS grouped by the images of each log end.
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SEG/PE HU1 HU2 HU3 HU4 HU5 HU6 HU7 C R E PEC CD PD Z
GT 11.6±3.1 13.8±3.4 19.7±3.9 25.1±4.5 30.7±5.5 28.2±5.9 29.5±5.3 17.4±5.0 22.1±4.2 8.1±1.8 7.2±1.2 2.8±2.4 1.4±0.7 6.3±1.2
SEG-G/PE-PCA 33.6±2.6 34.1±2.0 39.2±3.5 42.1±1.8 42.4±1.7 37.2±2.6 41.3±2.3 34.8±2.9 40.0±0.4 29.8±2.4 29.1±3.4 28.1±3.2 20.0±2.5 5.6±1.0
SEG-G/PE-PEAK 32.8±2.8 33.7±2.9 38.5±3.5 41.2±2.1 40.6±2.1 37.0±2.5 41.6±2.0 36.0±2.7 38.3±0.7 28.9±2.4 28.6±3.0 27.1±3.5 20.3±3.0 5.6±1.0
SEG-C/PE-PCA 29.7±2.1 31.8±1.9 36.5±3.8 41.7±1.5 44.2±1.2 35.6±2.3 40.6±2.0 29.1±3.2 36.3±2.1 24.0±2.5 27.6±2.9 20.3±3.4 16.6±2.8 5.5±1.1
SEG-C/PE-PEAK 31.0±2.6 32.0±2.6 36.6±3.5 40.6±1.5 41.2±1.3 36.3±2.0 40.3±1.8 30.5±3.1 36.7±0.8 24.1±2.5 26.2±2.9 19.4±3.4 15.2±2.8 5.4±1.0

Table 2: EER±MOE[%] for each geometric feature and all configurations.

SEG/PE F-Measure P1 P2 P2SS P3 P3SS P4 P4SS

GT/PE-PCA – – 18.9 ±20.1 19.5 ±19.6 16.8 ±25.8 15.4 ±18.9 16.8 ±32.9 14.4 ±19.5
GT/PE-PEAK – – 13.2 ±24.9 11.5 ±14.5 20.2 ±33.3 21.3 ±32.0 19.7 ±35.9 22.1 ±38.4
SEG-G/PE-PCA 0.91 ±0.11 24.9±37.1 20.9 ±40.1 21.7 ±42.6 18.5 ±44.2 17.8 ±40.8 17.7 ±44.8 16.5 ±40.6
SEG-G/PE-PEAK 24.0 ±39.3 16.1 ±43.1 15.9 ±42.6 14.8 ±45.1 13.7 ±41.6 14.2 ±45.4 13.0 ±41.6
SEG-C/PE-PCA 0.93 ±0.10 24.9 ±37.1 22.0 ±45.3 23.0 ±47.6 19.0 ±44.2 17.8 ±40.4 17.6 ±44.2 17.1 ±42.5
SEG-C/PE-PEAK 24.0 ±39.3 18.1 ±54.5 18.1 ±53.9 17.2 ±56.9 15.7 ±53.3 17.1 ±57.7 14.7 ±51.5

Table 3: CS segmentation and pith estimation accuracy evaluation.

Real world verification performance Based on the PE ac-
curacy evaluation P4SS is selected for computing the geomet-
ric features in case of automated SEG/PE.

The verification performance results for all configurations
are summarized in Table 1 and 2. Equal as for the GT-based
configuration, the best EERs for each particular feature are
achieved with the features E,PEC,RD and Z. It is astonish-
ing that the Zernike moments show EERs that totally outper-
form the other features. In addition, the EERs computed with
the automated configurations outperform the GT-based EER
achieved with Z.

The intra- and interclass distribution for the best EER =
5.4% (SEG-C/PE-PEAK) and Zernike moments (Z) is de-
picted in Fig. 5a. The chart shows that the intraclass dis-
tribution is splitted into two parts. The left part belongs to
intraclass distances between CS images with a high segmen-
tation accuracy and the right part to distances between worse
segmented CS images.

Regarding all EERs, except the HU features, the results in
Table 2 show that using SEG-C improves all EERs compared
to the SEG-G results. Furthermore, the SEG-G and SEG-
C results show that the PE-PEAK approach achieves better
EERs compared to the PE-PCA approach.

Beneath the Zernike moments, the radial pith and centroid
distances (PD and CD) achieve the next best EERs. For all
configurations PD performs better than CD. The best EER for
PD and the automated configurations is achieved with SEG-
C/PE-PEAK and accounts 15.2 %. Considering all configu-
rations, it can be stated that HU moments are less suited as
geometric CS features. The EERs for each particular feature
indicate that the SEG-C/PE-PEAK configuration is the best
for the computation of geometric features.

Finally, the fusion based EERs presented in Table 1 are
assessed. For the GT-based configuration all fusion results
lead to an improvement of the verification performance. The
fusion of PD,CD,Z achieves an EER of 0.54% (see Fig. 5b).
In case of the automated configurations Z is neglected be-
cause the fusion results were less interesting. However, just
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(a) SEG-C/PE-PEAK: Zernike
moments (Z) - EER=5.4%

0 , 0 0 0 , 2 5 0 , 5 0
0

0,1

0,2

0,3

(b) GT: Fusion of PD,CD,Z -
EER=0.54%.

Fig. 5: Selected intra-, interclass score distributions [ X-Axis:
Matching Score, Y-Axis: Probability]

for one configuration (SEG-C/PE-PCA) the fusion of PD,CD
improves the best EER (16.6%) achieved with PD to 15.75%.
For all other results feature fusion does not improve the EERs
of the automated configurations.

4. CONCLUSION

This work assesses the discriminative power of geometric log
end features and validates their reliability in case of perform-
ing automated CS segmentation and pith estimation. The ex-
perimental evaluation forms a solid basis for the further de-
velopment of a biometric log recognition system.

In case of GT-data the verification performance evaluation
showed that radial distances (CD,PD) and Zernike moments
(Z) show a high discriminative power. Score level fusion of
these features leads to an EER of 0.54%. The validation of
these features for automated segmentation and pith estimation
showed that Zernike moments achieve the highest reliability.
Compared to Zernike moments the EERs for CD and PD are
strongly influenced by automated segmentation and pith esti-
mation.

Future work should investigate the fusion of the best geo-
metric features with annual ring pattern features.
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Tree log identification based on digital cross-section
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Abstract. Tree log biometrics is an approach to establish log traceability from
forest to further processing companies. This work assesses if algorithms devel-
oped in the context of fingerprint and iris recognition can be transferred to log
identification by means of cross-section images of log ends. Based on a test set
built up on 155 tree logs the identification performances for a set of configurations
and in addition the impacts of two enhancement procedures are assessed.
Results show, that fingerprint and iris recognition based approaches are suited for
log identification by achieving 100% detection rate for the best configurations. In
assessing the performance for a large set of tree logs this work provides substan-
tial conclusions for the further development of log biometrics.

1 Introduction

Commonly the term biometrics stands for the study of behavioural or physiological
characteristics to identify living people. But the theoretical background and the concepts
of human biometrics have been carried over to the recognition of plants, vegetables,
animals, industrial products and most relevant for this study to the recognition of tree
logs or boards [20]. This study deals with concepts of fingerprint and iris recognition
and explores their applicability to the identification of tree logs using cross-section
images (CS-Images) of log ends.

In order to close the traceability gap between the forest site and the further process-
ing companies tree log identification is an economic requirement to map the ownership
of each log. Additionally, social aspects have become more important and sustainabil-
ity certificates like Pan European Forest Certification (PEFC) and Forest Stewardship
Council (FSC) are a must have for all end-sellers. Finally, traceability is legally bound
by the European Timber Regulation (EUTR) to prohibit illegal logging in the EU [4].

State-of-the art traceability approaches rely on physically marking each log and in
the past decade huge efforts were taken to push the development of new traceability
approaches. For example, the final report of the Indisputable Key Project [19] promotes
the usage of Radio Frequency Identification transponders to establish log traceability.

First investigations on the hypothesis that logs are separate entities on the basis of
biometric log characteristics were carried out in the works of [2, 3, 5]. For the purpose of
tracking logs within the sawmill 2D and 3D scanners were utilized to extract geometric

∗ This work is partially funded by the Austrian Science Fund (FWF) under Project No. TRP-254.

Tree log identification based on digital cross-section images of log ends using fingerprint and
iris recognition methods

31



2 Rudolf Schraml, Heinz Hofbauer, Alexander Petutschnigg, and Andreas Uhl

wood properties as biometric features. Such devices are not applicable for industrial
usage at forest site.

On account of the fact, that log end faces show features in terms of annual rings,
pith position, shape and dimension it is assumed that CS-Images of log ends can be used
as biometric characteristic to set-up a biometric system. A first work on log biometrics
using CS-Images was presented by [1] as an effort to curb poaching of trees. For this
purpose, pseudo Zernike moments are computed for CS-Images captured from poached
tree stumps and first results were presented for a small testset. The achieved results
were quite good but the extracted features more or less rely on the cutting pattern and
the shape of the CS.

By superficially comparing annual ring patterns of log ends to human fingerprints
one perceives their similarity. Based on this observation, [16] investigated temporal
and longitudinal variances of CS-Images of a single tree log. The authors adopted the
FingerCode approach [7] to compute and compare templates from CS-Images. Further-
more, in [15] the impact of different real world CS variation types on the robustness of
biometric log recognition is assessed. Although the authors draw first conclusions on
the identification performance, the utilized testset is too small and the results are not
convincing.

In considering the identification performance for 150 different tree logs this work
demonstrates that a biometric system using log end images is suited for log tracking.
Additionally to the fingerprint-based approach utilized in [16, 15], this work evaluates
the applicability of well-known iris recognition approaches. Furthermore, it is not clear
to which extent the enhancement procedure utilized in [16, 15] influences the verifi-
cation and identification performance. For this purpose, all approaches are evaluated
with and without enhancement. Results show, that enhancement basically is beneficial
to overcome issues caused by CS variations.

Section 2 introduces the computation and matching of log templates using ap-
proaches from fingerprint and iris recognition. Subsequently, the experimental evalu-
ation is presented in Section 3 followed by the conclusions in Section 4.

2 CS-Code Computation and Matching

An exemplary enrolment and identification scheme for log biometrics is depicted in
Fig. 1. Enrolment of a tree log is performed in the forest. After a tree log is cut and

Template

Computation

log 

template DB
Matcher

log 

identity

 
Identification

Enrolment

Fig. 1: Exemplary enrolment and identification schemes

processed by a har-
vester the log end is
captured by a digital
camera mounted on the
harvester head. Tem-
plates of logs which are
computed by means of
CS-Images are denoted
as CS-Codes. For en-
rolment the computed
CS-Code is stored in
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Title Suppressed Due to Excessive Length 3

the database. Identification can be performed at each stage of the log processing chain
where an appropriate capturing device is available. Typically, identification is required
when a log is delivered to a sawmill. Independent of the template computation approach
procedure the CS-Image is registered and enhanced preliminary. The fingerprint- and
iris-based CS-Code computation schemes are depicted in Fig. 2.

2.1 CS Registration and Enhancement

For registration the pith position and CS boundary have to be determined in advance.
Automated approaches for pith estimation and CS segmentation were presented in [18,
12] and [17], respectively. The CS-Image is rotated around the pith position, cropped
to the CS boundary box and scaled to 512 pixels in width. Rotation is performed to
generate rotated versions of the input image or to align the CS to a unique rotational
position.

The registered CS-Image is then utilized for the enhancement procedure. Com-
monly, the annual ring pattern is disturbed due to cutting and there arise different types
of intraclass CS variations in real world identification scenarios [15]. The purpose of en-
hancement is to strengthen the annual ring pattern contrast and to compensate CS varia-
tions. Similarly to fingerprint enhancement [6], three consecutive stages are performed:
Local orientation estimation, local frequency estimation and local adaptive filtering.
Initially, the CS-Image is subdivided into half-overlapping blocks to reduce boundary
effects caused by local filtering. On the basis of registered CS-Images which are scaled
to 512 pixels in width, 32 × 32 pixels blocks are a good choice in terms of timing
performance and capturing local annual ring pattern information.
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Iris-based Matching
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Iris-based Feature Extraction

F
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Fig. 2: Fingerprint- and iris-based template computation and matching schemes
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In the first stage, the local orientation of each block is determined based on peak es-
timation in the Fourier Spectrum (see [18]). Next, the local orientation field is low-pass
filtered with a Gaussian to correct wrong orientation estimates. Based on the orientation
estimates of each block the corresponding dominant frequency in the Fourier Spectrum
is determined. Therefore, the Fourier Spectrum of each block is subdivided into sub-
bands and sectors and the dominating frequency is defined as the sector sub-band which
shows the maximum integral of its magnitudes. If this sector sub-band does not corre-
spond to the block orientation it is neglected and the local frequency is interpolated
using a Gaussian. Finally, the Fourier Spectrum of each block is filtered with a Log-
Gabor which is tuned to the block orientation and frequency. As in [16] a bandwidth of
three times the variance of the Fourier Spectrum and as spread value the blocksize/4 is
utilized. After filtering, the filtered spectra are inverse transformed and utilized as new
block values.

In this work additionally a variant of this procedure is evaluated which differs in
the local orientation estimation procedure. Initially, local orientations are computed for
each block as described above. Subsequently, the pith position is used to detect wrong
orientation estimates in case the angular distance between the block origin/pith position
and the local orientation estimate exceeds a threshold. Thereby, the threshold for a each
block is specified by t = λ ∗ log(pith distance), where λ is an arbitrary value and the
pith distance is the distance between the block origin and the pith. Thus, the threshold
increases with an increasing pith distance which takes into account that annual rings
close to pith are more circular. For each local orientation estimate which exceeds this
threshold the estimate is replaced by the direction to the pith position. All further steps
are performed like as for the first approach (exemplary enhancement results see Fig. 6).

2.2 Fingerprint-based CS-Codes

Same as in [16, 15] the FingerCode approach is adopted to compute and compare CS-
Codes from CS-Images. With intent to capture different annual ring pattern frequencies
the utilized Gabor filterbank is built up on six different filters and for each filter eight
rotated versions are created.

CS-Code computation is performed in three stages: First, the registered and en-
hanced CS-Image is filtered with each filter in the filterbank. The filtered images are
further subdivided into blocks (e.g. 16 × 16 pixels). For all blocks of each filtered im-
age, the grey value standard deviations are computed and stored into a matrix. Values
of blocks which are not within the CS border are assigned with a marker value. These
markers are used to discriminate between background and CS in the matching proce-
dure. All matrices are stored as a one-dimensional vector.

Compared to fingerprints, the rotational misalignment range of a CS-Image is not
restricted to a certain range. Rotational variances are compensated by repeatedly com-
puting features for rotated versions of the input CS-Image. All feature vectors computed
for different rotations (Θ1, . . . , Θn) compose the CS-Code of a CS-Image.

Matching procedures Matching between two CS-Images is performed by computing
the minimum matching score (MS) between all feature vectors (Θ1, ..., Θn) of the CS-
Codes from both CS-Images.
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Three different matching procedures are evaluated to investigate the impact of in-
cluding shape information. The MS is computed by:

MS(CS1, CS2) =
1

M

n∑

i=0

D(CS1(i), CS2(i)) (1)

where CS1, CS2 are two feature vectors of the CS-Codes which are compared, i speci-
fies the index of the feature value in both vectors and MCS1,MCS2 are masks which
allow to differentiate between background and CS.

The first matching procedure MSAP uses a distance function which just uses fea-
ture value pairs which are in the intersection of both CSs . For normalization, M is
defined by the amount of considered feature value pairs: M = |MCS1 ∩ MCS2|.
Thus, this procedure relies on the discriminative power of the annual ring pattern.

DAP =

{
|CS1(i)− CS2(i)| if i ∈MCS1 ∩MCS2

0 otherwise
(2)

For the second procedure MSAP&S the distance function DAP&S includes a penalty
value PAP&S . The penalty is added to all feature value pairs which are in the symmetric
difference of the CS masks and for normalization M = |MCS1 ∪ MCS2| is used.
Hence, the MS increases for differently shaped CSs. PAP&S is defined by the mean
value of the feature value distributions of both feature vectors.

DAP&S =





|CS1(i)− CS2(i)|+ PAP&S if i ∈MCS1 4 MCS2

|CS1(i)− CS2(i)| if i ∈MCS1 ∩ MCS2

0 otherwise

(3)

Finally, the third procedure uses score level fusion of the MSAP score and the False
Negative Rate (F) which is computed for (MCS1,MCS2). F is defined as the ratio
between the symmetric difference of the two masks and total amount of pixels in the
smaller mask. For score level fusion MSAP and F are normalized using the factors
σAP , σF . They are precomputed based on the feature value ranges of MSAP and F so
that they become equally weighted in the score level fusion.

F =
MCS1 4 MCS2

min(|MCS1|, |MCS2|)
, MSAP,F =MSAP · σAP + F · σF (4)

2.3 Iris-based CS-Codes

The pith of a cross-section is a unique feature which can be used as reference point. In
combination with the CS border it is used to polar transform CS-Images. In this work
polar transformed CS-Images are treated like polar iris images and it is evaluated if iris
feature extractors and comparators are applicable for log biometrics.

For this purpose, the registered and enhanced CS-Image is transformed by using bi-
cubic interpolation. For normalization each pixel in the polar image is stretched accord-
ing to the max. pith to border radius. Two different formats for the polar-transformation
are evaluated. The first is equal to the usual format demanded by many iris feature
extractors: 512 × 64 pixels. Compared to the size of the iris, CSs are larger and the
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r

r

Fig. 3: CS-Image polar transformation scheme

transformation is not re-
stricted to an annular shaped
ring. In case of more than
64 annual rings the com-
mon polar transformation
format of 512 × 64 pixels
causes a loss of informa-
tion. Because of that and the
quadratic format of the registered CS-Images, in addition a format of 512× 512 pixels
is evaluated. The polar transformation scheme is depicted in Fig. 3 and exemplary polar
transformed CS-Images for both formats are shown in Fig. 6. For iris recognition based
CS-Code computation and template matching the USIT package [14] is utilized.

3 Experiments

In the experiments the verification and identification performances for different config-
urations are assessed. Introductory, the testset is outlined and the experimental setup
for the utilized configurations is described (see Section 3.1). Finally, the results are
presented and discussed in Section 3.2.

Testset Two testsets (TS1 and TS2) are utilized. For TS1 50 different tree logs were
captured four times with and without flash. Additionally, the ends of eight logs were
cross-cut and captured once again, with and without flash. In TS2 105 logs were cap-
tured three times without flash. For each CS-Image the pith position and the CS border
were determined manually and are utilized for the experiments.

3.1 Experimental Setup

For all CS-Images of the testsets CS-Codes and MSs were computed for different con-
figurations and enhancement procedures. Subsequently, the setup for the enhancement
procedures and the different CS-Code computation approaches are outlined.

Fig. 4: Testset One (TS1): Each row shows four CS-Images of a single log. The first two
CS-Images illustrate the difference of capturing the log end with and without flash. The
latter two images are taken after the log end was cross-cut, with and without flash.
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Fig. 5: Testset Two (TS2): CS-Images from 4 logs

Enhancement The first procedure, entitled as ENH1, is equal to the procedure sug-
gested in [16]. As described in Section 2.1 the second just differs in the local orientation
estimation procedure and is entitled as ENH2. For comparison, all configurations are ad-
ditionally evaluated without enhancement ENHNO. Exemplary results for ENHNO and
ENH2 are shown in Fig. 6.

Fingerprint (FP) configurations Rotational variances are compensated by computing
feature vectors for rotations in the range from−15◦ to 15◦. The CS-Codes are computed
using 16×16 non-overlapping blocks and the Gabor filterbank is build up on six differ-
ent filters tuned to 8 directions: G(λ, θ, σ, γ) = G(λ, σ) = ((1.5, 2), (2.5, 2), (3.5, 3),
(4.5, 3), (5.5, 3), (6.5, 3)), θ = {0, 22.5, ..., 135, 157.5}, γ = 0.7

Iris configurations Different configurations based on the feature extractors and com-
parators provided by the USIT package [14] are utilized. Compared to iris images, the
resolution of CS-Images is higher and the polar transformation is not restricted to an
annular ring.

(a) ENHNO (b) ENH2 (c) 512×512 ENHNO (d) 512×512 ENH2

(e) 512×64 ENHNO

(f) 512×64 ENH2

Fig. 6: Illustration of the impact of enhancement for CS-Image #2 - TS2. The original
CS-Image is depicted in the top left image of Fig. 5.
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In case of 512×64 pixels we utilize the following feature extractors: lg [11], ko [8],
cr [13] and qsw [9]. Except for ko which uses koc as comparator all MSs are computed
using the Hamming distance (hd).

For 512 × 512 pixels polar CS-Images the lg algorithm was extended to formats
bigger than the 512 × 64 in accord with the original algorithm by defining the region
of interest (ROI) through a number of rows r with a height hr. Like the original, a
row is condensed into a 1-D signal which is run through the Gabor filtering process.
Since it is not clear which configuration of r and hr is best we choose to use a vari-
ance of combinations, including combinations where the ROI does not span the whole
polar-transformed CS-Image. However, unlike the iris biometry case which excludes
the outer iris boundary, which frequently exhibits occlusions by cilia, we choose to ex-
clude the inner residual part of the polar CS-Image. This part consists of a low number
of pixels which are stretched to the polar CS-Image width, thus providing nearly no
usable information. Note that the size of the feature vector is dependent on hr.

Furthermore the algorithm by Ko et al. was simply adopted by allowing bigger tex-
tures without adapting the cell-size which is averaged. Note that as a result the length of
the feature vector increases with the size of the texture. Rotational variances are com-
pensated by shifting the CS-Codes in a range between −7 to 7 feature vector positions.

3.2 Results and Discussion

The experimental evaluation is performed in two stages. First, we evaluate the verifi-
cation and identification performance for all configurations. Based on the Equal Error
Rates (EERs) and Rank 1 recognition rates conclusions on the general applicability of
the FP and iris approaches and the impact of enhancement are presented. Second, a
closer examination on the intra- and interclass matching score distribution (SD) subsets
points out how the enhancement and CS variations affect the intra- & interclass sepa-
rability and thus the biometric system performance. Note that the intra- and interclass
SDs correspond to the genuine and impostor distributions in biometrics [10].

Configuration ENHNO ENH1 ENH2

FP

MSAP 15.7 1.7 0.9
MSAP&S 1.85 0.74 0.68
MSAP,F 1.53 0.37 0.17

IR
IS

51
2x

51
2 lg, hd(16/32) 0.21 0.68 0.82
lg, hd(50/10) 0.16 0.72 0.32
lg, hd(64/08) 0.16 0.76 0.51
ko, koc 2.73 4.88 4.24

IR
IS

51
2x

64

cr, hd 5.27 3.41 4.97
lg, hd 1.34 3.64 5.42
qsw, hd 3.44 5.73 8.33
ko, koc 4.95 8.09 7.35

Table 1: EERs [%] for the FP and iris
configurations

Verification Performance Evaluation The
EERs for all configurations computed for TS1

and TS2 are depicted in Table 1. Most impor-
tant for this work, most of the EERs are quite
low and show a high degree of separability be-
tween the intra- and interclass SD for a large
set of tree logs. Same as in [15] the EERs of
the FP configurations show that shape infor-
mation improves the verification performance.

ExceptMSAP , all other configurations in-
clude shape information in some way, e.g. the
polar transformation relies on the CS bound-
ary. Basically, the results for MSAP show the
discriminative power of the annual ring pattern
solely and it is very amazing that MSAP and
ENH2 achieves an EER of 0.9%.
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As expected, the utilized enhancement procedures improve the EERs of all FP con-
figurations. Furthermore, the results of the FP configurations show that ENH2 leads to
better EERs than ENH1.

For the iris configurations enhancement does not improve the EERs. This is very
likely caused by the block artefacts of the enhancement procedures which are carried
to the polar CS-Images. The best EERs for the iris configurations are reached using lg
as feature extractor. Furthermore, the different variations for lg in terms of number of
rows and row height lg, hd(r / hr) show that an increasing number of rows improves
the verification performance. Overall configurations the best EERs are achieved using
lg, hd(50,10) and lg, hd(64,08). Although lg, hd(50,10) ignores 12 pixel of each image
the results are equal to the second configuration. Regarding the two different polar
transformation formats, the results show that the larger format improves the EERs for
the feature extractors which are assessed for both formats (lg and ko).

In Fig. 7 the intra- and interclass SDs for selected FP and iris configurations are
depicted in the first and second row, respectively. These charts point out a significant
difference which is not recognizable when considering just the EERs. Basically, they
illustrate that the intra- and interclass SDs of the depicted FP and iris configurations are
statistically significantly different.

For the FP configurations the charts for the three different matching procedures
(ENHNO) illustrate that by including shape information the separability is improved.
Compared to the FP configurations, the interclass SDs of the iris configurations show a
low variance and are thus narrow shaped. On the other hand, the intraclass SDs show
a high variance and are broad shaped. Thereby, an increasing number of rows enforces
this observation and the separability increases.

Inter Intra
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Fig. 7: Intra-, Interclass SDs for selected FP and Iris configurations
(ENHNO). [ X-Axis: Matching Score, Y-Axis: Probability]
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Fig. 8: Identification performance evaluation - Rank 1 detection rates.

3.3 Identification Performance Evaluation

An overview on the identification performance is depicted in Fig. 8. For each config-
uration, the Rank 1 recognition rates are given for TS1, TS2 and for the combination
of both (TS1 & TS2). Results show, that the recognition rates for TS1 are lower than
for TS2. The total recognition rate for TS1 & TS2 is somewhere in-between. The lower
rates for TS1 are caused by the higher degree of CS-variations in TS1.

For the FP configurations each matching procedure achieves 100% recognition
rate for at least one enhancement procedure. Surprisingly, nearly all iris configurations
which use lg and 512 × 512 pixels achieve a recognition rate of 100% independent of
the enhancement.

3.4 Intra-, Interclass Subset Analysis

In order to illustrate the impact of the testset structure and the enhancement procedures
on the performance an analysis of the intra- and interclass SD subsets is presented. For
this purpose, the cumulative distribution functions (CDFs) of the intra- and interclass
SDs of each testset are considered individually for MSAP (without and with enhance-
ment). The intraclass CDFs in Fig. 9a illustrate that the intraclass MSs of TS1 are infe-

TS1/TS2-INTER TS1-INTRA TS2-INTER

TS2-INTRA TS1-INTER

0 . 0 0 0 . 2 5 0 . 5 0 0 . 7 5 1 . 0 0
0

0.25

0.5

0.75

1

(a) MSAP / ENHNO

0 . 0 0 0 . 2 5 0 . 5 0 0 . 7 5 1 . 0 0
0

0.25

0.5

0.75

1

(b) MSAP / ENH2

Fig. 9: CDFs for the intra-/ interclass SD subsets of two selected configurations.
[ X-Axis: Matching Score, Y-Axis: Probability]
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rior than those from TS2. Thereby, Fig. 9b shows that ENH2 reduces this difference and
the intraclass CDFs get closer and shift to the left. Although the interclass CDFs also
shift slightly to the left the overlap between the intra- and interclass CDFs decreases
and thus the performance is improved. The inferior intraclass MSs of TS1 are caused
by CS variations included in TS1.

The CDFs for all intraclass SD subsets of TS1 computed with MSAP / ENHNO are
shown in Fig. 10. As expected, the CS-Images captured with and without flash (F, NF)
are quite similar to each other. Furthermore, CS-Images of CSs captured with flash (F)
are more similar to each other than those captured without flash (NF).

NF NF-F F NF-CNF NF-CF

F-CNF F-CF CNF-CF

0 . 1 0 0 . 1 5 0 . 2 0 0 . 2 5 0 . 3 0 0 . 3 5 0 . 4 0 0 . 4 5 0 . 5 0 0 . 5 5 0 . 6 0
0

0.25

0.5

0.75

1

Fig. 10: Intraclass SD Subset Analysis for TS1. NF =
No Flash, F = Flash, CNF = Cut No Flash, CF = Cut
Flash. [ X-Axis: Matching Score, Y-Axis: Probability]

MSs computed between CS-
Images captured without and
those with flash (NF-F) show
up inferior MSs. Finally, and
as investigated in [16, 15] the
chart illustrates the impact
of cross-cutting the log end
on the performance. Match-
ing scores computed between
the initial log end CS-Images
and the cross-cut log end CS-
Images are shown in the sub-
sets: F-CF, F-CNF, NF-CF and
NF-CNF. Fig. 10 illustrates
that these subsets show in-
ferior MSs compared to the
other subsets.

4 Conclusions

This work demonstrates that FP and iris recognition based approaches can be success-
fully transferred to the field of wood log tracking. Based on the variety of 155 logs the
results are a first indication for the applicability of log biometrics to log identification.

In case of the FP recognition based approach the best results were achieved by
including shape information in the matching procedure MSAP,F . Furthermore, the re-
sults show that the performance of the FP configurations is significantly improved by
the enhancement procedures. For the iris recognition based approaches the best results
were achieved using lg features and hd as comparator. Thereby, a larger format and an
increasing number of rows for the feature extraction is beneficial for the performance.

In the identification performance experiments the FP based approach and all iris
configurations which use lg and 512×512 pixels achieve 100% detection rate at Rank 1.
It can be concluded that Gabor features are well suited to extract discriminative annual
ring pattern features.

Future research should deal with the impact of automated pith estimation and CS
segmentation on the biometric system performance.
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a b s t r a c t

Log traceability in the timber based industries is a basic requirement to fulfil economical, social and legal
requirements. This work introduces biometric log recognition using digital log end images and explores
the robustness to a set of log end cross-section (CS) variations. In order to investigate longitudinal and
surface CS variations three tree logs were sliced and captured in different sessions. A texture feature-
based technique well known from fingerprint recognition is adopted to compute and match biometric
templates of CS images captured from log ends. In the experimental evaluation insights and constraints
on the general applicability and robustness of log end biometrics to identify logs in an industrial
application are presented. Results for different identification performance scenarios indicate that the
matching procedure which is based on annual ring pattern and shape information is very robust to log
length cutting using different cutting tools. The findings of this study are a further step towards the
development of a biometric log recognition system.
� 2015 The Authors. Published by Elsevier B.V. This is anopenaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Many efforts had been made in the past in order to investigate
illegal logging, its associated causes and how to prevent from ille-
gal logging in future. Besides corruption on different governmental
authority levels and land reclamation for mining, plantations or
agriculture, illegal logging is known to be one of the main driving
forces promoting deforestation (Richards et al., 2003; Smith et al.,
2003; Kuemmerle et al., 2009). Deforestation is a phenomenon
comprising timber harvesting, timber trade and disposal occurring
around the world and affects biodiversity, hydrological cycles and
contributes considerably soil erosion.

These problems were officially addressed at the UN Conference
on Environment and Development (UNICED) held in Rio de Janeiro
in 1992 and concluded in a document called Agenda 21. This
document provides voluntary commitments on sustainable
forest management and development and offers a basis for

non-governmental, independent forest certification (United
Nations, 1992). According to a report supported by the World Bank
in 2003, illegal logging is still considered a major threat to the envi-
ronment (Dykstra et al., 2003). Efforts in fighting illegal logging on
the EU level led to the Forest Law Enforcement Governance and
Trade Action Plan (FLEGT) defined in 2003 and the EU Timber Reg-
ulation (EUTR) prohibiting the trade of illegally harvested timber
and wood products derived therefrom. This regulation, initially
proposed by the Commission in 2008, is legally binding on all EU
member states, each being responsible for national implementa-
tion, and has come into force since March 2013. This regulation
claims traceability of timber and timber products throughout the
supply chain providing information on operators, traders and, if
possible, of retailers (EuropeanParliament, 2010).

Traceability of timber and wood products is generally expected
to restrict illegal logging and is supposed to benefit companies and
consumers (Tzoulis and Andreopoulou, 2013). In fact empirical
information on quantities, and links to internationally traded wood
are indispensable in order to assess causal relationships for illegal
logging and to take effective steps preventing deforestation in
future (Kastner et al., 2011). A contemporary managed database
in conjunction with log labelling would certainly provide this
information and serves as basis to impede illegal logging, fraud
and misuse in future.
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A wide variety of log traceability systems have been applied in
order to identify and track logs in the past. Each method so far has
shown limitations due to costs, practical implementation or
weather conditions. The applications range from punching, color-
ing or barcoding log ends to more recently developed techniques
as DNA fingerprinting and usage of RFID transponders (Tzoulis
and Andreopoulou, 2013).

Another approach is to track logs using biometric log character-
istics. Investigations on the hypothesis that logs are separate
entities on the basis of biometric log characteristics were pre-
sented in the works of Chiorescu and Grönlund (2003, 2004),
Flodin et al. (2007, 2008a,b), which highlight the potential of bio-
metric log recognition. The approaches presented in Chiorescu
and Grönlund (2003, 2004) and Flodin et al. (2008a) utilized 2D
and 3D scanners to extract geometric wood properties for tracking
logs within the sawmill environment. The utilized capturing
devices are however, not applicable at forest site. Furthermore,
Flodin et al. (2007, 2008b) showed that knot positions as biometric
features are suited to enable traceability between logs and the cut
boards, reaching a recognition rate of 95%. On account of the fact
that timber offers characteristics on log end faces in terms of
annual rings, pith position, shape and dimension it is assumed that
cross-section images of log ends can be used as biometric charac-
teristic for log identification. Approaches for pith estimation and
annual ring measurements in images of rough log ends were pre-
sented in Norell and Borgefors (2008), Schraml and Uhl (2013),
Marjanen et al. (2008) and Norell (2009), respectively. Images
containing a cross-section (CS) of a wood log are denoted as
cross-section images (CS-Images) throughout this work.

A first work on log biometrics using CS-Images (log end biomet-
rics) was presented in Barrett (2008) as an effort to curb poaching
of trees. In the experimental evaluation digital images of tree
stumps and the corresponding log ends are utilized, both showing
up strong saw kerf patterns. Results show that the combination of
log end shape and saw cut pattern information, represented by
Zernike polynomials, achieves a high accuracy for log to stump
recognition. In Schraml et al. (2014) temporal and longitudinal
annual ring pattern variations were investigated based on
time-delay captured CS-Images of 35 slices from a single log.

By using CS-Images from 150 different logs (Schraml et al.,
2015a) showed that fingerprint based and iris-recognition based
approaches are suited to achieve 100% identification accuracy. It
turned out that, in addition to annual ring pattern information
shape information is required to achieve this accuracy. Based on
this observation in Schraml et al. (2015b) the discriminative power
for a set of geometric log end features was validated.

In this study we elaborate the robustness of log end biometrics
to practical issues of an industrial application. Different CS-Images
of the same log end show up strong variations. For example,
CS-Image capturing and weather conditions may lead to strong
variations: e.g. varying image quality caused by motion blur or dif-
ferent lighting conditions and snow or dirt which covers parts of the
CS. These variations are not considered in this work. Furthermore,
industrial log processing causes specific types of CS variations. For
this work we focus on longitudinal and surface variations of
cross-sections (CSs). Longitudinal variations result from log end
cutting and surface variations arise when different cutting tools
are utilized for the first cut, in the forest, and the clearance cut,
by further processing company (e.g. chain-saw and circular-saw).

The experimental evaluation is based on a testset which con-
sists of 99 CS-Slices from three different tree logs. In addition to
the 35 CS-Slices from the single log used in Schraml et al. (2014),
64 CS-Slices from further two logs are utilized. By assessing two
objectives this work contributes to the ongoing research on log
end biometrics.

The first objective is to investigate the verification performance
with respect to the impact of surface and longitudinal variations on
the intraclass variability and the separability between the intra-
and interclass score distributions. In this context we also assess
whether the CS surface has an impact on the longitudinal
variations of each log.

The second objective is to investigate the identification perfor-
mance. Initially, the basic impact of surface and longitudinal vari-
ations on the identification performance is assessed. Second,
different real world-like identification scenarios are evaluated.

First, Section 2 introduces the computation and matching of
biometric templates from CS-Images. The experimental setup is
presented in Section 2.4 followed by the results in Section 3.
Section 4 concludes this work and in Section 5 directions for future
work are outlined.

2. Materials and methods

By superficially comparing the patterns of human fingerprints
to annual ring patterns of wood log ends, one finds a close resem-
blance. Human fingerprint recognition is well-investigated and
there exist mainly three groups of approaches: Minutiae-based,
Correlation-based and Feature-based approaches (Maltoni et al.,
2009). Apart from the presence of the pith as detectable feature,
CS patterns do not exhibit further constant features like minutia’s
in fingerprints. Hence, minutiae-based approaches are not quali-
fied for log CSs.

Basically, the scheme of a biometric recognition system is set up
on five components: Data acquisition, Preprocessing, Feature
Extraction, Template Generation and Template Matching. In case
of log end biometrics, data acquisition is the capturing of digital
CS-Images of log ends. For preprocessing the CS in the CS-Image
is separated from the background, aligned and subsequently the
CS is enhanced. Due to the ability of feature-based methods to cap-
ture information of the fingerprint ridge pattern they can be
extended to work with CS patterns. We have adopted the texture
feature-based FingerCode approach by Jain et al. (2000, 2001) to
extract features from CS-Images. The extracted features of a CS-
Image are stored as feature vector into the biometric template
which we denote as cross-section code (CS-Code). The CS-Code of
a CS-Image is composed by a set of feature vectors which are
computed for differently rotated versions of the CS-Image.

Finally, templatematching is the task of verificationor identifica-
tion of an individual or subject. In case ofwood logs, identification is
required. For this purpose, the individual/subject must be enrolled
in the biometric system. In Fig. 1 exemplary enrolment and identifi-
cation schemes are depicted. Enrolment could be done during the
harvesting procedure in the forest. A digital camera mounted on a

Template

Computation

log 

template DB
Matcher

log 

identity

Identification

Enrolment

Fig. 1. Exemplary enrolment and identification schemes for a biometric log
recognition system. The enrolment can be done in the forest using a digital camera
mounted on a harvester.
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harvester (e.g. Mattila and Viittanen, 1999) could be utilized to cap-
ture one end of each fresh cut log. Subsequently, the first four steps
of the biometric system chain are completed and the computed log
template (CS-Code) is stored in a database. Additionally, informa-
tional meta data can be assigned to each log template: On the one
hand the harvester operator can assign visually observed informa-
tion and the ownership of each log. Furthermore, geometric mea-
surements of the harvester head and the geospatial position of the
log origin can be appended. On the other hand automated CS analy-
sis can be performed to estimate properties related to the quality of
each log, e.g. annual ring counting to estimate the strength or detec-
tion of quality related wood properties like reaction wood.

Now identification of each log can be performed at each stage of
the log processing chain. CS-Images for identification in the sawmill
could be captured at the sorting station, at the sawmill yard or at any
conveyor belt equipped with a capturing device. Subsequently, the
CS-Image is processed by the biometric system and a log template
is computed which is matched to all log templates in the database.
If the matching score (MS) exceeds a certain system threshold the
best match specifies the identity of the log. Furthermore, additional
meta data can be retrieved or appended from/to the log record in the
database. Templates of logs which were further processed and are
no longer required should be removed from the database. May the
log template is passed to another biometric system which enables
board tracking (biometric approach: Pahlberg et al., 2015) and con-
nects each board to the log template from which it descends. How-
ever, for chain of custody certification specific log template
information has to be linked or passed through to the final product.

In the next three sections a detailed introduction on preprocess-
ing (Section 2.1), CS-Code computation (Section 2.2) and three
matching procedures (Section 2.3) between two CS-Codes is given.
Finally, in the last Section 2.4 basics for the experimental evalua-
tion are introduced.

2.1. Cross-section registration & enhancement

Due to the cutting pattern annual ring enhancement is a crucial
task for any subsequent feature extraction procedure. As opposed
to human fingerprints, the frequency of the annual ring pattern
is strongly varying. Similar as in our previous works (Schraml
et al., 2014, 2015a) enhancement is based on the fingerprint
enhancement approach presented by Hong et al. (1998). In
Schraml et al. (2015a) we showed that a slight variation of the pro-
cedure utilized in Schraml et al. (2014) further improves the bio-
metric system performance and is thus also used in this work.

Preliminary to enhancement the CS in a CS-Image has to be reg-
istered. For registration, the CS border and pith position have to be
determined (e.g. Schraml and Uhl, 2014, 2013; Norell and
Borgefors, 2008). Subsequently, the CS-Image is rotated around
the pith position, cropped to the CS bounding box and finally
scaled to 512 pixels in width (see Fig. 2). Rotation can be per-
formed to generate rotated versions of each CS-Image or to align
the CS to a unique position (e.g. according to the center of mass).

For enhancement three consecutive stages are performed: Local
orientation estimation, local frequency estimation and local adap-
tive filtering. First, the CS is subdivided in half-overlapping blocks
(e.g. 32 � 32 pixels). Half-overlapping blocks are used to reduce
boundary effects caused by local filtering. For each block principal
component analysis of the local Fourier spectrum is performed to
determine its local orientation (see Schraml and Uhl, 2013). Com-
monly, CSs are disturbed, due to cutting,which leads to faulty orien-
tation estimates. For this purpose the local orientation is compared
to the direction given by the block-centre to pith position vector
(block-pith vector). If the angular distance between the local
orientation estimate and the block-pith vector orientation
exceeds a certain threshold (t) the local orientation estimate is

considered being wrong. For each block t is defined by
t¼ k � logðpith distanceÞ, where k is an arbitrary value and the pith
distance is the length of the block-pith vector. Thus, the threshold
increases with an increasing pith distance which takes into account
that annual rings close to pith are more circular. Local orientation
estimates which exceed this threshold are replaced by the block-
pith vector orientation.

Next, for each block and its local orientation the dominant
frequency is determined. For this purpose, the local Fourier spec-
trum of each block is subdivided into sub-bands and sectors. For
each sector and each particular sub-band the integral of the con-
tained magnitudes is computed. The sector sub-band which shows
the maximum sum of magnitudes represents the dominating
frequency. If the local orientation which corresponds to this sector
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sub-band is not the same as the previously determined block ori-
entation it is neglected. In this case the local frequency is interpo-
lated using a Gaussian.

Finally, in the filtering stage the Fourier spectrum of each block
is filtered with a Log-Gabor (introduced by Knutsson and Granlund,
1983) which is tuned to the local orientation and frequency of the
corresponding block. Similar as in Schraml et al. (2014, 2015a) a
bandwidth of three times the variance of the Fourier spectrum
and a spread value of blocksize/4 are utilized. The filtered Fourier
spectra are inverse Fourier transformed and the results are subse-
quently used as new block values. An exemplary result of the reg-
istration & enhancement procedure is depicted in Fig. 2.

2.2. Cross-section code computation

The CS-Code computation is based on the FingerCode approach
proposed in Jain et al. (2000, 2001). This technique utilizes a
Gabor-based descriptor which extracts local ridge orientations of
a fingerprint. Because of the constant ridge frequencies in human
fingerprints a single Gabor filter and its rotated versions are suffi-
cient. The frequencies of annual ring patterns are strongly varying
and thus different Gabor filters are required to capture additional
information from the annual ring frequencies in different orienta-
tions. For a CS-Image width of 512 pixels six different Gabor filters
are suggested. For each Gabor filter eight rotated versions are cre-
ated. Consequently, the Gabor filterbank consists of 48 filters:

Gðk; h;r; cÞ ¼ Gðk;rÞ
¼ ðð1:5;1Þ; ð2:5;2Þ; ð3:5;3Þ; ð4:5;3Þ; ð5:5;3Þ; ð6:5;3ÞÞ;

h ¼ f0;22:5; . . . ;135;157:5g; c ¼ 0:7

Feature extraction (Fig. 2) is performed in three stages. In the
first stage the enhanced CS-Image is filtered with each filter in the
filterbank. Each filtered image is subdivided into blocks (8 � 8 pix-
els). For all blocks of each filtered image the gray value standard
deviations are computed and stored into amatrix, which is denoted
as Standard Deviation (StDev) map. Altogether 48 StDev maps are
computed and are stored as one-dimensional feature vector (h) in
the CS-Code. Blockswhich are not within the CS border are assigned
a marker value which is relevant for CS-Code matching. Further-
more, two CS-Images of the same log end or CS-Slice can be rotated
differently. Rotational differences are compensated by computing
feature vectors for rotated versions of the input CS-Image in the
expected misalignment range. Although the misalignment range
in this work is much smaller, feature vectors for 180 rotations in
two degree steps are computed and used for matching. Hence, it
can be evaluated if there exist rotated versions of two CS-Slice
images from different tree logs which are incidentally similar to
each other. All feature vectors computed for different rotations
(h0; h2; . . . ; h356; h358) compose the CS-Code of a CS-Image (see
Template Generation in Fig. 2).

2.3. Cross-section code matching

In contrast to fingerprints where the shapes are commonly not
utilized, the CS shape is obviously a biometric feature itself. By
investigating three different matching procedures the discrimina-
tive power of the annual ring pattern, the shape and a fusion of
both is evaluated.

Thefirst procedurewhich just considers annual ring pattern infor-
mation is denoted as annual ring patternMS (MSAP) and is defined as
the minimumMS between the feature vectors of both CS-Codes:

MSAPðCS-Code1;CS-Code2Þ ¼ minMSðhi; hjÞ
where hi 2 CS-Code1ðh0; . . . ; h358Þ;
hj 2 CS-Code2ðh0; . . . ; h358Þ

ð1Þ

Due to interpolation in the registration procedure (rotation and
scaling) the best MS is achieved when comparing all feature vec-
tors of both CS-Codes. The MS between two feature vectors of
two CS-Codes is computed by:

MSðhi; hjÞ ¼ 1
M

Xn
k¼0

DðhiðkÞ; hjðkÞÞ ð2Þ

where hi; hj are two feature vectors of the CS-Codes which are com-
pared, k specifies the index of the feature value in both vectors, n is
the max. number of feature values and M is a normalization factor.
The utilized distance function is given by:

D ¼ jhiðkÞ � hjðkÞj if k 2 MCSi \MCSj
0 otherwise

�
ð3Þ

As noted in Section 2.2, background feature values are specified
by a certain marker. Hence, we define MCSi and MCSj as the corre-
sponding masks of the feature vectors which allow to differentiate
between background and CS. Just feature vector value pairs which
are in the intersection of both CSs are utilized for computing MSAP
and the score is normalized by the amount of the considered fea-
ture value pairs: M ¼ jMCS1 \MCS2j.

The second procedure (MSF) is a measure describing the similar-
ity of the shapes of two CSs. MSF is defined as the minimum False
Negative Rate (F) between the masks of the feature vectors of both
CS-Codes:

MSFðCS-Code1;CS-Code2Þ ¼ min FðMCSi;MCSjÞ ð4Þ
The False Negative Rate (F) between two different masks

(MCSi;MCSj) is computed by:

F ¼ MCSiDMCSj
minðjMCSij; jMCSjjÞ ð5Þ

Finally, the last procedure (MSAP;F) is based on score level fusion
(Jain et al., 2011, p. 225) of MSAP and MSF . For score level fusion
both scores are combined using different scaling factors (see Eq.
(6)). The scaling factors (rAP;rMSF ) are determined from their score
distributions to ensure that both contribute equally to the com-
bined MS.

MSAP;F ¼ MSAP � rAP þMSF � rF ð6Þ

2.4. Experimental setup

2.4.1. Testset
The experimental evaluation is based on cross-section slices

(CS-Slices) from three different European spruce logs (Log 1 – L1,
Log 2 – L2, Log 3 – L3). For L1 and L2, a section of 40 centimetres
was cut into 16 CS-Slices. The CS-Slices were cut with a bandsaw
and the thickness of each CS-Slice is approximately 2.5 centime-
tres. The sections of L1 and L2 were showing a diameter of around
230 mm and 290 mm respectively.

3 spruce logs

Lo
ng

itu
di

na
l v

ar
ia

nc
es

16/16/35 = 67 CS-Slices

sliced with

a bandsaw

Fig. 3. In total 67 CS-Slices from three different logs are cut-off.
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Subsequently, just one surface of each CS-Slice was captured
two times (Nikon D90). The first CS-Image was taken from the
fresh cut CS-Slices. For the second CS-Image, the surfaces of the
CS-Slices were polished using a sandpaper (P 150). In the first
row of Fig. 4 the two captured CS-Images of one CS-Slice from L1
and L2 are depicted.

To increase the number of interclass scores, a third log (L3) with
a total of 35 CS-Slices with 2 cm spacing is utilized. Each CS-Slice
was captured with four different time delays (Fig. 5). For a detailed
dataset description we refer to Schraml et al. (2014) (see Table 1).
For all CS-Images in the testset the pith position and the border of
the were determined manually and are utilized for CS registration
and defining the CS-Masks in the experiments. The CS-Images in
Fig. 4 illustrate the preprocessing steps for the CS-Images of the
CS-Slices L1 #2 and L2 #10. In the first row the original images
are depicted. The second and third row show the registered and
enhanced versions of the CS-Images, respectively. The four time-
delay captured CS-Images of CS-Slice L3 #10 are depicted in Fig. 5.

2.4.2. Evaluation background
Before presenting the results, relevant basics for the experimen-

tal evaluation are introduced. First, a short introduction on biomet-
ric performance evaluation is presented. Subsequently, three types
of wood log CS variations are defined and the construction of
the intra- and interclass score distributions (SDs) used in the
evaluation is described.

Biometric performance evaluation. Commonly, a biometric
system operates either in verification or identification mode and
the term recognition is used universally.

For verification the system compares a query template to just
one template of the database (1:1 comparison). This template is
specified by the claimed identity of the query template. The system
accepts or rejects the claimed identity of the individual/object. For
identification a query template is compared to all templates in the
database (1:N comparison) and if the best match exceeds a certain
system threshold it specifies the identity of the query template.

Generally, a biometric system is assessed based on the errors it
produces (Maltoni et al., 2009). Two major verification system
errors (False Match Rate (FMR) and False Non Match Rate (FNMR))
result from the calculation of the intra- and interclass SDs which
are commonly denoted as genuine and impostor SD, respectively.
The intraclass SD contains all MSs computed between a set of tem-
plates of the same individual. The interclass SD contains the MSs
between templates of different individuals. Consequently, the
FMR includes all MSs between different individuals which are
incorrectly accepted by the system. On the other hand the FNMR
gives the proportion of MSs which were rejected although the
score is computed between templates of the same individual. For
verification performance evaluation the equal error rate (EER) is
a general benchmark. The EER is defined as the error where FMR
and FNMR are equal.

Table 1
Testset overview.

3 Logs # CS-Slices # CS-Images Illustration

Log 1 – L1 16 2 (Rough & Sanded) Fig. 4a
Log 2 – L2 16 2 (Rough & Sanded) Fig. 4b
Log 3 – L3 35 4 (Time delay) Fig. 5

(a) L1 #2 rough (b) L1 #2 sanded (c) L2 #10 rough (d) L2 #10 sanded

Fig. 4. Testset examples: Slices #2 and #10 from L1 and L2, respectively. The CS-Images in the first row depict the original CS-Images and in row two and three the registered
and enhanced CS-Images used for CS-Code computation are illustrated.

Fig. 5. Temporal variations: L3 CS-Slice #34, sessions 1–4 (Schraml et al., 2014).
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The identification performance is evaluated by matching a set of
probe templates to all templates enrolled in the database (Jain
et al., 2007). We refer to closed-set identification where it is
assumed that all individuals/objects of the probe templates are
enrolled in the system. The MSs between each probe template
and all database templates are ordered according to the MS. The
ordered MSs of each probe template are used to compute
the probability that the correct template is ranked within the
top k-ranked MSs. The probabilities for each rank are illustrated
in a curve which is denoted as Cumulative Match Characteristic
(CMC).

Wood log cross-section variability. Two basic requirements for
biometric recognition are uniqueness and permanence of the uti-
lized biometric characteristic. Uniqueness expresses that the bio-
metric characteristic and the computed templates of different
individuals are strongly varying and permanence is the require-
ment that they do not change over time. Related to those require-
ments there are two basic issues which a biometric system must
handle: Intraclass variability and Interclass similarity which con-
tribute to the F NMR and FMR, respectively. Interclass similarity
is the problem that different individuals may show up similar bio-
metric characteristics. Intraclass variability is an issue due to inter-
nal and external caused variations between a set of templates of
the same individual. External variations occur due to irregularities
in the template generation procedure, e.g. different sensors or cap-
turing environments. Furthermore, the visual appearance of the
biometric characteristic is affected or modificated by external
influences, e.g. the saw cut pattern. Internal variations are eventu-
ally caused by an intrinsic modification or change of the biometric
characteristic itself, e.g. temporal variations caused by the ageing
process. In case of human biometrics, it is attempted to overcome
external and internal changes/modifications by updating the
stored templates in the database.

In case of wood logs, several external and internal caused vari-
ations/modifications of CSs of a single log have an impact on the
intraclass variability. So far, three different variation types
emerged from our research:

� Temporal variations correspond to the issue of ageing in
human biometrics. In case of wood log ends, the visual appear-
ance of a CS changes rapidly. Due to the rapidly changing mois-
ture content at the log end faces and the sun exposure the CS
shows up discolourations or deformations (e.g. cracks). In
Fig. 5 four time-delay captured CS-Images of a CS-Slice from
L3 illustrate temporal variations.

� Longitudinal variations are caused by the changing CS pattern
along the longitudinal axis of a single tree log. Consequently,
they address the issue of length-cutting a log in the sawmill.
Cut-off lines are utilized in many sawmills for different reasons.
For example, clean log end faces (no stones and sand) are ben-
eficial to protect the cutting blades and to aid the log quality
assessment. On the other hand, log end cutting leads to a loss
of material and is not tolerable in certain fields of the sawmill
industry. An illustration for longitudinal variations of the CSs
from a single log is presented in Fig. 6.

� Surface variations result from differently finished or cut sur-
faces of a particular CS. In this work surface variations between
saw cut CS surfaces and the sanded CS surface counterparts are
assessed (see Fig. 4). Another scenario which is closely related
to industrial biometric log recognition involves CS surface vari-
ations caused by different cutting tools (e.g. chain-, band- or cir-
cular saw). Probably the first cut in the forest and the cleansing
cut in the sawmill are performed with different devices. This
results in a mixture of longitudinal and surface variations.

For the testset CS-Images of the CS-Slices from L1, L2 and L3 we
tried to avoid external variations which are caused by the captur-
ing procedure.

Intra-/interclass score distributions (SDs). For the evaluation,
the MSs between all CS-Images of L1, L2 and L3 are computed
using the proposed matching procedures. The intra-/interclass
SDs for a single matching procedure are constructed by grouping
the MSs into the respective SD. Hence, the interclass SD contains
all MSs computed between the CS-Images of L1, L2 and L3. The
intraclass SD is built up on the MSs between CS-Images of the same
log and is further subdivided into two SD groups corresponding to
the variation type (see Table 2). Temporal variations which are rep-
resented by the MSs between the four time-delay captured CS-
Images of each CS-Slice from L3 were investigated in Schraml
et al. (2014) and are not treated in this work. The longitudinal SD
shows the similarity between CS-Images which were captured at
different longitudinal positions of the same log. In this work we
consider the longitudinal variations of L1 and L2. For this purpose,
the longitudinal SD is built up on the MSs between the CS-Images
of rough or sanded CS-Slices from L1 and L2. The surface SD
includes all MSs between the saw cut CS surfaces and the sanded
CS surface counterparts of each CS-Slice from L1 and L2.

3. Results and discussion

The results of the experiments are subdivided into two sections.
Section 3.1 presents investigations on the separability between the
intra- and interclass SD. For this purpose, the verification perfor-
mance of the biometric system for different matching procedures
is assessed and the EERs are considered.

Because of the manifold structure of the intraclass SD an
exhaustive analysis of the longitudinal and surface SD group is pre-
sented in Section 3.2. Based on the results, fundamental conclu-
sions on the intraclass variability and the impact on the
separability between the intra- and interclass SD are drawn.
Finally, Section 3.3 treats the identification performance for differ-
ent real world scenarios.

3.1. Intra-/interclass SD separability

In Fig. 7 the intra-/interclass SDs for all three matching proce-
dures are illustrated. Most important, the charts show that the best
EER is achieved by MSAP;F which uses both annual ring pattern and
shape information. Furthermore, the EERs for MSAP and MSF
illustrate that for the considered three logs shape information is
less discriminative compared to annual ring pattern information.
In addition, Table 3 depicts EERs for different intra-/interclass SDFig. 6. Longitudinal variations: L2 CS-Slices #1, 4, 8, 16.

Table 2
Intraclass SD groups.

CS variation SD group details

Longitudinal SD L1 & L2: MSs between the rough or sanded
CS-Images of their CS-Slices

Surface SD L1 & L2: MSs between the rough and sanded
CS-Image of each CS-Slice
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subsets of the three logs. The results for MSF and L1–L2 illustrate
that L1 and L2 have a similar shape which causes a bad EER of
12.85%. In case of L1–L3 and L2–L3 the shapes are very distinctive
which leads to a zero EER. Considering MSAP and the annual ring
pattern distinctiveness the results show that the pattern of L1 is
more similar to L3 than the pattern of L2 to L3. It can be concluded
that for different tree logs the discriminative power of the annual
ring pattern and the shape varies significantly. Consequently, the
robustness of log end biometrics benefits from using shape and
annual ring pattern information together.

Generally, an EER of �2% for MSAP;F is astonishing because the
intraclass SD includes all longitudinal MSs for all slice distances.
Our experiments in Schraml et al. (2014) showed that the similar-
ity between different CS-Slices of a log deteriorates with an
increasing distance between the considered CS-Slices. A detailed
analysis of the intraclass SD groups (Longitudinal and Surface SD)
allows to gather further insights.

3.2. Intraclass SD analysis

In this section the longitudinal and surface SD groups of which
the intraclass SD is build up are assessed in detail.

3.2.1. Longitudinal SD
The longitudinal SD contains the MSs between the rough or

sanded CS-Images of the CS-Slices from L1 and L2. Four subsets
of the longitudinal SD are assessed in detail: Rough & Sanded lon-
gitudinal MSs of L1 and L2. The MSs of each subset are grouped
according to the neighbourhood distance of the compared CS-
Slices. In case of 16 CS-Slices for each log the distance between
two CS-Slices ranges from 1 to 15 which leads to 15 slice distance
groups (SDGs). For example, SDG 1 contains all MSs of each CS-
Slice to the adjacent neighboured CS-Slices.

In Fig. 8 the mean values of each subset and SDG for all match-
ing procedures are depicted. For MSAP it is expected that the longi-
tudinal MSs increase the higher the slice distance between two CS-
Slices is. An increase or change of the MSs for higher slice distances
can also be expected forMSF andMSAP;F . In Schraml et al. (2014) our
experiments based on CS-Slices from L3 confirmed this
expectation.

Let’s consider MSAP: At a glance, the results for MSAP (Fig. 8a)
raise doubt on the correctness of the previous results and the basic
assumption. Considering the longitudinal MSs of the first log
(SANDED L1, ROUGH L1) the expected increase is interrupted for
both subsets. This interrupt is also shown for the second log
(SANDED L2, ROUGH L2) for the SDGs 14, 15. Interestingly, these
interrupts can be recognized for MSF and the fusion procedure
MSAP;F too.

A closer examination of the CS-Slices of L1, L2 and L3 provides
an answer for the differing results. For L3 just the CS-Slices at the
log ends show up knots. Hence, for larger distances the longitudi-
nal MSs (MSAP) increase additionally and the expected trend
becomes strengthened. In contrast to L3, L1 and L2 show up knotty
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EER = 3.12% EER = 4.96% EER = 2.23%

Fig. 7. Intra-/interclass score distributions (SD) for different matching procedures. [X-Axis: Matching Score, Y-Axis: Probability].

Table 3
EERs [%] for all matching procedures and different subsets of L1, L2, L3.

Logs MSAP MSF MSAP;F

L1–L2 5.6 12.79 12.85 6.21
L1–L3 0.11 0.48 0.0 0.0
L2–L3 3.57 5.07 0.0 0.0
L1–L2–L3 3.12 5.38 4.96 2.23
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Fig. 8. Intraclass SD: Rough and Sanded longitudinal MSs of L1 and L2 grouped by the slice distance. [X-Axis: Slice Distance Group, Y-Axis: Matching Score].
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CS-Slices situated in the middle of each log. For L1 three (#9, 10, 14
– see Fig. 4d) and for L2 six CS-Slices (#1, 2, 10, 11, 15, 16) show up
between one and four knots. By omitting MSs from those knotty
CS-Slices the results in Fig. 9 approximately show the expected
trend. Quite interesting is the good MS at SDG 15 for SANDED L2
(MSAP) which results from one equally located knot in the CS-
Slices #1 and #16.

This leads to two major conclusions: Less surprising, the results
demonstrate that MSs between non-knotty (NK) and knotty CS-
Slices are remarkably worse. Second, the results indicate that knots
do not introduce any propagative effects to the annual ring pattern
and the CS shape.

In comparing the results from L1 to L2 it is visible that the
ranges of the longitudinal MSs for different logs vary. Figs. 8 and
9 illustrate that the MSs of L2 are worse compared to L1, especially
when considering larger slice distances. However, it can be stated
that the longitudinal MSs of each log are getting worse with an
increasing slice distance.

Longitudinal SD/interclass fractions. The longitudinal increase of
the MSs leads to the conjecture that for higher slice distances it
is not possible to separate between longitudinal MSs and interclass
MSs. This conjecture is validated by considering the interclass frac-
tion of the MSs of all SDGs for each longitudinal SD subset. The
interclass fraction of a SDG is specified as the percentage of MSs
(within a longitudinal SD subset and SDG) which intersect with
the interclass SD. The interclass fractions of each longitudinal SD
subset and SDG are illustrated in Fig. 10. For MSAP and MSF the
results confirm the expectation that for larger slice distances the
fraction of MSs which intersects with the interclass SD increases.
The differences between the knot-including and knot-free SDs

are not significant. Just for the Longitudinal-L2-NK SD and MSAP
the fractions of the first three SDGs (1–3) are pushed down to zero.

Most important, the results for MSAP;F illustrate that by the
fusion of pattern and shape information the interclass fractions
decrease for all subsets. The robustness to longitudinal variations
is improved significantly by feature fusion.

3.2.2. Surface SD
The surface SD is examined in context of the previously anal-

ysed longitudinal SD subsets and the interclass SD. Again, the main
objective is to assess the separability between the surface SD sub-
sets and the interclass SD. In case of the CS-Images of L1 and L2 the
surface MSs are the only MSs between CS-Images from equal CS-
Slices in our experiments. The surface MSs between the rough
and sanded CS-Images are considered for L1 and L2, separately.
For all SDs the cumulative distribution functions (CDF) are com-
puted and illustrated for each matching procedure (see Fig. 11).
The CDF of a SD gives the probability that a certain MS exists that
is ranged less or equal to that MS. Furthermore, the CDF illustrates
the median value at a probability of 0.5 – half of the MSs are lower
and half of the MSs are higher than the median. The CDFs of a cer-
tain intraclass SD group/subset and the interclass SD are used to
observe their overlap and to draw conclusions about their
separability.

Generally, it is expected that the surface SD subsets consist of
very good MSs and their CDFs are thus aligned in front (=left hand
side) of the longitudinal SD CDFs. For all surface SD subsets and
matching procedures no overlaps with the interclass CDF are
shown. For MSF the surface SD subsets show very good MSs
because the shape difference between the rough and sanded
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Fig. 9. Longitudinal variance analysis excluding knotty CS-Slices – L1(#9, 10, 14), L2(#1, 2, 10, 11, 15, 16). [X-Axis: Slice Distance Group, Y-Axis: Matching Score].
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Fig. 10. Interclass fractions for the slice distance groups (SDGs) of each longitudinal SD subset. [X-Axis: Slice Distance Group, Y-Axis: Interclass Fraction (%)].
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CS-Image of a CS-Slice is very low. The overlaps between the lon-
gitudinal SDs and the interclass SD have been discussed in the pre-
vious section. Again, the results for MSAP;F show that fusion
improves the separability between the longitudinal SD subsets
and the interclass SD.

3.3. Identification performance

So far, all evaluations were related to the verification perfor-
mance of log end biometrics. Based on the gathered insights, two
investigations on the identification performance are presented:
First, the MSs for each CS-Slice of L1 and L2 are ordered and the
ranks for different intraclass MS groups/subsets and the interclass
MSs are analysed. Hence, general statements on the rank orders
can be presented.

Second, the identification rates for four specific identification
scenarios are presented. All scenarios illustrate the impact of cut-
ting the log end on the identification performance. As such, it is
elaborated how the width of the piece which is cut-off influences
the performance. Additionally, the impact of using different cutting
tools is assessed.

3.3.1. Cumulative CS-Slice matching score ranks
Commonly, the CMC depicts how the biometric system ranks

the MSs between a set of probe templates and all database tem-
plates. The CMC curve illustrates the probability that the correct
(intraclass) MS is ranked within the first k-ranks. In case of 100%
identification rate the CMC curve shows a detection rate of 100%
at the first rank. For this investigation, the SD-MS rankings of five
different intraclass groups/subsets and the first observation of an
interclass SD-MS are assessed.

For each CS-Slice the MSs between each of its templates and all
other templates in the database are ordered in an ascending order.
In Fig. 12 the detection rates for four SD groups/subsets and the
interclass SD are depicted:

– SURFACE: Detection rate for the MSs between the rough and
sanded CS-Images of each CS-Slice.

– ROUGH-LONG, SANDED-LONG for L1 & L2: Detection rates for
longitudinal MSs from slice distance group 1 or 2. These are of
interest in an industrial application (e.g. cutting the log end
once or twice).

– INTER: Detection rate for observing the first interclass MS.

For example, in Fig. 12a the SURFACE curve shows that there is
�30% chance of finding the corresponding rough or sanded surface
as the best match and �95% chance to find it among the top 10
rankedmatches. The INTER curve shows that there is 0% risk of find-
ingaCS-Slice fromanother log as thebestmatchbut�5% riskoffind-
ing a CS-Slice from another log among the top 20 ranked matches.

Based on the CMC curves we can draw interesting conclusions
on the identification performance of the biometric system. Most
important, for all matching procedures and CS-Slices each consid-
ered intraclass SD group/subset shows up high detection rates at
the best (=lowest) ranks. On the other hand, the probability of
observing a well ranked (<15) interclass SD-MS is nearly zero. In
case of MSAP;F nearly all intraclass SD-MSs are ranked in front of
the first interclass SD-MS occurrence. Notice that a larger amount
of different logs in the testset could have a big impact on the results.

In comparing the surface SD ranks to the longitudinal SD subset
ranks the results lead to an interesting observation. The MSs (MSAP)
of the rough and sanded longitudinal SDs of L1 and L2 are ranked in
the range of the surface SD-MSs. Thus the results distinguish from
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Fig. 11. Cumulative distribution functions (CDFs) for different longitudinal and surface SD subsets and the interclass SD. [X-Axis: Matching Score, Y-Axis: Probability].

SURFACE INTER ROUGH-LONG_L1 ROUGH-LONG_L2 SANDED-LONG_L1 SANDED-LONG_L2

0 5 10 15 20 25 30 30

0,0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1,0

(a) MS AP

0 5 10 15 20 25

0,0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1,0

(b) MS F

0 5 10 15 20 25 30

0,0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1,0

(c) MS AP,F

Fig. 12. Cumulative matching score ranks. [X-Axis: Rank, Y-Axis: Detection Rate].
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the verification performance results in Fig. 11 where the surface
CDFs show better MSs than the longitudinal CDFs. This illustrates
that CS-Images of adjacent neighboured CS-Slices with the same
kind of surface show up a high annual ring pattern similarity to
each other. Because of longitudinal shape variations the results
for MSF show that the longitudinal MSs are ranked worse com-
pared to the SURFACE MSs.

Again, the results depict a higher longitudinal CS variability of
L2 which is demonstrated by the higher ranked (=worse) MSs for
the longitudinal SD subsets of L2.

Concluding, the results show that the first occurrence of an
interclass MS is worse ranked (=higher ranked) compared to the
intraclass MSs. The interclass CMC curves for MSAP;F show that for
feature fusion the interclass detection rates shift remarkably to
higher ranks.

3.3.2. Identification performance – test scenarios
Finally, the identification performance for different scenarios is

assessed. A test scenario requires to specify a probe set and a gallery
set. The gallery specifies the enrolled templates of the individuals/
objects contained in the database. The probe set is a set of templates
of individuals/objects which are used to query the biometric sys-
tem. For each probe template the matches/MSs to all database tem-
plates are computed. The computed matches/MSs for each probe
template are ordered and the rank of the correct match/MS is deter-
mined. Subsequently, for each rank the probability that the correct
match/MS is equal or better ranked is computed. For illustration
these probabilities are depicted in a CMC chart. The probability that
the correct match is ranked at the first position is denoted as iden-
tification rate or detection rate. Basically, all scenarios evaluate the
impact of cutting the log end in the sawmill.

Scenario #1, #2 – same cutting tool. For these scenarios it is
assumed that the first cut in the forest and the second cut in the
sawmill is performed with the same cutting tool. Hence, no surface
variations due to different cutting tools are introduced. For this
purpose Scenario #1 (Rough-Rough) is based on rough CS-Images
and Scenario#2 (Sanded-Sanded) is based on sanded CS-Images

of L1 and L2. As probe templates for Scenario#1, #2 the rough or
sanded CS-Images of each CS-Slice are utilized, respectively.

For each scenario and probe template it is assumed that just one
equally surfaced CS-Image of the same log which belongs to a cer-
tain slice distance group (SDG) is enrolled in the gallery set. For
evaluation the SDGs 1–5 are considered. Furthermore, templates
of all CS-Images from L3 and equally surfaced CS-Images of the
other log (L1 or L2) are included in the gallery. For each probe tem-
plate the rank of the correct match is computed and in Table 4 the
results for both scenarios are summarized. For each scenario the
identification rates for different SDGs and matching procedures
are illustrated.

The results for Scenario#1 and #2 in Table 4 show high detec-
tion rates for the first four SDGs. The results illustrate that for
SDG 4 and 5 the detection rates of MSF decrease to a higher degree
than for MSAP . Basically, it is recognizable that the identification
rates for both scenarios and matching procedures are somewhat
equal. Consequently, the CS shape has less impact on the identifi-
cation performance of Scenario#1 and #2. For MSAP;F and the SDGs
1, 2 the identification rates account 100% for both scenarios. These
results are a first indication that log end biometrics are probably
robust to cutting the log end in a range of five centimetres (2 CS-
Slices = 5 cm). In case of MSAP;F the rates for higher SDGs are still
in a range between 84% and 97%. In Fig. 13 the CMC curves for
MSAP;F and both scenarios are illustrated.

Scenario #3, #4 – different cutting tools. In difference to the first
two scenarios, Scenario #3 and #4 investigate the impact of differ-
ent surfaced CSs. Thus, it is assumed that the first cut in the forest
and the second cut in the sawmill are performed with different
cutting tools. Based on the CS-Images of L1 and L2 two scenarios
are constructed. Scenario #3 (Rough-Sanded) assumes that the first
cut is represented by a rough CS-Image of a CS-Slice and the second
cut is represented by a sanded CS-Image of a neighboured CS-Slice.
Scenario #4 (Sanded-Rough) assumes that the cuts are performed
in the reverse order. Consequently, these scenarios simulate a mix-
ture of longitudinal and surface CS variations. For both scenarios
the rank-orders for the correct matches are computed in the same
way as for the first two scenarios (see Table 5). The results for Sce-
nario #3 in Table 5 illustrate that for all matching procedures the
identification performance decreases for higher SDGs. Compared
to Scenario#1 and #2, the identification rates for MSAP are worse.
This is caused by the CS surface variations which cause a decrease
of the identification performance for MSAP . Nevertheless, the
results forMSAP;F are convincing and for SDG 1, 2 an error free iden-
tification performance is achieved (Fig. 13).

Finally, the results for all scenarios indicate that log end biomet-
rics are robust to longitudinal variations and mixtures of surface
and longitudinal variations to a certain degree. Furthermore, and
equal as in Schraml et al. (2015a) all evaluations showed that the
fusion of annual ring pattern and shape information is valuable
to increase the performance of the biometric system.

Table 4
Scenario#1, #2 – Identification rates for different slice distance groups (SDGs) and
matching procedures (MPs).

MP/SDG 1 2 3 4 5

#1 Rough-Rough
MSAP 1.0 1.0 0.97 0.97 0.91
MSF 1.0 0.94 0.91 0.84 0.78
MSAP;F 1.0 0.97 0.91 0.81 0.75

#2 Sanded-Sanded
MSAP 1.0 0.97 0.94 0.91 0.69
MSF 1.0 0.94 0.91 0.88 0.66
MSAP;F 1.0 1.0 0.94 0.81 0.66
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Fig. 13. MSAP;F : CMC curves for the different scenarios and slice distance groups. [X-Axis: Rank, Y-Axis: Detection Rate].
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4. Conclusions

The findings of this study show that log end biometrics are
promising to discriminate between different tree logs in an indus-
trial application. It can be concluded that the robustness of the bio-
metric system to CS variations depends to a high degree on the
template computation approach and the matching procedure.

In comparing the results for three different matching proce-
dures it is obvious that biometric feature fusion increases the
robustness significantly. In regard to the verification performance,
a combination of annual ring pattern and shape features increases
the robustness to longitudinal CS variations. Furthermore, the
analysis of the intraclass SD groups illustrates that CS surface vari-
ations are not crucial for the verification performance.

Based on the identification performance experiments we con-
clude that biometric log recognition is qualified to overcome the
issue of cutting log ends in the sawmill. Results show a successful
identification within cutting off slices up to �5 centimetres in
thickness, even if the second cut in the sawmill is performed with
another cutting tool.

The analysis of the longitudinal CS variations for different SDGs
shows that knots are disturbing factors. This is caused by the fact
that the current approach is not dealing with knots on CSs. Surpris-
ingly, the results indicate that knots do not introduce any propaga-
tive effects to the annual ring pattern and the CS shape. Thus,
future work should investigate the similarity between non-
knotty parts of knotty CSs and their neighboured knot free CSs.

5. Future work

Although the results of this study together with the results in
Schraml et al. (2015a,b) are very promising, further experiments
on a large set of tree logs are indispensable to assess the identifica-
tion performance in a real world environment. Furthermore, future
work has to deal with the impact of typical external CS surface
variations which are caused by dirt, snow or ice during transporta-
tion or storage. Regarding log template computation and matching,
the applicability of other feature extraction methods should be
assessed and new approaches should be developed. Finally, further
research should deal with the impact of automatic pith estimation
and CS segmentation approaches to the biometric system
performance.
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Table 5
Scenario#3, #4 – Identification rates for different slice distance groups (SDGs) and
matching procedures (MPs).

MP/SDG 1 2 3 4 5

#3 Rough-Sanded
MSAP 0.97 0.91 0.91 0.72 0.69
MSF 0.94 0.88 0.91 0.63 0.56
MSAP;F 1.0 0.94 0.91 0.81 0.66

#4 Sanded-Rough
MSAP 0.94 0.88 0.84 0.78 0.69
MSF 0.91 0.81 0.84 0.66 0.56
MSAP;F 1.0 1.0 0.97 0.81 0.78
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Abstract: Log end biometrics is a physically marking free approach to establish log traceability

from forest-site to further-processing companies. Within an Austrian research project questions

regarding the applicability of log end biometrics were investigated. This work introduces to bio-

metric log end recognition, summarizes our research and provides an outlook on future work.

1 Introduction

Biometric tracking of wood logs is a potential approach to establish log traceability

without the necessity for physical markers like plastic badges or RFID transponders. A

biometric log recognition system based on log end images could be used to track the

ownership from the forest based industries to further processing companies. Further-

more, the ongoing process optimization in the forest-based and the sawmill industry

demands for technologies which efficiently identify wood logs and pass log specific

information along the log processing chain.

By analogy to human biometrics, it is assumed that wood logs are unique entities which

can be recognized using log characteristics. The approaches presented in [CG03, CG04,

FOG08] utilized 2D and 3D scanners to extract geometric wood properties for tracking

logs within the sawmill environment. The utilized capturing devices are however, not

applicable at forest site.

On account of the fact that timber offers characteristics on log end faces in terms of

annual rings, pith position, shape and dimension it is assumed that cross-section (CS)

images of log ends can be used as biometric characteristic for log identification. In this

work the concept of log end biometrics is introduced and the results of our research are

summarized (Sect. 2). We conclude with an outlook on future research needs (Sect. 3).

2 Log End Biometrics

In the FWF joint project TRP254 entitled with ”Traceability of logs by means of digital

images (TreeBio)” we mainly contributed to the research on this field. For biometric log

tracking, each log needs to be enrolled by the biometric system (Figure 1). A digital
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camera mounted on a harvester could be utilized to capture one log end of each fresh cut

log. Subsequently, the log end image is processed by the system and a log template is

computed which is stored, with additional meta data, to the database. Identification of

each log can be performed at each stage of the log processing chain. Images for identifi-

cation in the sawmill could be captured at the sorting station, at the sawmill yard or at

any conveyor belt equipped with a capturing device. Subsequently, the image is pro-

cessed by the biometric system and a log template is computed which is matched to all

log templates in the database. The best match specifies the identity of the log.

Figure.1: Exemplary enrolment and identification schemes

In our first work [SCPU14] longitudinal and temporal variances of CSs (annual ring

patterns) are investigated based on 35 time-delay captured slices from a single log. For

human biometrics, robustness of the utilized biometric characteristic is a basic require-

ment. In case of CSs robustness is related to the temporal changes caused by environ-

mental conditions and the longitudinal variations of the CS pattern within a tree log.

Temporal changes are caused by light and humidity and result in deformations like

cracks and discolorations. Longitudinal variations result from log end cutting. Results

show that, with an increasing time span between two images of the same CS the match-

ing score gets worse. Longitudinal adjacent CS slices (~2.5cm) show good matching

scores. An increasing longitudinal slice distance between two CS slices deteriorates the

matching score.

In our second work [Sc15b] we shed light on the question if log end biometrics are suit-

ed to discriminate between a large set of tree logs. For that purpose we explored the

applicability of fingerprint and iris-recognition based methods to identify 150 different

tree logs. Additionally, for both methods the impact pact of enhancement is assessed.

Results show that fingerprint and iris recognition based approaches can be transferred to

the field of wood log tracking and that both are suited for log identification. In the exper-

iments the fingerprint based approach and all iris configurations which use Log-Gabor

features achieve 100% recognition rate. Furthermore, all results indicate that shape in-

formation of the CS area is required to achieve an acceptable recognition rate and that

enhancement significantly improves the performance.

Based on these observations, in [SPU15] we assessed the discriminative power of geo-

metric log end features for the same testset. Geometric features were extracted based on
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groundtruth data for the CS boundaries and pith positions. Results showed that radial

distances from the pith and centroid center to the CS boundary and Zernike moments (Z)

show a high discriminative power. The validation of these features for automated CS

boundary detection [SU14] and pith estimation [SU13] showed that Zernike moments

achieve the highest reliability.

Finally, in [Sc15a] additionally to the single log used in [SCPU14] further two logs are

used in the experiments. This enabled to consider CS surface variations which arise if

different cutting tools are utilized for the first cut in the forest and the clearance cut in

the further processing company (e.g. chain-saw and circular saw). Three different match-

ing procedures enable to present results for annual ring pattern features, shape features

and the fusion of both. Results show that feature fusion increases the robustness and that

CS surface variations are not crucial for the performance. We conclude that biometric

log recognition is qualified to overcome the issue of cutting log ends in the sawmill up to

7.5 centimeters in thickness, even if the second cut in the sawmill is performed with

another cutting tool. Furthermore, it is shown that knots are disturbing factors but knots

do not introduce any propagative effects to the annual ring pattern and the CS shape.

3 Outlook and Discussion

Our results are very promising and indicate that digital CS images are well suited for log

identification in the described setting. However, sawmills usually do not have such cam-

eras installed and the accuracy of the approach is strongly influenced by acquisition

conditions (sensor type, dirt, illumination etc.). The future vision is that a biometric log

recognition system works in a more sensor independent manner and further processes the

available sensor data to determine log quality properties (see Figure 2).

Figure.2: Cross-Sensor and Cross-Modality Log Tracking and Quality Estimation

Collecting and storing data for each single log at different stages of the log processing

chain improves the correct allocation of logs, changes and leads to new processes and is

thus beneficial to increase the yield.

Chapter 3. Publications

56



192 Rudolf Schraml et al.

Furthermore, it can be assumed that CT scanning will become state-of-the-art in the

sawmill industry, resulting in corresponding data available at sawmills that can be poten-

tially used for log tracking and wood quality assessment. The question if it is possible to

identify tree logs based on a digital RGB log-end image captured in the forest and a

second image captured by a CT scanner in the sawmill. Furthermore, the question arises

how to link measurement and grading information between the forest and the further-

processing companies. Consequently, future research has to deal with cross-modality and

cross-sensor log tracking and quality estimation (Figure 2).

Literaturverzeichnis

[Ba08] Barrett, W.A.: Biometrics of Cut Tree Faces. In (Sobh, Tarek, ed.): Advances in Com-

puter and Information Sciences and Engineering, pp. 562–565. Springer, 2008.

[CG03] Chiorescu, S.; Grönlund, A.: The Fingerprint approach: using data generated by a 2-

axis log scanner to accomplish traceability in the sawmill’s log yard. Forest Products

Journal, 53:78–86, 2003.

[CG04] Chiorescu, S.; Gröonlund, A.: The Fingerprint Method: Using Overbark and Under-

bark Log Measurement Data Generated by Three-dimensional Log Scanners in Com-

bination with Radiofrequency Identification Tags to Achieve Traceability in the Log

Yard at the Sawmill. Scand. Journal of Forest Research, 19(4):374–383, 2004.

[FOG08] Flodin, J.; Oja, J.; Gröonlund, A.: Fingerprint traceability of logs using the outer shape

and the tracheid effect. Forest Products Journal, 58(4):21–27, 2008.

[Sc15a] Schraml, Rudolf; Charwat-Pessler, Johann; Petutschnigg, Alexander; Uhl, Andreas:

Towards the applicability of biometric wood log traceability using digital log end

images. Computers and Electronics in Agriculture, 119:112–122, 2015.

[Sc15b] Schraml, R.; Hofbauer, H.; Petutschnigg, A.; Uhl, A.: Tree Log Identification Based

on Digital Cross-Section Images of Log Ends Using Fingerprint and Iris Recognition

Methods. In: Proceedings of the 16th International Conference on Computer Analysis

of Images and Patterns. LNCS. Springer, pp. 752–765, 2015.

[SCPU14] Schraml, R.; Charwat-Pessler, J.; Uhl, A.: Temporal and longitudinal variances in

wood log cross-section image analysis. In: IEEE International Conference on Image

Processing (ICIP’14). Paris, FR, October 2014.

[SPU15] Schraml, R.; Petutschnigg, A.; Uhl, A.: Validation and Reliability of the Discriminati-

ve Power of Geometric Wood Log End Features. In: Proceedings of the IEEE Interna-

tional Conference on Image Processing (ICIP’15). 2015.

[SU13] Schraml, R.; Uhl, A.: Pith Estimation on Rough Log End Images using Local Fourier

Spectrum Analysis. In: Proceedings of the 14th Conference on Computer Graphics and

Imaging (CGIM’13). Innsbruck, AUT, February 2013.

[SU14] Schraml, R.; Uhl, A.: Similarity based cross-section segmentation in rough log end

images. Proceedings of the 10th Artificial Intelligence Applications and Innovations

Conference. Springer, pp. 614–621, 2014.

Roundwood Tracking using Log End Biometrics

57



Machine Vision and Applications
DOI 10.1007/s00138-016-0814-2

SPECIAL ISSUE PAPER

On rotational pre-alignment for tree log identification using
methods inspired by fingerprint and iris recognition

Rudolf Schraml1 · Heinz Hofbauer1 ·
Alexander Petutschnigg2 · Andreas Uhl1

Received: 30 November 2015 / Revised: 28 September 2016 / Accepted: 30 September 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Tree log end biometrics is an approach to track
logs from forest to further processing companies by means
of log end images. The aim of this work is to investigate how
to deal with the unrestricted rotational range of cross sections
in log end images. Thus, the applicability of three different
rotational pre-alignment strategies in the registration pro-
cedure is assessed. Template computation and matching is
based on fingerprint and iris recognition techniques which
were adopted and extended to work with log end images.
To address these questions, a testset built up on 279 tree
logs is utilized in the experiments. The evaluation assesses
the basic performance of the rotational pre-alignment strate-
gies and their impact on the verification and identification
performances for different fingerprint- and iris-based con-
figurations. Results indicate that rotational pre-alignment in
the registration procedure is the main component to deal
with rotation in log end biometrics. The best configurations
achieve identification rates >93%. By showing that cross
sections in log end images can be rotated to a distinctive
position, this work is a first step towards real word log end
biometrics.

Keywords Rotation invariant log end biometrics · Tree log
tracking · Wood traceability · European timber regulation ·
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CS Cross section
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CM Center of mass
EER Equal error rate
MS Matching score

1 Introduction

Tracking of tree logs is an economic requirement to map
the ownership of each log. Additionally, social aspects have
become more important and sustainability certificates, e.g.
Forest Stewardship Council (FSC), are a must have for all
end-sellers. Finally, traceability is legally mandated by the
European Timber Regulation or the U.S. Lacey Act to pro-
hibit illegal logging.

In the industry, commonly approacheswhich rely on phys-
ically marking each log are utilized and radio-frequency
identification (RFID) is promoted as future technology.With-
out doubt RFID technology shows a lot of advantages.
However, physical marking requires time and suffers costs.
Wood log biometrics is a physically marking-free approach
to establish log traceability.

By superficially comparing annual ring patterns of log
ends to the patterns of human fingerprints, one finds a close
resemblance.Wood logs offer characteristics on log end faces
in terms of annual rings, pith position, shape and dimension.
The pith as growth centre is an unique reference point which
is similar to the core point of a fingerprint. Furthermore,
log ends are circularly shaped and in combination with the
pith the annual ring pattern can be polar-transformed like the
texture of an iris.
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Our research on log end biometrics [13–16] treated funda-
mental questions related to biometric tracking of wood logs
using fingerprint and iris recognition based approaches. In
Ref. [14,16] we investigated the robustness of log end bio-
metrics to temporal, longitudinal and surface variations based
on cross-sectional images (CS-Images) captured in a con-
trolled environment. In Ref. [15,16] we investigated whether
log end biometrics is basically suited to discriminate between
150 different logs. InRef. [16]we assessed the discriminative
power of geometric log end features andweproved their relia-
bility in case of automated cross-sectional (CS) segmentation
[17] and pith estimation [18]. Similar as in [1] the experimen-
tal evaluation showed that Zernike polynomials are the most
reliable geometric features. However, the achieved verifica-
tion performances showed that just geometric features are
not discriminative enough for log end identification. Finally,
in [15] we explored the general applicability of methods
inspired by fingerprint and iris recognition to identify tree
logs. Our experiments for 150 tree logs from two testsets
showed that for both approaches an identification perfor-
mance of 100 % can be achieved.

However, so far all CS-Images of each log were captured
with nearly no variation with respect to scale and rotation.
Rotational variations are a key issue in log end biometrics
and it is not clear if log ends can be rotated to a distinc-
tive position just using features which can be detected in
CS-Images. Furthermore, the issue of finding a distinctive
rotational log position is becoming important for the sawmill
industry. Research showed that log positioning at the saw
intake and individual cutting increases the value of each log
up to 21 % [2].

In this study we assess the suitability of three different
rotational pre-alignment strategies which basically rely on
the pith position and the CS boundary. Suitability is therefore
assessed in two steps. In the first step the basic performance
of each strategy to align each CS to a distinctive position
is assessed. Therefore, the results of an image registration
algorithm are evaluated. In the second step, the impact of
rotational pre-alignment on the verification and identifica-
tion performances for a set of fingerprint- and iris-based
approaches is assessed. In addition to the two testsets from
[15], a third testset with 109 different tree logs, showing
strong rotational variations, is utilized for the experiments.

Section 2 introduces the computation and matching of log
templates for the fingerprint- and iris-based approaches. Sub-
sequently, the experimental evaluation is presented in Sect. 3
followed by the conclusions in Sect. 4.

2 CS-Code computation and matching

An exemplary enrolment and identification scheme for log
end biometrics is depicted in Fig. 1. Enrolment of a tree

Fig. 1 Enrolment and identification schemes

log is performed in the forest. After a tree log is cut and
processed by a harvester, the log end is captured by a digital
camera mounted on the harvester head. Templates of logs
which are computed by means of CS-Images are denoted as
CS-Codes. For enrolment the computed CS-Code is stored
in the database. Identification can be performed at each stage
of the log processing chain where an appropriate captur-
ing device is available. Typically, identification is required
when a log is delivered to a sawmill. The CS-Image of a log,
for which identification is required, is processed by the bio-
metric system and the computed CS-Code is matched to all
enrolled CS-Codes in the database. The best ranked match,
if it exceeds a certain threshold, determines the identity of
the log.

2.1 Rotational pre-alignment strategies

Biometric systems compute a compact representation (=tem-
plate) of a biometric characteristic captured of an individual/
object. Because of privacy, timing and memory considera-
tions captured raw data is not stored in the system. Templates
are designed in order to enable fast matching with respect to
the spatial interrelationship of the extracted features. This is
a key to achieve a high discriminative power, and thus reg-
istration is an important task in biometrics. Pre-alignment
in the registration procedure refers to absolute alignment:
The characteristic is pre-aligned independent of a reference
just by using intrinsic features [8]. Image registration algo-
rithms (see Sect. 3.2.1) require relative alignment and are not
applicable in this case since a template cannot be used in a
registration procedure (where two images are required). The
goal of registration is to align the captured characteristic to
a distinctive position independent of affine transformations
like rotation or scale.

In fingerprint recognition different approaches for rota-
tional pre-alignment were proposed. Several algorithms use
the core point and a further feature (e.g. computed from the
shape or the orientation field) for pre-alignment. No final
solution has been found so far [8]. However, fingerprints
showkeypoints denoted asminutia andminutiae point clouds
are well suited for relative alignment (e.g. [11]) in the match-
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Fig. 2 Different rotational
pre-alignment strategies for CS
registration are assessed

ing procedure. In case of iris recognition just small rotational
variances are expected which are commonly compensated in
the template matching procedure.

In log end biometrics rotation is one of the main issues.
Compared to an iris, the rotational range of a log end is
not restricted and compared to a fingerprint just the pith
as keypoint is available for alignment. Rotation in log end
biometrics needs to be considered in both, the template com-
putation and the templatematching procedurewhich refers to
rotational pre-alignment and rotation compensation, respec-
tively:
Rotational pre-alignment In the registration step of the
template computation procedure the goal is to rotationally
pre-align the CS in a log end image to a distinctive position.
Optimally, CSs in different CS-Images of the same log end
can be rotated to almost the same position.
Rotation compensation To compensate the remaining rota-
tional variances different strategies in the feature extraction
and template matching procedure can be applied. However,
rotation compensation during feature extraction and template
matching increases the computational expense and probably
decreases the discriminative power.

In principle, the better CSs can be pre-aligned to distinc-
tive positions in the registration procedure, the less other
components of the biometric system have to deal with issues
caused by rotational variances.

As there is no evidence whether log ends can be rotated to
a unique position, we evaluate three different rotational pre-
alignment strategies in the registration procedure to address
this question. All approaches require the pith position and
the CS boundary as input. Automated approaches for pith
estimation and CS segmentation were presented in [10,17]
and [18], respectively. For each approach the rotational pre-
alignment vector between the pith position and the CS border
is determined differently (Fig. 2):

– MAX = the max. pith to border distance vector.
– MAX-SECTOR = the centre vector of the sector (angu-
lar width = 30◦) containing the max. sum of the pith to
border distances.

– CM = the pith to CS boundary vector which passes
through the center of mass (CM) of the CS boundary
polygon.

Subsequently, the CS is rotated around the pith in order to
situate the rotational pre-alignment vector at a certain posi-
tion. For this work the vector is placed on the left horizontal
axis. Remaining rotational variances are considered differ-
ently for the fingerprint-based and the iris-based approaches
as described in Sects.2.2 and 2.3, respectively.

2.2 Fingerprint-based CS-Codes

Human fingerprint recognition is well-investigated, and there
exist mainly three groups of approaches: minutiae-based,
correlation-based and feature-based approaches [8]. Apart
from the presence of the pith as detectable feature, CS pat-
terns do not exhibit further constant features like minutia’s
in fingerprints. Hence, minutiae-based approaches are not
qualified for log CSs.

For this reason and same as in [13–15] the texture-feature-
based approach by [4] is adopted and extended to compute
and compare CS-Codes from CS-Images. Compared to the
almost constant ridge frequency of a fingerprint annual ring
frequencies vary significantly. Thus, the Gabor filterbank is
extended to six different filters instead of a single one. For
preprocessed CS-Images scaled to 512pixels we suggest the
following Gabor filterbank settings to capture the expected
variety of occurring annual ring widths: G(λ, θ, σ, γ ) =
G(λ, σ ) = ((2, 1), (3.5, 2), (4.5, 3), (5.5, 3), (6.5, 3), (7.5, 3)) , θ =
{0, 22.5, . . . , 135, 157.5} , γ = 0.7. λ is the filter wavelength, θ

represents the orientation, σ is the standard deviation and γ

specifies the filter aspect ratio.
Remaining rotational variances are compensatedby repeat-

edly computing features for rotated versions of the already
rotation compensated CS-Image. All feature vectors com-
puted for different rotations (Θ1, . . . , Θn) compose the
CS-Code of a CS-Image. The amount of feature vectors
computed for different rotations has to be chosen carefully,
because each additional feature vector suffers computational
expense.

The computation of a feature vector (Θi ) for a certain
rotation is performed in four steps (see Fig. 3). As input the
CS-Image, pith position, CS boundary and the rotational pre-
alignment vector Θ0 are required. First, and according to the
rotation of Θi the CS-Image is rotated around the pith and
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Fig. 3 Fingerprint-based
template computation: Feature
vectors are computed in a
predefined sector specified by
the rotational pre-alignment
vector Θ0

the CS is cropped to the CS boundary box and scaled to 512
pixels inwidth. Subsequently, the rotated, cropped and scaled
CS-Image is enhanced. Commonly, the annual ring pattern
is disturbed due to cutting and there arise different types of
intraclass CS variations in real-world identification scenarios
[13]. The purpose of enhancement is to strengthen the annual
ring pattern contrast and to compensate CS variations. In this
work for enhancement contrast limited adaptive histogram
equalization (CLAHE, [6]) is applied to the registered image.

The enhanced CS-Image is filtered with each filter in the
filterbank. The filtered images are further subdivided into
blocks (16×16 pixels). For all blocks of each filtered image,
the grey value standard deviations are computed and stored
into a matrix. Values of blocks which are not within the
CS border are assigned with a marker value. These mark-
ers are used to discriminate between background and CS
in the matching procedure. All matrices are stored as one-
dimensional vector.
Fingerprint-based matching proceduresMatching between
two CS-Images is performed by computing the minimum
matching score (MS)between all feature vectors (Θ1, . . . , Θn)
of the CS-Codes from both CS-Images.

Like in Ref. [13] three different matching procedures
are evaluated to investigate the discriminative power of the
annual ring pattern, the shape and a fusion of both: The first
procedure which just considers annual ring pattern informa-
tion is denoted as annual ring pattern MS (MSAP) and is
defined as the minimum matching score between the feature
vectors of both CS-Codes:

MS AP (CS-Code1,CS-Code2) = minMS
(
θi , θ j

)

where θi ∈ CS-Code1 (θ0, . . . , θ358) ,

θ j ∈ CS-Code2 (θ0, . . . , θ358)

(1)

Due to interpolation in the registration procedure (rota-
tion and scaling) the best MS is achieved when comparing
all feature vectors of both CS-Codes. The MS between two
feature vectors of two CS-Codes is computed by:

MS(θi , θ j ) = 1

M

n∑

k=0

D
(
θi (k), θ j (k)

)
(2)

where θi , θ j are two feature vectors of the CS-Codes which
are compared, k specifies the index of the feature value in
both vectors, n is the max. number of feature values and
M is a normalization factor. As distance function (D) the L1
norm is utilized (as our experiments showed that the L1 norm
performs better than the L2 norm [14]):

D =
{∣

∣θi (k) − θ j (k)
∣
∣ if k ∈ MCSi ∩ MCSj

0 otherwise
(3)

As noted, background feature values are specified by a cer-
tain marker. Hence, we define MCSi and MCS j as the
corresponding masks of the feature vectors which allow to
differentiate between background and CS. Just feature vec-
tor value pairs which are in the intersection of both CSs
are utilized for computing MSAP and the score is normal-
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Fig. 4 Iris-based template
computation: CS-Images are
polar-transformed and enhanced
using CLAHE

ized by the amount of the considered feature value pairs:
M = |MCS1 ∩ MCS2|.

The second procedure (MSF ) is a measure describing the
similarity of the shapes of two CSs. MSF is defined as the
minimum False Negative Mask Overlap Score (F) between
the masks of the feature vectors of both CS-Codes:

MSF (CS-Code1,CS-Code2) = min F
(
MCSi ,MCS j

)

(4)

The false negative mask overlap score (F) between two dif-
ferent masks (MCSi ,MCS j ) is defined as the ratio between
the symmetric difference (�) from both masks and the area
of the smaller mask:

F
(
MCSi ,MCS j

) =
∣∣MCSi � MCS j

∣∣

min
(|MCSi | ,

∣∣MCS j
∣∣) (5)

Finally, the last procedure (MSAP,F ) is based on score level
fusion [5, p.225]. Therefore, the MSAP and MSF scores are
mapped to the [0,1] range usingmin-max normalization. The
lower and upper bounds of the score ranges are determined
using the scores computed in the experiments. For score level
fusion the normalized scores MS′

AP and MS′
F are utilized:

MSAP,F = MS′
AP + MS′

F

2
(6)

2.3 Iris-based CS-Codes

For the iris-based approaches the pith position is used as ref-
erence point to polar transform the CS-Image using bi-cubic
interpolation. The registration compensation vector (Θ0)
computed by one of the rotational pre-alignment strategies is
therefore used as initial vector for the polar transformation.
Θ0 is aligned at the left boundary of the polar-transformed
CS-Image (see Fig. 4). For normalization each pixel in the
polar image is stretched according to the length of Θ0 which
is specified as the max. pith to CS border radius.

Polar-transformedCS-Images can be treated like polar iris
images.Compared to the size of the iris,CSs are larger and the
transformation is not restricted to an annular shaped ring. In
case ofmore than 64 annual rings the common polar transfor-
mation format of 512×64pixels causes a loss of information.
Our results in [15] showed that the larger format significantly

outperforms the smaller one. Consequently, for this work just
the larger format with 512 × 512 pixels is utilized.

Two feature extractors from the USIT package [12] were
extended to work with a larger polar CS-Image format of
512 × 512 pixels. First, the Log Gabor (LG) algorithm by
Masek [9] was extended in accordance with the original
algorithm by defining the region of interest (ROI) through
a number of rows r with a height hr . Like the original, a row
is condensed into a 1-D signalwhich is run through theGabor
filtering process. Since it is not clear which configuration of
r and hr is best we choose to use a variance of combina-
tions, including combinations where the ROI does not span
the whole polar-transformed CS-Image. However, unlike the
iris biometry case which excludes the outer iris boundary,
which frequently exhibits occlusions by cilia, we choose to
exclude the inner residual part of the polar CS-Image. This
part consists of a low number of pixels which are stretched to
the polar CS-Image width, thus providing nearly no usable
information. Note that the size of the feature vector is depen-
dent on hr .

Furthermore the algorithm by Ko et al. (KO) [7] was sim-
ply adopted by allowing bigger textures without adapting
the cell-size which is averaged. Note that as a result the
length of the feature vector increases with the size of the
texture. The extended algorithms are directly applied to the
polar-transformed and CLAHE enhanced CS-Images. Both
algorithms compute a CS-Code composed of a single feature
vector.
Iris-based matching procedures For the matching of iris-
based CS-Codes KO uses a specific comparator [7] and LG
the Hamming distance. Figure 5 shows a schematic overview
of iris-based rotation compensation. If the rotational pre-
alignment vectorΘ0 is computed different for the same input
CS-Image a given point in both images (E1) appears at dif-
ferent angular locations, the radial distance stays the same.
The rotational variance is reduced to a translation in the nor-
malized texture.

The feature vector values (=bits) of the iris-basedCS-Code
are extracted along a fixed grid in the normalized texture.
Consequently, a bit shift in the iris-based CS-Code corre-
sponds to a translation in the normalized texture. In this way
bit-shifts on the iris-based CS-Codes are suited to compen-
sate remaining rotational variations.
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Fig. 5 Iris-based CS-Code Shifting

Similar as for the fingerprint-based matching procedure,
the final MS between two iris-based CS-Codes is determined
between all combinations of shifted CS-Codes.

3 Experiments

In the experimental evaluation verification and identifica-
tion performances for different configurations are assessed.
Additionally, the rotational pre-alignment performances are
assessed using an image registration algorithm. Introductory,
the testsets are outlined and the experimental setup for the
utilized configurations is described.

Testsets (TS1, TS2, TS3) The first two testsets were already
used for the experiments in [15,16]. The CS-Images of TS 1

and TS 2 were captured with a tripod and showed nearly no
variances with respect to affine transformations. For TS1 50
different tree logs were captured four times with and with-
out flash. Additionally, the ends of eight logs were cross-cut
and captured once again, with and without flash. In TS2 120
logs were captured three times without flash (in [15,16] 105
of TS2 were used). The new testset TS3 consists of 109 dif-
ferent logs where each log was captured between 10 to 14
times without flash. All images were taken handholding the
camera which was rotated for each new CS-Image. For each
CS-Image the pith position and the CS border were deter-
mined manually and are utilized as groundtruth data for the
experiments. Samples of each testset are shown in Fig. 6.

3.1 Experimental set-up

For all CS-Images of the testsets CS-Codes and MSs were
computed for different configurations of the fingerprint- and
iris-based approaches.
Fingerprint configurations Remaining rotational variances
are compensated by computing feature vectors for rotations
in the range from −8◦ to 8◦ in 2◦ steps. The CS-Codes are
computed using 16×16 non-overlapping blocks. The Gabor
filterbank is build up on six different filters tuned to eight
directions.
Iris configurations Remaining rotational variances are com-
pensated by shifting the iris-based CS-Codes in a range
between −21 to 21 feature vector positions. This approxi-
mately equals the rotation compensation range of −8◦ to 8◦
for the fingerprint configurations.

Fig. 6 1st Row (TS1): Respectively, two CS-Images from two different logs—one captured with flash and one without flash. 2nd Row (TS2): Four
CS-Images from different logs. 3rd Row (TS3): Four CS-Images illustrating the rotational variations
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Furthermore, results for IRISV and IRISH are presented.
IRISH means that the annual ring patterns in the polar-
transformed CS-Image are aligned horizontally as common.
For IRISV the polar-transformed CS-Image is rotated by
90◦. Commonly, feature extraction in iris recognition aims
to extract information from vertically aligned structures and
thus may performs better if we rotate the polar-transformed
CS-Images. Note, that in case of IRISV CS-Code shifting
does not correspond to a rotational shift in the input CS-
Image. More or less, this corresponds to vertically shifting
the unrolling center (=pith position) up/down in the input
CS-Image. For LG three different configurations in terms of
number of rows and row height LG (r, hr ) are utilized: LG
(16,32), LG (64,08) and LG (50,10).

3.2 Results and discussion

The experimental evaluation is performed in three stages.
First, the performances of the rotation compensation strate-
gies are assessed utilizing image registration algorithms.
Second, the verification performances for all fingerprint/iris
configurations and all rotational pre-alignment strategies are
assessed. Finally, we assess the identification performances
of the best configurations in case of rotational pre-alignment.

For a better examination the results in each stage are pro-
vided for TS1 and TS2 together (TS12), TS3 and all three
testsets (ALL). Additionally, all configurations are assessed
without rotational pre-alignment (NORC).

3.2.1 Rotational pre-alignment performance

The performances of the rotational pre-alignment strategies
are assessed using the image registration approach by [19]
(provided for MATLAB) which gives an estimate for the
rotational error between two images.
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Fig. 7 Rotational variations computed by the image registration
approach proposed in [19]

All CS-Image of TS12, TS3 were rotationally pre-aligned
using the three different strategies. Subsequently, for each
strategy the remaining rotational errors between the pre-
aligned CS-Images of each log were computed employing
accurate image registration [19]. The rotational error sta-
tistics for each strategy (mean, variance and confidence
intervals for a level of 95%) each strategy and TS12, TS3
are depicted in Fig. 7. Results for NORC confirm that the
rotational variations in TS12 are very low and that TS3 shows
large rotational variations. The rotational variations in TS3
cover a range of approximately 45◦. Furthermore, the results
indicate that all rotational pre-alignment strategies are suited
to reduce rotational variations in TS3. Results for TS12 show
that all rotational pre-alignment strategies introduce rota-
tional variations. Taking all statistics into account the lowest
rotational variances are shown for the MAX-SECTOR rota-
tional pre-alignment strategy.

3.2.2 Verification performance evaluation

The verification performance is assessed based on the Equal
Error Rate (EER) and themargin of error (MOE) achieved for
each configuration. TheMOE is estimated for a 95% level of
confidence using subset partitioning [3]. TheEERs computed
for all configurations, rotational pre-alignment strategy and
testsets are shown in Table 1. To improve the overview EERs
for some configurations are summarized and the MOEs are
only shown for the CM pre-alignment strategy. Note, that
the results for NORC and TS12 are comparable to the results
presented in [15].

Rotation compensation strategies Initially, the verifi-
cation performances achieved for the different rotational
pre-alignment strategies are assessed. In case of NORC the
EERs for TS12 are much better than the EERs for TS3.
This confirms the results of the rotational pre-alignment
performance evaluation and shows that the large rotational
variances in TS3 cannot be compensated by the template
computation and matching procedures of the fingerprint-
and iris-based approaches. The impact of rotational pre-
alignment becomes obvious comparing the EERs for TS3
achieved for NORC to those achieved with rotational pre-
alignment (MAX,MAX-SECTORandCM).The best (=low-
est) EERs for TS3 and ALL are achieved when CM is used
for pre-alignment. In case of rotational pre-alignment this
also accounts for the TS12 EERs. Furthermore, the results
show that for all configurations the EERs forMAX-SECTOR
are better (=lower) than for MAX. Considering the EERs it
can be stated that CM is the best of the three rotational pre-
alignment strategies, especially when considering the results
for TS3.

Fingerprint-based configurations In case of the finger-
print-based configurations the results forNORC-MSAP differ
from the results presented in [15]. Compared to the EER
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Table 1 EERs [%] and ± MOE
[%] for the fingerprint- and
iris-based configurations

EER < 2% : Yellow coloured results signalize all EERs <2 %. Best TS EER & MOE: Green coloured
and bold face marked results show the best EERs and MOEs for each testset achieved with rotational
pre-alignment

Table 2 LG (64,08)-EERs[%]
for CS-Code shifting/no
CS-Code shifting

Configuration NORC MAX MAX-SECTOR CM

IRISH 20.51/50.80 12.11/28.21 6.67/17.83 2.12/18.68

IRISV 5.46/6.74 7.18/7.81 3.79/3.86 0.90/0.96

achieved for MSAP-ENHNO (15.7 %) in [15] the EER for
NORC-MSAP-TS12 (1.22 %) is much better. This improve-
ment is attributed to the better-contrast normalization due
to CLAHE. In our previous works we applied local contrast
normalization and the size of the local regions was probably
set too large. However, the MSAP-ENH1 and ENH2 results
in [15] (1.7 and 0.9 %) are in the range of the results for
NORC-MSAP-TS12 in this work (1.22 %).

The results for MSF lead to new interesting insights. In
case of NORC-MSF -TS12 (0.35%) the shape has a stronger
discriminative power than the annual ring pattern (MSAP =
1.22 %). Fusion of both leads to no further improvement
of the EER (MSAP,F = 0.54 %). In case of CM fea-
ture fusion fusion improves the EER and MOE for TS12 (
MSAP,F = 0.64± 0.4%). The best fingerprint-based results
for TS3 and ALL are achieved with CM-MSAP and account
1.28 and 1.26%, respectively. Fusion leads to no improve-
ment.

Iris-based configurations For the iris-based configura-
tions the EERs for all LG configurations and NORC - TS 12

are slightly worse compared to the ENH NO results shown
in [15]. Note that testset TS 12 was extended by CS-Images
of 15 logs and we use a different contrast normalization in
this work. On the other hand, it seems that KO profits from
CLAHE and the EER for KO-NORC-TS12 (0.99%) is much
better than the comparable EER for KO-ENHNO (2.73%) in
[15].

IRISH vs. IRISV Basically, for most of the iris config-
urations the IRISV results outperform the IRISH results.
As noted, iris recognition aims to extract vertical aligned
structures. All results for IRISV clearly confirm that the
utilized feature extractors perform better if we rotate the
polar-transformed CS-Images. The overall best EER with
0.9 ± 0.6 % for ALL testsets in Table 1 is achieved with
IRISV -CM-LG (50,10) and LG (64,08).

IRISH /IRISV CS-Code shifting The improvements for
IRISV are astonishing because CS-Code shifting in the
matching procedure is not suited to compensate rotational
variations. To illustrate this, in Table 2 we present EERs for
LG (64,08), IRISH and IRISV where no CS-Code shifting in
the matching procedure is performed.

For a better overview the EERs achieved with shifting
are also shown. In case of IRISH the results show that with
shifting the EERs get better for each rotational pre-alignment
strategy. On the other hand the results for IRISV demonstrate
that the results are not that improved by shifting. We assume
that shifting in case of IRISV is suited to compensate small
radial variations. However, accompanied by the results in
Table 2 the results confirm the assumption that KO and LG
achieve a significantly better performance in case of textures
showing vertically aligned structures.

Basic insights In accordance with our results in [15] the
verification performance evaluation shows that the EERs for
the best fingerprint- and iris-based configurations are quite
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Fig. 8 Identification performance evaluation—Rank 1 detection rates

low and show a high degree of separability between the
intra- and interclass score distributions for a large set of tree
logs. Considering the rotational variations in the new TS3
results show that rotational pre-alignment in the registration
procedure improves the robustness to rotational variations.
Furthermore, the results for TS12 in case of NORC and
CM indicate that there is nearly no decrease in the verifi-
cation performance due to rotational pre-alignment. Note,
that in case of rotational pre-alignment rotational variations
are introduced to TS12 which basically contains no rotational
variations.

3.3 Identification performance evaluation

For the identification performance evaluation, the best con-
figurations for the fingerprint-based IRISH and IRISV con-
figurations were preselected, and the respective results are
depicted for all rotational pre-alignment strategies in Fig. 8.
For each configuration and the different testsets, the Rank 1
identification rates are presented.

In accordance with the verification performance results,
the recognition rates for TS12 are better than for TS3. The
total recognition rate for ALL is somewhere in-between. For
the fingerprint-based configurations the results for TS12 and
MSAP,F show that the fusion of annual ring pattern and shape
information does increase the identification performance sig-
nificantly. In case of TS3 and ALL the results for MSAP,F

show that fusion decreases the identification performances
slightly.

For IRISH and IRISV the best configurations with respect
to the best recognitions rates for ALL are shown. The IRISH

and IRISV -LG(50,10) configurations confirm that for IRISV
the identification performance increases significantly. The
best identification rate and MOE (93.58 ± 1.3%) for ALL
is achieved with MSAP and CM. In difference to the veri-
fication performance results the identification rates for CM

are not that excessively better than those achieved with the
other rotational pre-alignment strategies. However, same as
in the verification performance evaluation results show that
for all configurations the CM rotational pre-alignment strat-
egy achieves the highest identification rates, especially when
considering the results for TS3 and ALL.

4 Conclusions

This work demonstrates that rotational pre-alignment in the
registration procedure is suited to overcome rotational varia-
tions in log end biometrics. Along with our results in [15] it
is shown that fingerprint and iris recognition techniques can
be successfully transferred to the field of wood log tracking.
Based on the variety of 279 different logs the results indicate
the applicability of log end biometrics to log identification.

Due to the best verification performance results and the
high identification rates, we conclude that CM is the best of
the investigated rotational pre-alignment strategies. For the
fingerprint-based approach the results show that the annual
ring pattern feature MSAP - ALL achieves a very good EER
for CM (1.26%). No improvement by including shape infor-
mation in thematching procedure (MSAP,F ) can be observed.
In case of the iris-based approaches LG outperforms the
results of KO and IRIS V performs better than IRISH .
The best EER (0.9±0.6%) is achieved with IRISV -CM-
LG(50,10) or LG(64,08). In the identification performance
experiments the best fingerprint and iris-based configurations
achieve detection rates >93% at Rank1.

The next stage of our research will be to investigate the
impact of automated pith estimation [17] and CS segmenta-
tion [18] on the biometric system performance. Furthermore,
the performance for IRISV raises the general question for the
best filters and filter parameters and to assess further feature
descriptors for feature extraction.
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Abstract. Most approaches for product counterfeit detection are based
on identification using some unique marks or properties implemented
into each single product or its package. In this paper we investigate a
classification approach involving existing packaging only in order to avoid
higher production costs involved with marking each individual product.
To detect counterfeit packages, images of the package’s interior show-
ing the plain structure of the paperboard are captured. Using various
texture features and SVM classification we are able to distinguish drug
packages coming from different manufacturers and also forged packages
with high accuracy while a distinction between single packages of the
same manufacturer is not possible.

Keywords: Drug Counterfeit Detection, Paper Structure Classification,
Texture Classification

1 Introduction

Counterfeit products are a serious world wide issue affecting all industries. A
recent OECD study [13] reports that in 2013 about 2.5% of the world wide
traded products were faked ones. For the European Union (EU) a remarkably
higher value of 5% for faked and imported products is reported.

In case of medical products counterfeit medicines and drugs lead to an eco-
nomic loss and are all the worse a threat for the health of the consumers and
patients. The International Medical Products Taskforce (IMPACT) of the World
Health Organization (WHO) estimated a share of 1% of faked products in the
developed countries and 10 to 30% in many developing countries [16]. Conse-
quently, medical product authentication is becoming increasingly important. On
European level the Falsified Medicines Directive (FMD) 2011/62/EU should be
implemented until 2018. The overall aim is to improve patient safety stipulating
an efficient anti-counterfighting system. Unique identifiers (2D barcodes) will be
used to track and authenticate each medical package along the supply chain.
A central repository system is required to enable authentication of each pack-
age. Such a system will not be available in developing countries. Furthermore,
it suffers costs and is exposed to getting compromised by the forgers.
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Another approach to verify the originality of a product is to use intrinsic
features visible on the packaging or the product itself. For this work we focus on
authentication of a medical product using intrinsic features from the packaging
surface. Literature in this field relates to package fingerprinting based on the
theory of physically uncloneable functions (PUFs). Paper PUFs use the fiber
structure of paper as physical/intrinsic characteristic. The approaches presented
in [10,1,3] show that the micro-structure in a certain region of a paper or package
material is discriminative enough to identify it. Detailed investigations on paper
identification, using a public available microstructure dataset [18], are presented
in [5,4]. In [5] the authors explore the applicability of two approaches to over-
come geometric distortions. The same approaches and a hybrid one are used to
investigate package identification using mobile phones in [4]. Furthermore, in [6]
a new feature descriptor for micro-structure identification using mobile phones
is introduced. By comparing the performances for different PUFs the results in
[20] indicate that the approach by [3] outperforms the approaches by [18,5,4] but
it requires a commodity scanner. Thus, in [19] the authors showed that mobile
devices and the camera built-in flash lights can also be used to capture images
as required for [3].

As shown, research exclusively deals with identification of paper or packages.
To the best of our knowledge no works which consider paper or package classifica-
tion have been presented so far. Like in the work of [17] we assume that the fibre
structure pattern of the packaging material is suited for classification, i.e. for a
certain medical product the packaging fibre structure shows constant features.
If so, one step for checking the authenticity of a medical product could be to
assess if the packaging material is the same as used for the original product. To
answer this question, we perform a preliminary study for nine different medical
products from three different manufacturers and some forged packages for one
medical product. The results of this work enable to draw conclusions which are a
first step towards medical product authentication using the packaging material.

Section 2 introduces the basic concept of paper classification. The experi-
mental setup and the data set acquisition are described in Section 3. Our ex-
perimental results together with a discussion of these results can be found in
Section 4. Section 5 concludes this paper.

2 Paper Texture Classification

This section describes our proposed approach using paper texture classification
for package counterfeit detection. The general procedure is the following: At first
an image of the interior of the package is taken and several patches are extracted
from random positions in the image. These patches are then preprocessed. Af-
terwards different features are extracted from the preprocessed patches. Based
on these features a classifier returns a decision predicting the class a questioned
image is belonging to (by utilizing a pre-trained SVM). The steps are explained
in the following.
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2.1 Image Acquisition

Several images of the package’s interior are captured at different positions. For
the image acquisition a Canon 70D (100mm lens and flash light), mounted on a
tripod, was utilized. The flashlight was placed besides the package. The camera
is set to the smallest possible distance from the package (about 30 cm) trying
to capture as most as possible of the paper’s fibre-structure. An image of the
acquisition setup can be seen in figure 1 together with an acquired image from
the interior of a sample package.

Fig. 1: Set-up for image acquisition of the fiber structure on the inside of a drug
package (left) and acquired image sample (right).

2.2 Preprocessing

During preprocessing of the images a contrast limited adaptive histogram equal-
ization (CLAHE) [21] is applied in order to improve contrast and enhance the
paper structure. After this contrast enhancement all images are converted to
grayscale and several patches are extracted from random positions in the images
to reduce the computational effort and increase the amount of data that can
be extracted from each package. Figure 2 shows the paper structure of different
packages extracted from the random patches after preprocessing.

Fig. 2: Example preprocessed image patches

2.3 Feature Extraction Techniques

All techniques tested in this work are usually used for texture classification,
image tampering detection and printer/paper identification and are applied on
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the preprocessed images taken from the inside of the package. The techniques
utilized in this work are briefly described in the following list, further information
on the single techniques can be found in the corresponding papers.

– Histogram
Gray-level histogram of all pixels as the extracted feature.

– LBP: Local Binary Patterns
The local binary patterns (LBP) by Ojala et al. [14] observe the variations
of pixels in a local neighbourhood and are represented in a histogram.

– DMD: Dense Micro-block Difference
Texture classification approach by Metha et al. [9] which captures the local
structure from the image patches at high scales, but instead of the pixels
small blocks which capture the micro-structure of the image are processed.

– RI-LPQ: Rotation-Invariant Local Phase Quantization
The rotation-invariant local phase quantization (RI-LPQ) by Ojansivu et al.
[15] consists of two stages: Estimation of the local characteristic orientation
for a given image patch and directed descriptor extraction.

– Dense SIFT: Dense Scale Invariant Feature Transform
Lowe [8] proposed a technique used in object recognition which is commonly
known as scale invariant feature transform (SIFT). This technique is invari-
ant to image scale and rotation and robust against various affine distortions,
addition of noise, illumination changes and changes of the viewpoint.

– GLCM: Gray-level Co-occurence Matrix
Mikkilineni et al. proposed to use gray-level co-occurence features for printer
identification in [11]. The features model the spatial relationships among the
pixels of an image to represent its texture information.

– WP: Weber Pattern
In [12] Muhammad proposed a multi-scale local texture descriptor which was
applied as part of an image forgery framework.

– BSIF: Binarized Statistical Image Features
The Binarized Statistical Image Features (BSIF) proposed by Kannala et al.
in [7] rely on pre-computed local image descriptors which efficiently encode
texture information.

– LSB+JD: Least Significant Bitplane + Jaccard Distance
Extraction of the images least significant bitplane (LSB-plane) and calculate
the Jaccard distance between the LSB-planes of two images.

2.4 Classification Approach

The features extracted with the techniques described in the previous section are
used to classify the images of the various kinds of drug packages.

The classifier is designed according to the improved Fisher vector (IFV) SVM
classifier in [2]. The features are soft-quantized using a Gaussian mixture model
(GMM), decorrelated and dimensionality reduced by PCA to obtain a Fisher
vector (FV) encoding. A pre-trained linear SVM is then used to classify the IFV
encoded features. The SVM is trained using a subset of the package’s images
which is subsequently not used for the testing (evaluation) step.

Towards Drug Counterfeit Detection Using Package Paperboard Classification

71



Drug Counterfeit Detection by Paper Classification 5

3 Experimental Settings

The following section describes the dataset used in this work, which contains im-
ages showing the paper structure of different forged and original drug packages.
Furthermore a description of the two different dataset splits and our evaluation
methodology to avoid overlapping between training and testing data is given.

3.1 Dataset

Table 1: Number of genuine (G) and forged (F) packages in the data set with
drug name, corresponding ID and manufacturer (MF).

ID Name # G # F MF

1 Levitra 3 4 A
2 Kijimea Reizdarm 2 0 B
3 Kijimea Immun 1 0 B
4 Kijimea Derma 2 0 B
5 Narumed 3 0 B
6 Deseo 4 0 B
7 Signasol 2 0 B
8 Neradin 4 2 B
9 Unistop 2 0 C

Unfortunately, only a limited number of drug packages was available for our
work. In particular we have packages of 9 different kinds of drugs from 3 different
manufacturers denoted by A, B and C.

For all 9 kinds of drugs we have genuine packages and for 2 of them we also
have forged packages. The forged packages for the Levitra drug (ID 1) are real
counterfeits confiscated by customs, while the forged packages for the Neradin
drug (ID 8) have been purpose-made by the manufacturer of the drug.

Table 1 lists the number of genuine and forged packages for each kind of drug
(ID 1...9). We acquired 10 to 20 slightly shifted and overlapping images from each
of the packages’ interiors from which 5 patches of 512× 512 pixels are extracted
at random position within each image. The extracted patches correspond to a
section of approximately 4.1× 4.1mm, or 16.81mm2, of the package. From this
data we generated two distinct data sets to analyze two different issues using
the paper structure of the packages:

1. Is it possible to distinguish different packages of the same manufacturer?
2. Is it possible to distinguish packages of different manufacturers?

The first data set, SMDP (Same Manufacturer Different Packages), contains
images from packages of the same manufacturer, which correspond to the manu-
facturer B in table 1. We only considered packages of this manufacturer since it
is the only one from which we had more than one different type of drug package.

The second data set, FGDM (Forged and Genuine Different Manufacturers),
contains images from all the packages, genuine and forged, from all manufactur-
ers in table 1.
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3.2 Evaluation Methodology

To investigate the two questions of section 3.1, we split the evaluation according
to the two data sets SMDP and FGDM.

For the SMDP data set, where we want to find out if it is possible to dis-
tinguish between different types of drug packages from the same manufacturer,
images having the same drug ID are defined as corresponding to the same class.
A class thus can contain images from different packages of the same drug. Forged
and genuine packages are furthermore split into different classes. This yields 8
different classes, because we have 7 different types of drug packages for manu-
facturer B and for one drug we also have 2 packages, which have been forged by
the manufacturer.

To find out if it is possible to distinguish packages of different manufacturers
(FGDM data set), images having the same manufacturer ID are defined as cor-
responding to the same class. Forged and genuine packages are again split into
different classes for the Levitra drug produced by manufacturer A, but not for
the Neradin drug of manufactuer B because these forgeries have been produced
by the manufacturer and use the same material as the genuine packages. The
different classes for the SMDP and FGDM data set are summarized in table 2.

Table 2: Evaluation classes and corresponding IDs with number of packages

Name # Packages SMDP Class ID FGDM Class ID

Levitra forged 4 - 1
Levitra genuine 3 - 2

Kijimea Reizdarm genuine 2 1 3
Kijimea Immun genuine 1 2 3
Kijimea Derma genuine 2 3 3

Narumed genuine 3 4 3
Deseo genuine 4 5 3

Signasol genuine 2 6 3
Neradin forged 2 7 3
Neradin genuine 4 8 3
Unistop genuine 2 - 4

The acquired images of the drug packages are slightly overlapping, this might
lead to patches of the same image belonging to both, the training and the testing
subset. Hence we used leave one package out (LOPO) for the selection of the
training and testing images/patches: Training is done with randomly selected
patches from all images except the images from one specific package. The patches
for the testing subset are then randomly selected only out of images from this
package. If there is only a single package in a class, like for the class with ID
2 in the case of the SMDP data set, the patches for this class are only used to
train the classifier. Thus, no intra-class comparisons for this class exist and the
average precision is not calculated and shown as 0 in the plots. By using the
LOPO approach for the evaluation, the slight overlap of images from the same
package does not introduce any bias to the results.
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4 Experimental Results

This section presents the results of the conducted experiments and the con-
clusions made from those. We analysed the two cases, at first the separation
according to manufacturer (FGDM) and second the separation of packages all
from the same manufacturer (SMDP).

Table 3: Mean accuracies (mAcc) and mean average precisions (mAP)

Data set FGDM SMDP

Method mAcc mAP mAcc mAP

BSIF 0.428 0.403 0.138 0.171

DMD 0.97 1 0.328 0.423

DenseSIFT 0.91 1 0.37 0.476

GLCM 0.953 0.964 0.14 0.18

Histogram 0.603 0.662 0.145 0.176

LBP 0.758 0.863 0.265 0.272

LSB 0.71 0.818 0.113 0.182

RI-LPQ 0.842 0.888 0.158 0.226

WP 0.861 0.896 0.158 0.197
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Fig. 3: Confusion matrix for DMD, DenseSIFT and GLCM in the FGDM case

Table 3 lists the mean accuracies (mAcc) and mean average precisions (mAP)
for both cases. The mean accuracy corresponds to the mean of the values of the
confusion matrix diagonal. It can be seen that for FGDM the results for Dens-
eSIFT and DMD are close to 100% meaning that almost a perfect classification of
the paper and thus the manufacturer is possible. Consequently, the true forgeries
(corresponding to class 1) can be seperated from the other classes well.

Some example confusion matrices using a heat map for selected feature types
(DMD, DenseSIFT and GLCM) can be seen in figure 3 and figure 5 for the
FGDM and SMDP case, respectively. The numbers on the axes denote the classes
according to table 2, which shows the correspondence of the class labels to the
drug packages. Figures 4 and 6 show the corresponding average precision plots
for FGDM and SMDP, respectively. These confirm that the recognition works
well if the split is done according to different manufacturers and does not work
if the split is done according to different drugs all from the same manufacturer.
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Fig. 4: Average precision for DMD, DenseSIFT and GLCM in the FGDM case
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Fig. 5: Confusion matrix for DMD, DenseSIFT and GLCM in the SMDP case

We do not have any information about which kind of paper is used for the
different drug packages. But the experimental results suggest (distinction be-
tween different types of drugs from the same manufacturer was not possible)
that one manufacturer uses the same kind of paper and the same printing fa-
cility/printing process for his drug packages. As long as the forgers do not have
access to the same kind of printing facility the genuine manufacturers utilizes,
drug counterfeit detection is feasible using our proposed approach.

5 Conclusion

In this paper we investigated whether counterfeit drug package detection us-
ing texture classification based on the intrinsic paper texture is possible. The
available data was split to investigate two different issues.

In the SMDP case (same manufacturer) a distinction between single pack-
ages of the same manufacturer was not possible. We concluded that this is not
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Fig. 6: Average precision for DMD, DenseSIFT and GLCM in the SMDP case
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possible because all packages have very likely been produced using the same
manufacturing process and therefore share a very similar paper structure.

In the FGDM case (different manufacturers) it was indeed possible to classify
different genuine and forged packages with high accuracy. This indicates that it
is possible to identify counterfeit packages not produced by the original manu-
facturer, since they are most likely being produced in a different manufacturing
facility and hence do not share a similar paper structure. The class containing
the forged packages and the classes containing genuine packages could all be
clearly separated in this case.

This promising results however have to be taken with a grain of salt because of
the small data set size and the availability of only a few real counterfeit packages.
Hence the first step of our future work is the acquisition of more test data, i.e. a
higher number of distinct types of drug packages and even more important more
counterfeit and genuine packages of the same type of drug. In addition we want
to acquire further information about the printing and manufacturing process of
the packages.

Acknowledgments. This work is supported by the Munich based software
venture eMundo which receives funding from the Central Innovation Program
for SMEs by Germany’s Federal Ministry of Economics and Technology (project
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Abstract—Depending on the product category the authenticity
of a consumer good concerns economic, social and/or environ-
mental issues. Counterfeited drugs are a threat to patient safety
and cause significant economic losses. Different from physical-
marking based approaches this work investigates authentication
of drugs based on intrinsic texture features of the packaging
material. Therefore, it is assumed that the packaging material of
a certain drug shows constant but discriminative textural features
which enable authentication, i.e. to prove if the packaging
material is genuine or not. This objective requires considering a
binary classification problem with an open set of negative classes,
i.e. unknown and unseen counterfeits. In order to investigate
the feasibility a novel drug packaging texture databases was
acquired. The experimental evaluation of two basic requirements
in texture classification serves as an evidence on the basic
feasibility.

I. INTRODUCTION

Counterfeiting is an economic issue affecting all industries.
The OECD [1] reports that in 2013 2.5% of the worldwide
traded products were counterfeited ones. For the European
Union (EU) a remarkably higher value of 5% for counterfeited
and imported products is reported. In case of medicals, coun-
terfeits cause an economic loss and are moreover a potential
threat to the consumer and patient health. On the European
level, the Falsified Medicines Directive (FMD) 2011/62/EU
should be implemented until 2018. The overall aim is to im-
prove patient safety stipulating an efficient anti-counterfeiting
system. The actual solution is based on product serialization,
i.e. each package is assigned a unique identifier (e.g. 2D
barcode) which enables to track and identify each medical
package along the supply chain. Hence a central database
is required to enable authentication of each package. Such a
system will not be available in developing countries. Further-
more, it suffers costs and is exposed to getting compromised
by forgers. For example, packages will have to be equipped
with safety features in order to avoid tampering. Summarizing,
serialization-based product authentication requires to adapt the
production, shows significant risks & costs and cannot be
implemented in a set of countries.

For this reason, we move from serialization to classifica-
tion. This means that a product is authenticated based on
constant but discriminative intrinsic features of the product
or packaging material. Therefore, we target at pill drugs
which are packaged in blisters and housed in a cardboard
packaging. In [2] we showed that 9 different drugs from 3

WIFS‘2017, December, 4-7, 2017, Rennes, France. 978-1-
5090-6769-5/17/$31.00 c©2017 European Union.

manufacturers and some forged ones can be classified based on
their cardboard packaging material, in a closed-set multi-class
scenario. Results were promising and showed a classification
accuracy of 100% for all 8 drugs. However, the testset is
fairly small and drug package material authentication is a
simplistic two-class (binary classification) problem, i.e. a drug
is classified as being genuine or not. Contrasting to the setup
in [2], package authentication has to be considered as an
open set binary classification problem. In the training stage,
the authentication system can capture only a limited subspace
of other (known) drugs and forged packagings. It is a basic
requirement that the authentication system is able to reject
unseen counterfeited packages not known or available at the
time of training. For a drug packaging authentication system
this requires that a specific drug is distinguished from other
known and unknown forgeries and drugs which is referred
to as open set recognition. The general open set recognition
problem has recently been addressed in the works of [3], [4],
[5] which are outlined in Section II. Furthermore, in [6], [7],
[8] the authors investigate the performances of the invented
open set classification approaches in different applications.

In this work, we investigate the feasibility of a classification-
based drug authentication system based on images of the
cardboard packaging and top & bottom blister surface textures.
Within this work the cardboard packaging texture and the
blister top & bottom textures are referred to as modalities.
A substantial drug packaging texture database, consisting
of images from 45 drugs (multiple instances, i.e. multiple
packages in the range of 1 and 15 per drug are acquired).
Due to security concerns, strategic purposes and legal issues
(toll, pharma industry) no forged packages were available.

So far, packaging or paper authentication refers to iden-
tification or serialization of each instance. These are based
on the concept of physically unclonable functions (PUFs)
which rely on the mapping between a challenge and response
function depending on the physical nature of the object. PUFs
are unclonable and unpredictable and thus ideally suited to
implement identification-based anti-counterfeiting approaches.
These either rely on extrinsic or intrinsic PUFs, i.e. which are
attached to the product or can be derived from a part of the
product itself. The encrypted PUF signature can be attached
to the product enabling off-line authentication. [9], [10], [11]
showed that the microstructure in a certain region of a paper or
package material is discriminative enough to identify it (Paper
PUFs). Detailed investigations on paper identification, using a
publicly available microstructure dataset [12], are presented
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in [13], [14]. In [13] publicly availablethe authors explore
the applicability of two approaches to overcome geometric
distortions. The same approaches and a hybrid one are used
to investigate package identification using mobile phones in
[14]. Furthermore, in [15] a new feature descriptor for micro-
structure identification using mobile phones is introduced. By
comparing the performances for different PUFs the results
in [16] indicate that the approach by [11] outperforms the
approaches by [12], [13], [14] but it requires a commodity
scanner. Thus, in [17] the authors showed that mobile devices
and the camera built-in flashlights can also be used to capture
images as required for [11].

As identified in previous literature the fibre structure of
paper or packaging material is positional highly unique and en-
ables to identify single instances. The move from identification
to classification, as done in this work, raises two fundamental
research questions:

Positional invariance: Paper PUFs rely on the local unique-
ness of the paper fibre texture. Thus, for the paper or card-
board packaging fibre structure it is not clear if (i) the fibre
structure shows constant features across different regions and
(ii) if those features are discriminative enough to distinguish
between different types of paper or cardboard packaging.

Instance generalisation: The second question is a spe-
cialisation of the first for which the positional invariance
is considered across different instances (i.e. packages) of a
modality. Instance generalisation is a pre-requirement for a
real-world application. For paper and packaging material it
is not clear how the texture and the computed features vary
between different instances, i.e. if a classifier which is trained
with features from one instance is able to authenticate unseen
features from another package instance and to distinguish them
from other types of paper or cardboard packaging.

In this work, positional invariance and instance generali-
sation of the corresponding textural features are investigated
for all three modalities. By considering these pre-requirements
for classification-based drug packaging authentication, this
work enables to draw fundamental conclusions. Based on the
new insights the feasibility of a novel serialization-less anti-
counterfeiting approach can be considered.

Section II introduces into open set drug package authenti-
cation: (i) Section II-A describes a possible scheme for an
package authentication system and (ii) in Section II-B the
open set recognition problem is considered in more detail.
Section III introduces the acquired database. The classification
pipeline is outlined in Section IV. Experiments and results are
presented in Section V and Section VI concludes this paper.

II. OPEN-SET DRUG PACKAGE AUTHENTICATION

A. Drug package authentication system

For a given drug sample a mobile application guides the
user to open/disassemble the drug packaging and to capture
images of three different packaging modalities: The cardboard
packaging texture ICB as well as the textures visible on the
top and bottom blister sides (IBT , IBB). Furthermore, the
user is guided to capture the product code IPC (e.g. EAN

which is the European article number). All four images com-
pose the authentication vector ÂV = (ICB , IBT , IBB , IPC).
IPC is processed in order to determine the product code
specifying the target product. ICB , IBT , IBB are prepro-
cessed (segmentation, image enhancement). For the result-
ing texture images TCB , TBT , TBB a set of feature vec-
tors FVCB = {ĉb1, ..., ĉbi}, FVBT = {b̂t1, ..., b̂tj} and
FVBB = {b̂b1, ..., b̂bk} are computed, where the number of
feature vectors per modality i, j, k depends on the size of
the preprocessed images and on the utilized feature extraction
strategy. Based on the product code, the authentication system
selects the corresponding precomputed classification models
MCB ,MBT ,MBB from a model repository. If the required
models are not available on the device they could be requested
from a remote repository. For each model M and a given
feature vector v̂ the prediction function pF (M,v) = 1 in case
the vector is labelled as being genuine and −1 if not. For
each model MCB ,MBT ,MBB and the corresponding feature
vector sets FVCB , FVBT , FVBB the prediction function is
applied to all feature vectors which leads to the predictions for
each modality of the packaging instance PCB = {p1, ..., pi},
PBT = {p1, ..., pj} and PBB = {p1, ..., pk}. Finally, a
decision function f(PCB , PBT , PBB) = (v, p) needs to be
defined, where v ∈ {1,−1} gives the final authenticity vote of
the authentication system and p ∈ [0, 1] specifies a probability
score for the final vote which are then presented to the user.

Such an authentication system relies on the assumption that
different modalities of the packaging material of all instances
from the same product show constant but discriminative fea-
tures which enable to detect and distinguish the product from
a known and unknown set (=open set) of other as well as
from counterfeited products. For training of a classifier, only
a limited subset of other drugs and available counterfeits is
utilized. As a precondition for authentication, the classifier
must be able to reject unseen data. This is a typical binary
classification problem, either a given sample is labelled as
genuine or not. The undefined set of unknown other classes
leads to an open set recognition problem. This differs from
closed-set classification where only known classes are sepa-
rated from each other. Substantial efforts in the field of open
set recognition were made in [3], [4], [5]. In [3] the authors
introduce and formalize the open set recognition problem.
Furthermore, in [3], [4], [5] the authors propose different SVM
extensions which specifically address the open set recognition
problem. In order to investigate the two research questions
and as a consequence to prove the principal feasibility of
an authentication system we base our experiments on the
formalization of the open set recognition problem provided
in [3], [4].
B. Formalization of the open set recognition problem

In [3] the authors define the Open Space Risk as RO(f) =∫
O

f(x)dx∫
SO

f(x)dx
. SO needs to be considered as a large ball which is a

subspace of the open space including all training samples. O is
the open space. f(x) is a recognition function where f(x) = 1
if x is recognized as the class of interest y and f(x) = 0 if
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(a) Collected drug packages (b) Image acquisition setup

(c) CB sample (d) BT sample (e) BB sample

(f) CB image (g) BT image (h) BB image
Fig. 1: Image Acquisition Overview: 3rd Row: exemplary images showing
the selected 128×128 and 256×256 image patches.

not. Consequently, the open set risk RO is the fraction of the
positively labelled open space in SO compared to the positive
labelled samples in O. The goal in open set recognition is to
minimize the open space risk RO whilst balancing it against
the empirical (known) risk RE computed over the available
training data. Therefore, P̂ = {p1, ..., pn} are samples from
the positive training class P and N̂ = {n1, ..., nm} are
samples from a set of other known classes N . N̂ is defined
as the negative training data. U is the larger universe of
negative unknown classes only utilized for evaluation and
E = {e1, ..., ez}, ei ∈ P ∪ N ∪ U specifies all evaluation
data. For a given training data P̂ ∪ N̂ and the open space
and empirical risk functions RO, RE the open set recognition
problem is to find a function f , where f(x) > 0 for positive
recognitions, which minimizes the open set risk:

argmin
f
{RO(f) + λrRE(f(P̂ ∪ N̂))} (1)

where λr is a regularization constant.
Hence, open set recognition is a minimization problem

which combines the open set and the empirical risk over the
space of allowable recognition functions. Further, the empirical
risk (i.e. the training error) can be optimized using predefined
constraints. The stated minimization problem requires a set
of known classes which are utilized for training and a set
of known unknown classes in U which are only used for
evaluation.

III. DRUG PACKAGINGS TEXTURE DATABASE (DPT-DB)
For image acquisition, a large variety of drug packages

were collected from different pharmacies (1st row in Fig. 1).

From each drug package (=instance) the CB fibre texture
on the inner raw side of the packaging, the BT texture
(blister top side) and the BB texture (blister bottom side) were
captured. For image acquisition a Canon 70D (100mm lens and
flashlight), mounted on a tripod, was utilized (see Fig. 1b).
From each CB,BT&BB instance images from different and
non-overlapping sections were captured (e.g. Fig. 1c)). In
total images for 45 drugs from 28 different producers were
taken. For each drug between 1 and 15 package instances
are available. All captured images were manually cropped
ensuring that just texture remains.

IV. CLASSIFICATION PIPELINE

Two different classification scenarios are considered: (i)
CLASS to investigate the positional invariance of the
CB,BT&BB texture. (ii) PACKAGE to prove instance invari-
ance which is a step towards a real-world setup. In order
to train and evaluate SVM-based classifiers data needs to be
sampled and then partitioned into training (T) and evaluation
(E) data. The amount of data (k) to be sampled is predefined
for both scenarios. In this work, data relates to image texture
patches of CB,BT&BB. For patch sampling, each CB,BT&BB
image is subdivided into a grid which is specified by the size
of the feature descriptor (e.g. 128×128 or 256×256 pixels).
The 3rd row in Fig. 1 depicts sample images for CB,BT&BB
for which the image patch grids are shown.

In case of CLASS k patches are sampled from all instances
of each drug and modality. Contrary, for PACKAGE k patches
are selected from each instance of each drug and modality.
This is important in that for cross-validation the partitioning
into T and E differs in principle as illustrated in Fig. 2. For
CLASS the k patches of a drug and modality are partitioned so
that different patches of each instance are included in T & E.
On the other hand for PACKAGE the patches are partitioned
instance-wise into T and E.

A. Feature vector computation

For each selected patch in CLASS or PACKAGE a set of
discriminative features is computed. Prior to feature extraction
Contrast Limited Adaptive Histogram Equalization (CLAHE)
[18] is applied to each patch (parameters: block radius=50,
bins=256, slope=40). Exemplary CLAHE enhanced patches
are shown in the 1st and 2nd row of Fig. 3.

a) Feature Extraction: For the experiments feature ex-
traction approaches producing low dimensional feature-vectors
are utilized, mainly due to the fact that high dimensional fea-
tures and feature encoding cause computational and memory
issues when computing all classification configurations (CCs)
for different SVMs, i.e. RAM & I/O limitations. We already
did small-scale experiments on a subset of the CCs with SIFT,

 PACKAGE

T
1 2 3 4

E

 PACKAGE

1 2 3 4

CLASS

|1|,|2|,|3|,|4| = k|1+2+3+4| = k

Fig. 2: Training (T) and evaluation (E) data sampling and partitioning
strategies applied for CLASS and PACKAGE
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Fig. 3: Preprocessed patches of the CB,BT&BB images in Fig.1 - 1st Row:
256×256 pixels, 2nd Row: 128×128 pixels

SURF & feature encoding and the results indicate that the
classification performance even increases.

The following features are utilized: Local Binary Pattern
(LBP) [19], Local Ternary Pattern (LTP) [20], LiLBP (LiLBP)
[21], Histogram of Gradients (HOG) [22], Dual Tree Complex
Wavelet Transform (DTCWT) [23], Multifractal Spectrum
(MFS) [24], Edge Co-Occurence Matrix (ECM) [25].

For each selected patch of CLASS & PACKAGE a feature
vector for each listed feature extraction approach is computed.

B. Classification Approaches

For classification LIBSVM [26] and the open set extensions
provided by [27] are utilized. From LIBSVM we use the
ONE-CLASS and the C-SVC SVM (BINARY C-SVC)for one-
class and binary classification, respectively. Additionally, as
an approach specifically addressing open set recognition, the
WSVM [4] is applied for binary classification. As the ONE-
CLASS SVM uses a radial basis function (RBF) kernel, the
same is chosen for BINARY C-SVC and WSVM.

In the experiments, the classification approaches are utilized
to investigate a large set of different CCs. D = {d1, ...d45}
is the set of drugs and DM = {dm1, ..., dm28} is the
set of drug manufacturers in the testset where fdm(di) :
D → DM specifies the drug manufacturer for each drug.
M = {CB,BT,BB} specifies the packaging modalities.
FE = {fe1, ..., fen} is the set of feature extraction methods
and CS = {CLASS, PACKAGE} gives the classification
scenarios. The feature vector sets for a certain drug d ∈ D
& modality m ∈ M , for the k-patches defined for the cla
ssification scenario cs ∈ CS computed with feature extraction
method fe ∈ F , are given by FV(d,m,f,cs) = {fv1, ..., fvk}.
Following, a specific CC is defined by the tuple

CC = (d ∈ D,m ∈M,fe ∈ FE, cs ∈ CS) (2)

where d specifies the target drug which should be authen-
ticated. The respective set of feature vector sets for CC is
given by FVCC = {FV(d1,m,f,cs), ..., FV(d45,m,f,cs)} which
is composed by the CC specific feature vector sets from
each drug. The positive training data PCC = FV(d,m,f,cs) is
specified by the target drug d in CC. The negative training
data NCC = {FVCC} \ {FV(d,m,f,cs)} is composed by
all feature vector sets of all other drugs. The positive and

negative training data PCC , NCC are then used for nested
cross-validation using a specific classification approach.
C. Cross-fold validation

Optimization is crucial as the standard LIBSVM parameters
did not succeed in our experiments. Therefore, cross-validation
(CV) strategies have been carefully designed and employed in
order to optimize the SVM parameters and to strictly avoid
that training data is used for evaluation.

Therefore, the negative training data is split into known
negatives KNCC and unknown negatives UNCC =
NCC/KNCC . Therefore, for KNCC the feature vector sets
from a fixed number of drugs (e.g. 6) are selected, where the
manufacturers are different to the target drug manufacturer of d
in CC. Now, a set of positive training data PCC , a set of known
negatives KNCC and unknown negatives UNCC is available.
Based on PCC ,KNCC , UNCC nested CV procedures for
CLASS and PACKAGE are defined as illustrated in Fig.4.

For CLASS, we apply a k-fold data split strategy, i.e.
PCC ,KNCC are class-wise split into k-folds {P1, ..., Pk} and
{KN1, ...,KNk}, i.e. all drug classes are distributed equally
in the k folds. In the outer loop, we iterate over the k positive
and k negative known data folds. Thereby, the ith positive
and jth negative was selected for evaluation. The evaluation
set is given by Ei,j = Pi ∪ KNj ∪ UNCC and the training
set by Ti, j = {P1, ..., Pk}\{Pi}∪{KN1, ...,KNk}\{KNj}.
Thus a large set of known unknown drugs UNCC are used
only for evaluation. Note that |{KN1, ...,KNk}\{KNj}| is
reduced to the same size of the positive training data |Pi|
in a classwise manner. For each Ti,j in the inner CV loop
the best hyperparameters are determined in a grid search.
Same as in the outer loop, k-fold validation is performed
repeatedly in order to test a set of SVM parameters. For the
ONE-CLASS SVM just the positive samples in Ti,j are split
into k-folds and the known negative training samples are only
used for validation. As a measure for the performance the F-
Measure is utilized which is well suited to balance between
specialisation and generalisation in binary classification tasks.
For the binary SVM approaches, each prediction is assigned
a probability. In the inner loop, the probabilities are used to
determine a threshold which maximizes the F-Measure. The
SVM parameters delivering the highest F-Measure (and the
probability threshold in case of binary SVMs) are selected for
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Fig. 4: Cross-validation scheme for CLASS and PACKAGE
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CC

CLASS PACKAGE
128×128 256×256 128×128 256×256

CB BT BB CB BT BB CB BT BB CB BT BB

ONE-
CLASS

LTP

0.83 +−7.9
LTP

0.9 +−6.2
LTP

0.92 +−5.8
LTP

0.91 +−4.4
LTP

0.85 +−13.6
LBP

0.87 +−13.5
LBP

0.81 +−8.7
LBP

0.86 +−6.3
LTP

0.84 +−11.3
LTP

0.85 +−9.1
LBP

0.88 +−5.0
LBP

0.85 +−7.1

BINARY LTP

0.88 +−6.9
LiLBP

0.94 +−3.2
LTP

0.93 +−4.1
LTP

0.91 +−5.2
LiLBP

0.92 +−9.0
LTP

0.93 +−5.0
LTP

0.82 +−9.5
LTP

0.92 +−3.7
LTP

0.87 +−8.9
LTP

0.85 +−5.5
LTP

0.94 +−5.7
LiLBP

0.87 +−10.0

WSVM LTP

0.86 +−7.6
LTP

0.93 +−4.1
LTP

0.93 +−4.3
LiLBP

0.88 +−6.0
LTP

0.88 +−7.6
MFS

0.88 +−9.1
LTP

0.85 +−8.2
LTP

0.91 +−4.2
LiLBP

0.85 +−9.2
LiLBP

0.83 +−8.5
LTP

0.89 +−8.7
LiLBP

0.84 +−10.1

TABLE I: Classification performances: For each configuration the mean F-Measure (CLASS=45 & PACKAGE=8 target drugs) and the StDev for the best
feature are presented. BEST CLASS/ PACKAGE configurations for each modality are layered green.

the outer loop. Finally, the SVM approach is trained with Ti,j
(for ONE-CLASS only the positive data Pi is utilized) and
the selected hyper parameters from the inner CV loop. The
trained model is evaluated using the evaluation data Ei,j and
probability threshold in case of binary SVMs.

For PACKAGE, a nested leave-one-package-out (LOPO)
CV procedure is applied. Thereby, PCC is split into k-folds
in a package-wise manner, where k is given by the number of
packages in PCC , i.e. the number of available packages from
the target drug. KNCC is reduced to contain a fixed number
of feature vectors from each class which are sampled package-
wise. Furthermore, for KNCC the features of each drug are
split into two folds KN1,KN2 package-wise. Same as for
CLASS, in the outer CV loop we iterate over the i positive and
the j = 2 known negative training folds Ti, j and evaluate it
with Ei,j , as done in the CLASS scenario. For ONE-CLASS
in the inner CV loop the same procedure as for the outer
loop is applied. However, for binary SVMs the inner CV loop
has been adopted to better match the open set recognition
problem. Therefore, the known negative training data in Ti, j
is split classwise into two folds TKN1 and TKN2. One
fold simulates known negatives and the other one unknown
negatives in the inner loop. While the known negatives are
further used for training and validation, the unknown negatives
are just used for validation. This strategy adapts the inner CV
loop and the parameter grid search to the open set recognition
problem and is supposed to minimize the difference between
the inner CV validation- and the outer CV evaluation-error.

V. EXPERIMENTS

A. Experimental setup

All classification approaches (Section IV-B) were utilized
to cross-validate all CC combinations (Eq.2) using the CS-

TPR F TNR

CB-LTP BT-LiLBP BB-LTP
4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

(a) CLASS - 128×128
CB-LTP BT-LTP

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

BB-LTP

(b) PACKAGE - 256×256

Fig. 5: CLASS vs. PACKAGE (Binary C-SVC): TPR = TP
TP+FN

, TNR =
TN

TN+FP
[Y-Axis: Mean accuracies, min, max and variance in %]

specific CV strategies (Section IV-C). For both, PACKAGE
and CLASS a patch number k of 500 is set. For CLASS the
outer and inner CV loops are iterated twice and the data is split
into 2-folds. In case of PACKAGE LOPO is performed for all
package instances of drugs with at least 5 instances. For each
LOPO CV the positive data is split into 2-folds, in the inner
and outer CV loop. For both CSs, 5 drugs are selected for the
known negative training data KNCC . In order to enable a fair
evaluation, all data splits for CLASS & PACKAGE are stored
and reused for different features and classification approaches.

B. Results and discussion
Table I provides an overview of the results for each classi-

fication scenario, different patch sizes, modalities and SVMs.
For CLASS the averaged results over all 45 drugs are shown.
In case of PACKAGE, mean values for drugs with at least 5
instances are shown.

Considering positional invariance, the results for the best
(green layered) CLASS configurations show high mean F-
Measures over 0.9. This indicates that the textures from
all three modalities show constant but highly discriminative
features which enable to recognize the same drug class and
to distinguish it from other classes. Regarding the question of
instance invariance, the F-Measures for the best PACKAGE
configurations provide an evidence on the feasibility of a drug
package authentication system. The PACKAGE results show
that the textural features are constant across different instances
for all three modalities. This is a basic requirement for a
classification-based authentication system. Although only low-
level features have been utilized, the achieved F-Measures are
very promising. Most of the best results for both scenarios
and the different modalities were achieved with the BINARY
C-SVC Y SVM. Fig. 5 provides a more detailed view on
the BINARY C-SVC CLASS and PACKAGE results for the
best features from each modality. Thereby, it is clearly visible
that the performance decreases in case of the more difficult
PACKAGE scenario. Furthermore, the comparison between
the class accuracy (=true positive rate - TPR) and the others
accuracy (=true negative rate - TNR) shows that for all results
a higher class accuracy is achieved.

Finally, Fig. 6 shows accuracies and errors for PACK-
AGE,CB and all SVMs for the best features. For each tested
drug (=8) and all SVMs, results show that the error for
known data (KN=seen in training) is lower than the error
for unknown data (UN=open set). Considering the different
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Error UN F TPR TNR Error KN

A 1 A 2 G 1 I 1 I 2 K 1 N 1 T 1
0

2 0

4 0

6 0

8 0

1 0 0

(a) ONE-CLASS
A 1 A 2 G 1 I 1 I 2 K 1 N 1 T 1

0

2 0

4 0

6 0

8 0

1 0 0

(b) BINARY C-SVC
A 1 A 2 G 1 I 1 I 2 K 1 N 1 T 1

0

2 0

4 0

6 0

8 0

1 0 0

(c) WSVM

Fig. 6: PACKAGE (256×256) – SVM
performance comparison for CB and all
target drugs with more than 5 instances
(=8 drugs): Accuracies (TPR,TNR) and
recognition errors for the unseen data
(Error UN) and seen training data (KN)
are shown [X-Axis: Target drug (d) ids:
e.g. A1 = manufacturer A+drug num-
ber].

SVMs, the accuracies and errors for ONE-CLASS and WSVM
vary more compared to the per-drug results of the BINARY
C-SVC. Furthermore, the WSVM does not outperform the
classical BINARY C-SVC in terms of achieving a lower error
for recognizing unknown data (UN ).

VI. CONCLUSION

Results showed that textural features of drug packaging ma-
terial are constant and highly discriminative. Very important,
the experiments indicate that a classifier can be trained with
a set of known instances and is able to authenticate unseen
instances.

In future work, we will use high-level features, feature
encoding and fusion techniques and it is planned to employ
deep learning techniques. Furthermore, causes for classifica-
tion errors need to be investigated in detail, e.g. in case of
a high false positive rate it can be that other drugs from the
same manufacturer have the same packaging material.

REFERENCES

[1] OECD and EUIPO, “Trade in counterfeit and pirated goods,” OECD
Publishing, p. 138, 2016.

[2] C. Kauba, L. Debiasi, R. Schraml, and A. Uhl, “Towards drug counterfeit
detection using package paperboard classification,” in Procs. of the 17th
Pacific-Rim Conf. on Multimedia (PCM’16), vol. 9917. Springer LNCS,
2016, pp. 136–146.

[3] W. J. Scheirer, A. Rocha, A. Sapkota, and T. E. Boult, “Towards open set
recognition,” IEEE Trans. on Pattern Analysis and Machine Intelligence
(T-PAMI), vol. 35, 2013.

[4] W. J. Scheirer, L. P. Jain, and T. E. Boult, “Probability models for
open set recognition,” IEEE Trans. on Pattern Analysis and Machine
Intelligence (T-PAMI), vol. 36, November 2014.

[5] L. P. Jain, W. J. Scheirer, and T. E. Boult, “Multi-class open set
recognition using probability of inclusion,” in The European Conf. on
Computer Vision (ECCV’14), 2014.

[6] B. Heflin, W. J. Scheirer, and T. E. Boult, “Detecting and classifying
scars, marks, and tattoos found in the wild,” in The IEEE Int. Conf. on
Biometrics: Theory, Applications and Systems (BTAS), 2012.

[7] F. O. Costa, E. Silva, M. Eckmann, W. J. Scheirer, and A. Rocha, “Open
set source camera attribution and device linking,” Pattern Recognition
Letters, vol. 36, April 2014.

[8] A. Rattani, W. J. Scheirer, and A. Ross, “Open set fingerprint spoof de-
tection across novel fabrication materials,” IEEE Trans. on Information
Forensics and Security (T-IFS), vol. 10, 2015.

[9] E. Metois, P. Yarin, N. Salzman, and J. Smith, “Fiberfingerprint iden-
tification,” in Procs. of the 3rd Workshop on Automatic Identification,
2002.

[10] J. Buchanon, R. Cowburn, A.-V. Jausovec, S. Petit, D., G. P., Xiong,
D. Atkinson, K. Fenton, D. Allwood, and T. Bryan, “Forgery: Finger-
printing documents and packaging,” Nature, vol. 436, p. 475, 2005.

[11] W. Clarkson, T. Weyrich, A. Finkelstein, N. Heninger, J. A. Halderman,
and E. W. Felten, “Fingerprinting blank paper using commodity scan-
ners,” in 30th IEEE Symp. on Security and Privacy, 2009, pp. 301–314.

[12] S. Voloshynovskiy, M. Diephuis, F. Beekhof, O. Koval, and B. Keel,
“Towards reproducible results in authentication based on physical non-
cloneable functions: The forensic authentication microstructure optical
set (famos),” in Procs. of IEEE Int. Workshop on Information Forensics
and Security (WIFS’12), 2012.

[13] M. Diephuis, S. Voloshynovskiy, and F. Beekhof, “Physical object iden-
tification based on FAMOS microstructure fingerprinting: comparison
of templates versus invariant features,” in 8th Int. Symposium on Image
and Signal Processing and Analysis, Trieste, Italy, September, 4-6 2013.

[14] M. Diephuis, F. Beekhof, S. Voloshynovskiy, T. Holotyak, N. Standardo,
and B. Keel, “A framework for fast and secure packaging identification
on mobile phones,” in Procs. of SPIE Photonics West, Electronic
Imaging, Media Forensics and Security V, 2014.

[15] M. Diephuis, S. Voloshynovskiy, and T. Holotyak, “Sketchprint: Physical
object micro-structure identification using mobile phones,” in European
Signal Processing Conf. (EUSIPCO’15), 2015.

[16] C. W. Wong and M. Wu, “A study on PUF characteristics for counterfeit
detection,” in IEEE Int. Conf. on Image Processing (ICIP’15), 2015, pp.
1643–1647.

[17] C. Wong and M. Wu, “Counterfeit detection using paper PUF and mobile
cameras,” in IEEE Int. Workshop on Information Forensics and Security
(WIFS’15), 2015, pp. 1–6.

[18] K. Zuiderveld, “Contrast limited adaptive histogram equalization,” in
Graphics Gems IV. Morgan Kaufmann, 1994, pp. 474–485.
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ABSTRACT
Shortly, within themember states of the EuropeanUnion a serialization-
based anti-counterfeiting system for pharmaceutical products will
be introduced. This system requires a third party enabling to track
serialized and enrolled instances of each product from the manu-
facturer to the consumer.

An alternative to serialization is authentication of a product by
classifying it as being real or fake using intrinsic or extrinsic fea-
tures of the product. Thereby, one approach is packaging material
classification using images of the packaging textures. While the
basic feasibility has been proven recently, it is not clear if such an
authentication system works with images captured with mobile
devices. Thus, in this work mobile device drug packaging authenti-
cation is investigated. The experimental evaluation provides results
on single- and cross-sensor scenarios. Results indicate the principal
feasibility and acknowledge open issues for a mobile device drug
packaging authentication system.
ACM Reference Format:
Rudolf Schraml, Luca Debiasi, Andreas Uhl. 2018. Real or Fake: Mobile De-
vice Drug Packaging Authentication. In IH&MMSec ’18: 6th ACM Workshop
on Information Hiding and Multimedia Security, June 20–22, 2018, Innsbruck,
Austria. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3206004.
3206016

1 INTRODUCTION
As the global markets get flooded with counterfeited products reg-
ulations and technical solutions for product authentication get
implemented in various sectors of the economy. According to a
report by the European Intellectual Property Office 4.4% of the
sales and e 10 billion in the pharmaceutical sector correspond to
counterfeited medicines [2]. Moreover, counterfeit drugs pose a
significant risk to consumer or patient welfare. As a countermea-
sure against this problem the Falsified Medicines Directive (FMD)
2011/62/EU should be operational until 2019 within all member
states of the European Union. The main purpose is to protect pa-
tients by reducing the risk of counterfeits entering the supply chain.
Therefore, an anti-counterfeiting system based on product serial-
ization will be implemented. Each drug package will be assigned a
unique identifier (2D barcode) and secured by a tamper-proof seal.
This enables to track and verify each drug package along the supply
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chain from the manufacturer to the consumer. As a drawback, a
central database managed by the European Medicines Verification
Organisation (EMVO) is required. Manufacturers need to register
new packages at the EMVO and pharmacies have to check-out each
sold package. Actually, it is planned that additional costs are cov-
ered by the manufacturers but it is likely that those are passed to
the consumers. Finally, a centralized system is exposed to getting
compromised by forgers, e.g. by entering 2D barcodes from forged
packages.

An alternative to serialization is packaging authentication based
on classification which is inspired by physical object identifica-
tion approaches relying on the concept of physically unclonable
functions (PUFs). A PUF is a mapping between a challenge and
response function which depends on the physical nature of a object.
By definition a PUF is unique and cannot be reproduced. Related to
packaging authentication various works dealed with Paper PUFs.
Paper PUFs either rely on extrinsic or intrinsic PUFs, i.e. which
are attached to the product or can be derived from a part of the
product itself. However, PUFs are intended to identify an object. In
case of classification-based authentication, it is assumed that the
packaging of a product shows constant but discriminative intrinsic
features. Instead of identifying each single package instance, it can
be classified if the product is packaged with a specific packaging
material or not. The focus in our research is on drug pills which are
packaged in a blister and housed in a cardboard. Recently, in [3, 8]
we investigated the basic feasibility of drug packaging authentica-
tion. In [3] we showed that cardboard textures of 9 different drugs
from 3 manufacturers can be classified with 100% accuracy in a
closed multi-class scenario. The utilized dataset was fairly small
and packaging material authentication is in fact a simplistic binary
classification problem, i.e. a single class has to be distinguished
from all other classes. For the training stage only a limited sub-
space of known other classes is available which is referred to as
open-set recognition. Thus, in [8] we focused on the open-set recog-
nition problem and we investigated two basic pre-requirements
for classification-based drug packaging authentication: positional
invariance and instance generalisation of the packaging material
texture. Based on a substantial database, with images of 45 different
drugs from multiple instances (packages), both pre-requirements
were proved successfully. However, all images were taken with a
DSLR camera in an optimal setting and such imagery will not be
available in case of a mobile device based authentication system.
Thus, for this work in addition to a DSLR camera two smartphones
were used to acquire a substantial dataset.

Based on this dataset in this work mobile-sensor as well as cross-
sensor drug packaging authentication is investigated. Furthermore,
in [8] only the particular classification accuracies for different parts
of the packaging material were presented. For an authentication
system it is assumed that the fusion of the particular classification
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results will increase the overall accuracy. Based on a simple major-
ity voting approach, in this work the impact of fusion as well as
feature selection will be elaborated. Finally, a closer look on pos-
sible authentication error sources will be presented. For example,
it is assumed that parts of the packaging material from different
drugs which are from the same manufacturer can be the same.

First, in Section 2 a possible scheme for a mobile device based
drug packaging authentication system is introduced. Section 3 intro-
duces the acquired database. The classification pipeline is outlined
in Section 4. Experiments and results are presented in Section 5
and Section 6 concludes this paper.

2 MOBILE DEVICE DRUG PACKAGING
AUTHENTICATION SYSTEM

A schematic illustration for a mobile-device based drug package
authentication system is illustrated in Fig. 1. In order to proof the
authenticity of a given drug the consumer will be guided by a mo-
bile application. First, the user needs to disassemble the drug and
to capture the textures of the cardboard (CB) and the blister top
(BT) and blister bottom (BB) side. These three textures of the pack-
aging material are denoted as modalities. The captured images are
denoted as ICB , IBT and IBB . Additionally, the user is advised to
take a picture of the product code (IPC ), e.g. the European article
number or the barcode printed on the cardboard. However, the
product number can be entered manually or the respective drug
can be selected from a list too. These four images compose the au-
thentication vector ÂV = (ICB , IBT , IBB , IPC ) which is processed
by the authentication system. First, the textural images ICB , IBT
and IBB are preprocessed. Preprocessing includes segmentation of
the textural area and enhancement of the textural pattern. Subse-
quently, from each preprocessed image one patch is extracted for
which a feature descriptor is computed. The product code image
IPC is used to determine the product code. Based on the product
code, the system selects the corresponding precomputed classi-
fication models MCB ,MBT ,MBB from a model repository. If the
required models are not available on the mobile device they could
be requested from a remote repository. Based on the corresponding
modelsMCB ,MBT ,MBB for each feature vector FVCB , FVBT , FVBB
a probability score PCB , PBT , PBB between [0, 1] is computed. The
closer to 1 the more likely the given feature vector is from a real
sample, the closer to 0 the higher is the probability that the feature
vector was computed from fakematerial. Finally, a decision function
f (PCB , PBT , PBB ) = (v,p) needs to be defined, where v ∈ {1,−1}
gives the final authenticity vote of the authentication system and
p ∈ [0, 1] specifies a probability score for the final vote which is
then presented to the user.

3 DRUG PACKAGINGS TEXTURE DATABASE
For this study the same database as used in [8] and additional data
captured with two different smartphones was utilized. Therefore, a
Samsung S5 Mini & an IPhone 5 were utilized to capture images
for a set of selected drugs. Therefore, mainly drugs with more
than four instances from various manufacturers were selected. The
acquisition setup is illustrated in Fig. 2f. Same as for the DSLR
camera, the smartphones were mounted on a tripod and in addition
a macro lens was utilized. For illumination a light source was placed
laterally. An exemplary disassembled drug package is shown in

Figure 1: Mobile device drug packaging authentication

Fig. 2a. The initial dataset consists of images from 45 drugs from
28 different manufacturers which were captured with a Canon 70D.
For each drug between 1 and 15 package instances are available.
The Canon 70D was mounted on a tripod and a 100mm lens and a
flashlight were utilized (see Fig. 2e). From each drug instance images
from the corresponding CB,BT&BB modalities were captured. For
CB the inner side, showing the fibre structure was captured. For
BT,BB the corresponding blister textures were captured. Thereby,
it was ensured that the images were taken from different and non-
overlapping regions. Examples depicting the variety of the different
samples for each modality are shown in Fig. 2b-2d. All captured
images were manually cropped ensuring that just texture remains.
The images in the 1st row in Fig.3 illustrate exemplary images from
each modality captured with the different sensors.

4 CLASSIFICATION PIPELINE
Data selection is essential for the subsequent cross-validation proce-
dure. Due to the varying number of instances and the corresponding
CB,BT&BB images per drug, a keypoint selection strategy has been
employed. Therefore, a fixed number of data (k) to be sampled is
predefined. Data relates to image texture patches of CB,BT&BB. For
patch sampling, each CB,BT&BB image is subdivided into a grid
which is specified by the size of the feature descriptor. According to
the results presented in [8] 256×256 pixel patches are utilized. The
2nd row in Fig. 3 depicts sample images for CB,BT&BB for which
the image patch grids are shown. Basically, k patches are selected
from each instance of each drug and modality. However, k is only
an upper bound of patches which are selected. For example, in this
work k=1000 and especially for BT and BB there are drugs where
less patches are available.

Image Enhancement. Prior to feature extraction the images are
converted to grey-scale and Contrast Limited Adaptive Histogram
Equalization (CLAHE) [10] is applied to each patch (parameters:
block radius=50, bins=256, slope=40). Exemplary CLAHE enhanced
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(a) Drug sample (b) Cardboards (CB) (c) Blister top (BT) (d) Blister bottom (BB) (e) Digital camera (f) Mobile camera

Figure 2: Image Acquisition Overview
Canon D70 Samsung S5 Mini IPhone S5

CB BT BB CB BT BB CB BT BB

Figure 3: Preprocessing and data selection examples for Thrombo ASS produced by Lannacher Heilmittel (F1): 1st Row: Orig-
inal images, 2nd Row: Preprocessed images showing the keypoint grid, 3rd Row: Exemplary 256×256 pixel patches from the
top left keypoint in each image of the 2nd row.
images and selected patches for each modality and camera are
shown in the 2nd and 3rd row of Fig. 3, respectively.

4.1 Feature Extraction and Feature Encoding
For each selected patch a feature vector using each of the following
feature extraction approaches is computed: Local Binary Pattern
(LBP) [5], Local Ternary Pattern (LTP) [9], Li Local Binary Pattern
(LiLBP) [4], Speeded Up Robust Features (SURF) [1]. As noted in
[8] IO and memory constraints are crucial when it comes to high
dimensional features like SIFT and SURF. Furthermore, high dimen-
sional feature vectors are computationally problematic in case of
kernel-based SVM classifiers. As a first consequence the x,y step size
for dense SURF method was increased to 16 pixel and we decided
to compute both in a pyramid at three scales (1, 2, 4). Consequently,
for each patch #768 × SURF feature descriptors are computed. In
case of SURF this results in a feature vector dimension of 98304.
In preliminary tests it turned out that this feature vector size is
suited for the classification experiments if a linear SVM classifier is
utilized but not applicable in case of kernel SVMs.

Furthermore, image classification research showed that feature
vector encoding schemes are beneficial for the classification ac-
curacy. In case of SURF it was shown that the fisher vector (FV)
encoding scheme [6] combined with linear classifiers improves
the classification performance. The FV scheme encodes a set of
vectors into a single vector which is composed by the first and sec-
ond order residuals of the vectors from a Gaussian mixture model
(GMM). Basically, the dimensionality of the fisher vector output is
2 × K × D. K is the number of GMM components and D gives the
feature vector dimensionality. Commonly, the FV encoding scheme

is combined with a dimensionality reduction approach like Prin-
cipial Component Analysis (PCA). Thereby, PCA is used to reduce
the size of a feature vector to a predefined number of principal
components. For this work, the input feature vector is reduced to
80 components. For a reduced input feature vector dimensionality
of D = 80 and K = 256 Gaussian components a single FV with the
size of 2 × 80 × 256 = 40960 is produced. In case of SURF the FV
encoding reduces the dimension of the SVM input vector by more
than the half.

4.2 Data partitioning
In order to provide reliable results cross-validation (CV) based
classification is performed. For each drug a number of instances
(=packages) from each modality is available. Thus, a nested leave-
one-package-out (LOPO) CV procedure is well suited to avoid over-
fitting and to force the computation of unbiased evaluation results.

The acquired database is composed by a set of drugsD = {d1, ...,d45}
produced by different DM = {dm1, ...,dm28} drug manufacturers.
f dm(di ) : D → DM specifies the drug manufacturer for each
drug. M = {CB,BT ,BB} specifies the packaging modalities. Fur-
thermore the drugs and modalities were captured with different
sensors S = {CANON = S1, SAMSUNG = S2, IPHONE = S3}
and different feature extraction methods FE = { f e1, ..., f en } are
utilized in the experiments. The feature vector sets for a certain
drug d ∈ D and modalitym ∈ M , for the k-patches from sensor
s ∈ S computed with feature extraction method f e ∈ F , are given
by FV(d,m,s,f e ) = { f v1, ..., f vk }.

For binary classification it is required to specify a target class,
i.e. the drug and the corresponding modality which we want to
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authenticate. In the scope of this work various classification con-
figurations (CCs) are computed for each target drug d which are
given by the following tuple: CC = (d ∈ D,m ∈ M, s ∈ S, f e ∈
FE). The respective set of feature vector sets for a CC is given by
FVCC = {FV(d1,m,s,f e ) , ..., FV(d45,m,s,f e ) } which is composed by
the CC specific feature vector sets from each drug. The positive
training data PCC = FV(d,m,s,f e ) is specified by the target drug d
in CC. The negative training data NCC = {FVCC } \ {FV(d,m,s,f e ) }
is composed by all feature vector sets of all other drugs. The posi-
tive and negative training data PCC ,NCC are then used for nested
cross-validation using a SVM classifier.

4.3 Cross-validation strategy
The overall goal of the CV strategy is to avoid two different types of
over-fitting. The first ensures that no training data is used for eval-
uation as this leads to overestimation of the classification accuracy.
CV excludes this type of over-fitting. The second type of over-fitting
is crucial and concerns the training of the model. Thereby, hyper-
parameter selection plays a significant role in case of SVMs. The
overall goal is to find parameters for a model which generalizes to
the evaluation data, i.e. the ability of the model to classify unseen
data. However, in binary open-set classification and especially in
case of the considered drug authentication problem optimization
is a trade-off between over- and under-fitting. Unseen data is com-
posed by known data from the target drug and all other known
drugs as well as a large set of data from unknown drugs. If the model
is over-fitted to the training data it is likely that unseen evaluation
data from other packages of the target drug are not recognized. On
the other-hand under-fitting increases the risk that unseen as well
as unknown packages from other drugs are misclassified as being
the target drug.

Basically, for CV the positive and negative training data PCC
and NCC for a certain CC are provided as input. For the LOPO
CV strategy PCC is split into n-folds {P1, ..., Pn } where each fold
contains the feature vectors from a certain instance (=drug package
sample). Thus, the number of folds n is given by the number of
instances for the target drug d in CC which are available in the
database. Same as in [8] the negative training NCC data is split
into known negatives KNCC and unknown negatives UNCC =
NCC/KNCC . Therefore, for KNCC the feature vector sets from a
fixed number of drugs are selected, where the manufacturers are
different to the target drug manufacturer of d in CC. The aim of
this procedure is to simulate the real world, where only a limited
set of other known drugs (faked and original ones) are available to
train a classifier.

For the nested CV strategy in the outer loop we iterate over the
n positive training folds. The current loop index is given by the
variable i . In each iteration for KNCC the features are split into
two folds KN1,KN2 packagewise for each of the contained classes.
Hence, half of the packages and the corresponding feature vectors of
each class are contained in each fold. Subsequently, the ith positive
and 2nd negative fold is selected for evaluation. The evaluation set
is given by Ei,2 = Pi ∪ KN2 ∪UNCC . The unknown drugs UNCC
are only used for evaluation. The training set is composed byTi,1 =
{P1, ..., Pk }\{Pi } ∪ {KN1}. Preliminary, {KN1} is reduced to a fixed
number of feature vectors which are sampled equally distributed
from all contained drug classes (=6) and the respective instances.

In the inner CV loop for each Ti,1 the best hyperparameters are
determined using a grid search approach. Same as in the outer loop,
k-fold validation is performed repeatedly in order to test a set of
SVMparameters. For this purpose, the known negative training data
in Ti,1 is split classwise into two folds TKN1 and TKN2 (training
known negatives). One fold simulates known negatives (=3 classes)
and the other one unknown negatives (=3 classes) in the inner loop.
While the known negatives are further used for training as well as
for validation, the unknown negatives are just used for validation.
It is assumed that this strategy is beneficial for the generalisation of
the classifier. Hence, in the grid search procedure hyperparameters
delivering a good classification accuracy in terms of the target class
as well as known and unknwon classes accuracy are prioritized. As
a measure for the performance the F-Measure is utilized which is
well suited to balance between specialisation and generalisation
in binary classification tasks. The utilized SVM classifiers assign
each prediction a probability. In the inner loop, the probabilities are
used to determine a threshold which maximizes the F-Measure. The
SVM parameters and threshold delivering the highest F-Measure
are selected for the outer loop. Those are then used to train and
evaluate a classifier with the training and evaluation data from the
outer loop, respectively.

5 EXPERIMENTS
For data selection at maximum k=1000, 256× 256 pixel patches
were selected from each modality and sensor. For each patch fea-
ture vectors are computed with all features listed in Section 4.1. In
the experiments the LIBSVM linear SVM and kernel SVM with a
radial basis function are utilized as classification approaches. Both
are applied in combination with FISHER feature vector encoding
(FVE=FISHER) and without (FVE=NULL) to cross-validate all CC
combinations. Basically, the employed CV strategy requires that
only drugs with at least 5 instances can be selected as target drugs,
ie. the drug which should be authenticated by the classifier. An
overview on suited drugs is presented in Table 2. The table shows
that for each selected target drug various numbers of instances are
available and each was captured with a set of sensors (S1,S2,S3).
For each target drug and sensor all CCs are computed using the
outlined LOPO CV strategy. For each LOPO CV the positive data
is split into 2-folds, in the inner and outer CV loop. 6 drugs are
selected for the known negative training data KNCC . In order to
assess the cross-sensor scenario, for evaluation in the outer CV
loop data from all different sensors are utilized. For training data
from only one sensor are utilized. For example, in case of Mexalen
(A3) in the outer loop in each LOPO iteration the evaluation is
performed with #1.75k-2k features of the target drug and >#100m
features from all other drugs and cameras. For a fair evaluation of
the different classification approaches and features the data splits
are stored and reused.

5.1 Single-sensor evaluation
An overview on the particular results for the different sensors, all
modalities and classification approaches is presented in Table 1. For
each CC and modality the averaged results over all target drugs
(Table 2) are shown. Considering the results for different CCs, it can
be concluded that the F-Measure differences between the elaborated
classifiers are not significant. For L-SVM and FISHER encoding it
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CC Canon - S1 Samsung - S2 IPhone - S3
FVE CA CB BT BB CB BT BB CB BT BB

NULL

RBF-
SVM

LT P
0.87 +−6.9

LT P
0.94 +−3.5

LiLBP
0.84+−17.6

LT P
0.92 +−6.8

LT P
0.96 +−4.0

LiLBP
0.91 +−5.8

LBP
0.83 +−6.1

LT P
0.95 +−6.5

LT P

0.88 +−8.1
L-SVM LT P

0.87 +−7.4
LBP

0.92 +−4.7
LiLBP
0.83+−13.5

LT P
0.92 +−6.3

LT P
0.94 +−4.1

LiLBP
0.9 +−5.6

LBP
0.83 +−6.9

LT P
0.95 +−6.2

LT P

0.8 +−12.6
FISHER L-SVM LiLBP

0.84 +−7.4
SU RF
0.93 +−3.8

SU RF
0.89+−10.6

LBP
0.88 +−9.3

SU RF
0.97 +−4.8

SU RF
0.91 +−4.9

SU RF
0.82 +−6.3

SU RF
0.95 +−7.9

SU RF

0.84+−12.0
Table 1: Single-sensor performances: For each sensor and all CCs the mean F-Measure and the StDev[%] for the best features
of each modality are presented.
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(c) S3 - IPhone
Figure 4: Single-sensor results for FISHER L-SVM: For each sensor andmodality the performances for the best features as well
as for modality fusion are depicted. TPR = T P

T P+FN , TNR = T N
TN+F P [Y-Axis: Mean, min, max, standard deviation].

seems that SURF as high level feature does not improve the perfor-
mance as expected. Furthermore, the F-Measures are comparable to
the results presented in [8]. However, in [8] less data was selected
for training which shows that doubling the parameter k to 1000
does not improve the classification performance.

When comparing the F-Measures between the different sensors
the values are in the same range, surprisingly. Basically, for the
mobile sensors fewer drugs were available for evaluation, i.e. no
unknown drugs remain for evaluation. Thus, it would be assumed
that less variety (=closed-set) in the evaluation data improves the
classification performance. This new finding is interesting because
this increases the chance that the classification performances are
robust in a real world application.

Modality fusion. In the experiments in [8] only the modality
performances were considered. As shown in the exemplary drug
packaging authentication scheme in Fig. 1 the three probability
scores from each modality (PCB , PBT , PBB ) should be combined to
a final decision. For this purpose, a simple majority voting approach
Manufacturer/Drug #Samples Camera

CB BT&BB Canon (S1) IPhone (S2) Samsung (S3)
(A) ratiopharm
(A1) Danselle 10 10 - -
(A2) Danseo 9 9 - -
(A3) Mexalen 8 8 -
(F) Lannacher
(F1) Thrombo ASS 5 5
(I) Kwizda Pharma
(I1) Liberel mite 15 15 - -
(I2) Delia 11 11
(J) Rotexmedia
(J1) Dexamethason 5 0 - -
(N) Gynial
(N1) Bilinda 6 6
(X) Pelpharma
(X1) Peliette 17 17

Table 2: List of drugs with at least 5 instances which were se-
lected as target drugs. Only drugs which were captured with
the corresponding sensors show a check-mark.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Z
A

Z
B

A1
A2
F1
I1
I2
J1
N1
X1

(a) CB - LiLBP

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Z
A

Z
B

A1
A2
F1
I1
I2
N1
X1

(b) BT - SURF

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Z
A

Z
B

A1
A2
F1
I1
I2
N1
X1

(c) BB - SURF

Figure 5: Single-sensor results for Canon (S1) FISHER L-
SVM: (FN+FP) Error matrix for each modality. [X-Axis: Pro-
ducers from the evaluation data, Y-Axis: Target Drugs]. The
darker the cell, the higher is the classification error.
is applied which still offers possibilities for optimization. Initially,
the modality specific classifier thresholds are used to determine a
decision vector D̂ = (DCB ,DBT ,DBB ) from the probability scores.
The decision values are either 1 or -1. In case that at least two
decision values are 1 the final decision is that the package material
is from a real package, i.e. it is not a fake sample. For the selection of
the features which achieve the highest F-Measure SFFS (Sequential
Floating Forward Selection) [7] is applied. For this purpose, the
particular modality decisions are randomly shuffled to to get a set of
decision vectors. The shuffling is repeated several times in order to
compute the averaged classification performances of the modality
fusion. For each sensor the particular modality performances as well
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CB BT BB
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(a) False positve rates: FPR= FP
T P+FP
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(b) False negative rates: FNR= FN
TN+FN

Figure 6: Cross-sensor performances for FISHER L-SVM: For all training and evaluation sensor combinations the FPR and
FNR for each modality are shown. For each combination and modality the results for the best feature were selected. [Y-Axis:
FPR/FNR mean, min, max and standard deviation].

as the fusion performance is illustrated in Fig. 4. It can be concluded
that modality fusion significantly improves the classification and
authentication accuracy.

Error sources. Basically, it is assumed that other drugs from the
same or different manufacturer might have the same packaging ma-
terial, e.g. if two different manufacturers have the same cardboard
or blister supplier. The error matrix plots in Fig. 5 visualize the num-
ber of false positive (FP) + false negative (FN) votes for each target
drug and the evaluated drugs which are grouped into manufactures.
The darker the higher the amount of misclassification’s. FP votes
are from samples which are incorrectly authenticated and FN votes
are from samples which were incorrectly not authenticated. When
considering the columns it can be observed how likely the drugs
of a certain manufacturer cause FP or FN votes. FN votes are only
possible when the target drug (e.g. A1) and the manufacturer (A)
in the columns are the same. For example, for all three modalities
the drugs of ratiopharm (A) cause FP votes for drugs from other
manufacturers as well as FN votes for A1 and A2. Furthermore,
each target drug and the corresponding row can be considered.
The darker the more FP and FN votes were observed in the CV
strategy. In case of CB, the drug A2 shows a high amount of errors.
Furthermore, in each error matrix there are some dark spots which
show up high error rates. For example, for BB a high amount of
samples from manufacturer H are incorrectly classified as drug F1
= FP votes. Comparing the error matrices for all three modalities it
is obvious that the most errors are visible in case of CB and BB and
there are less errors for the BT textures.
5.2 Cross-sensor evaluation
In order to assess the cross-sensor performances, all CCs were
evaluated with data from other sensors. Thereby, the classifier was
always trained with data from only one sensor. The two charts in
Fig.6 show the FP and FN rates which were achieved for different
training and evaluation sensor combinations. Actually, S1,S2&S3
show the single sensor FPR and FNR for each modality. All other
combinations show results where the classifier has been trained
with data from one sensor and has been evaluated with data from
another sensor, i.e. cross-sensor results. The single-sensor error
rates are in general lower than the cross-sensor results for almost all
modalities. Especially, the cross-sensor combinations where either
the DSLR or a mobile camera are used for training and the other
camera type is used for evaluation show inferior FNR values and
also worse FPR values. This could be attributed to the different
texture scales in case of images acquired with the DSLR camera
and images acquired with the mobile devices (see Fig. 3). Backing

for this argument is that the error rates for the mobile-device cross-
sensor combinations are better. Furthermore, the cross-sensor FNR
values are inferior to the FPR values compared to the single sensor
results. Thus, in the considered cross-sensor scenario it is easier
for the classifier to reject samples from other drugs than to detect
samples from the same drug captured with a different sensor.

6 CONCLUSION
In this work different aspects for a mobile device based drug pack-
aging authentication system were considered. Results showed that
data captured with mobile devices and low level features are princi-
pally suited for drug packaging authentication. Furthermore, modal-
ity fusion improves the performance significantly. However, if differ-
ent sensors are used and the imaging conditions get more realistic
the authentication performance degrades significantly.

Future work on a mobile device based application needs to deal
with all issues caused by unconstrained imaging conditions (scale,
rotation, tilt & illumination variations). Furthermore, more sophis-
ticated approaches for modality fusion, state-of-the art features and
a CNN-based solution should be employed.
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Abstract: Traceability of natural resources, from the cradle to the final product is a crucial issue
to secure sustainable material usage as well as to optimize and control processes over the whole
supply chain. In the forest products industries the material can be tracked by different technologies,
but for the first step of material flow, from the forest to the industry, no systematic and complete
technology has been developed. On the way to close this data gap the fingerprint technology for
wooden logs looks promising. It uses inherent properties of a wood stem for identification. In this
paper hyperspectral cameras are applied to gain images of Norway spruce (Picea abies [L.] Karst.)
log end faces in different spectral ranges. The images are converted to a biometric template of feature
vectors and a matching algorithm is used to evaluate if the biometric templates are similar or not.
Based on this, matching scores specific spectral ranges which contain information to distinguish
between different log end faces are identified. The method developed in this paper is a necessary and
successful step to define scanning system parameters for fingerprint recognition systems for wood
log traceability from the forest.

Keywords: wood traceability; biometric identification; fingerprint detection, hyperspectral imaging

1. Introduction

Traceability of wooden logs is a recent topic of research, as customers are getting more interested
in the origin of their products. This led to certificates like the one of the Forest Stewardship Council [1]
or the Program for the Endorsement of Forest Certification [2] that are documenting the sustainable
production of wood. Even more legal actions and agreements like the European timber regulation
EUTR No. 995 2010 [3] were developed. This was done to claim disclosure of the provenance of timber
and timber products that are placed on the European market in order to impede deforestation and
illegal trading of timber. The availability of unambiguous tracking methods for logs from forest to forest
products industries will guarantee the database for process analysis and process optimization and can
therefore be seen as a necessity for further development. This topic is in the view of recent research
all over the world and even scientific hackathons are organized (e.g., the Evergreen innovation camp
2019 in Vienna [4]) to solve the question of traceability of wood from the forest to the related industry.
Different methods of log tracking systems were investigated in the past and they reach from the
application of barcodes up to the usage of radio frequency identification (RFID) transponders (e.g., [5]

Mathematics 2020, 8, 1071; doi:10.3390/math8071071 www.mdpi.com/journal/mathematics

Chapter 3. Publications

90



Mathematics 2020, 8, 1071 2 of 10

or [6]), but tracking systems are only used for relatively high priced lumber up to now, due to technical
and economical shortcomings when these systems are applied for rather inexpensive mass round
wood. In this paper the main approach is based on inherent properties of a log based on biometric log
end face characteristics as shown in [7–10]. The usage of log characteristics for tracking logs is not a
new idea, e.g., in [11] and [12] surface properties of wood logs were used for identification and in [13]
and [14] additional measurements with tracheid effect and X-ray were used. These applications can be
used successfully in the sawmill environment, but they are not applicable on the forest site. In other
research it was found that the log end faces contain a lot of information that can be used for biometric
purposes [15–17]. To be successful on the forest site the measurement equipment has to be simple
and insensitive to surrounding mechanical and other physical disturbances. For these reasons in [18]
the application of commercial action cameras, which can be used in harsh environments, to collect
log end images in the forest were tested. It was shown that the collection of images was satisfying in
the forest, but the log end faces changed significantly during transport. Dirt accumulation, mechanical
damages and color changes on the log end surface occurred during transport conditions. Based on
these findings the following assumption is derived.

It is assumed that a hyperspectral image which contains not only the visible spectra, but depending
on the technology also parts of the ultraviolet (UV)-spectra and near infrared (NIR) spectra, will be
able to improve the detection of significant parts of log end faces.

The usage of hyperspectral imaging technologies ranges from large scale imaging down to lab
scale sensors used in food safety, pharmaceutial applications forensic, etc. (examples are shown
in [19] or [20] ) and therefore is very common in use. One main tasks for the successful application of
these technologies is the development and usage of sophisticated analysis technologies for the given
data quantities. e.g., [21] give an overview of main tasks and methods for hyperspectral remote sensing
data analysis and in [22] the concept of active learning methods to improve data analysis models
are shown. These papers show the direction of actual developments in the field of hyperspectral
image analysis.

For wooden log tracking these hyperspectral methods are not investigated up to now, but results
of other research groups (e.g., [23,24] or [25]) let assume that hyperspectral images might overcome
the problems of the conventional methods as well as the shortcoming of the research approaches
shown above.

Following this assumption, it is from special interest which spectra contains different information
compared to other spectra, or the other way around, which spectra contain the same information
than others. This knowledge is crucial to reduce the technical efforts and expenses while collecting
the data in the forest. Within this paper a method is shown, which is able to calculate distance
measures between different spectral images of complex shaped wooden log end faces. This enables the
investigation of spectral ranges which contain different information and are thus valuable to improve
image acquisition for fingerprint methods in the future.

2. Materials and Methods

2.1. Wood Samples

Initially, 100 different Norway (Picea Abies) spruce logs logs (4̃.5 m length) were collected on
24 and 25 September2018 in a grove near Corcieux, France (48.1968 N; 6.8869 E). Since the logs were
selected from piles, it is not possible to know which logs belong to the same tree. Norway spruce
was chosen for this study as it is the main tree species in Austria. These logs were transported to
Freiburg in Germany where they were used for further data acquisitions. For the experiments in this
paper a wood disc was cut from the lower end of each log. The outside of each disc was sanded with
a mesh width of 120 to reduce the influence of manual chainsaw cuts at scanning. This mesh width
was chosen as it gave good results for the wet samples. To avoid surface cracks due to wood shrinkage
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and discoloration due to oxidation processes the slices were packed individually in plastic bags during
transport and intermediate storage.

2.2. Scanning System

The samples were scanned at Stemmer Imaging in Munich by two pupils of the Holztechnikum Kuchl,
which used two different multispectral line scanners. The first scanner was a so called Specim FX10,
which scans the spectra between a wavelength from 445 nm to 983 nm with a bandwidth of
approx. 3 nm. The second scanner was a Specim FX17 which provides scans between 990 nm to
1665nm also with a bandwidth of approx. 3 nm. Therefor the Specim FX10 uses mainly the visible
light (VIS) spectra and the Specim FX17 uses mainly parts of the NIR spectra. For the scanning setup a
resolution of 640 × 640 pixel was chosen. The scanning system is shown in Figure 1a—Halogen light
was used for lighting. Each wood disc was scanned with both cameras. For this purpose, each disc was
pushed through the system by hand and the speed was synchronized with a trigger. The hyperspectral
data, i.e., the translation from line scanning data to a hyperspectral cube, was performed by the
acquisition software Perception Studio.

(a) Scanning system (b) Wood disc storage (c) Hyperspectral cube cropping

Figure 1. The sensor system shows the line scanner Specim FX10 which was mounted on a metal frame
and the slice is moved perpendicular to the scanned line manually. The stored samples were closed
airtight to avoid surface changes. Each hyperspectral cube was cropped to reduce the massive amount
of data.

3. Image Analysis

The hyperspectral data (captured with the FX10 or FX17 camera) from each disc were stored
in a special format (HSD—hyperspectral data) utilized by Perception Studio. A HSD file contains
all spectral bands of a disc in kind of of a hyperspectral cube. It was necessary to convert the data
to the ENVI format for which open source image processing libraries are available. Subsequently,
for each hyperspectral cube the grayscale images (PNG) for each band were extracted and are denoted
as cross-section (CS) images. In case of the FX10 this results in 202 CS-Images and for the FX17 in
196 CS-Images per wood disc. This conversion enables to apply standard image processing algorithms.

For each camera, CS-Images for selected bands of wood disc #E001B are illustrated in Figure 2.
It can be recognized that the width of the wood disc for the FX10 and FX17 images differs. We assume
that this is caused by the acquisition software and an inaccurate trigger synchronization. In order
to assess the similarity between different CS-Images, i.e., to compute distance measures between
CS-Images, biometric features for each CS-Image are computed. Biometric features of a CS-Image are
denoted as templates. Template computation is performed in two consecutive steps: CS-Registration
and Feature Extraction which are described, subsequently.
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FX
10

(a) 445 nm (b) 551 nm (c) 658 nm (d) 767 nm (e) 878 nm

FX
17

(f) 990 nm (g) 991 nm (h) 1270 nm (i) 1410 nm (j) 1553 nm

Figure 2. Exemplary cross-section (CS)-Images from different hyperspectral bands of the wood disc
#E001B.

3.1. CS-Registration

Initially, the CS area in each CS-Image needs to be localized, i.e., segmented from the background.
For this purpose, the feature-based segmentation approach by [26], which is based on a combination
of superpixels and GraphCut regularization, was utilized. For our experiments we utilized the Python
code (https://borda.github.io/pyImSegm/) provided by the authors. Color features were utilized and
each CS-Image was segmented into two labels in order to segment fore- and background. Figure 3a,b
show exemplary segmentation results for wood disc #E001B for the first band captured with the FX10
and FX17, respectively. The superpixel clustering is based on Simple Linear Iterative Clustering (SLIC)
for which we utilized a superpixel size of 40 pixel and for the regularization parameter a value of 0.25.
The segmentations are computed using the variant where the Gaussian Mixture Model (GMM) is
created from a set of images, in our case from all CS-Images of a band and camera. Each segmentation
result was further processed in order to remove holes and to select the largest area for which the
concave hull was determined. The concave hull coordinates were stored for each CS-Image.

(a) FX10—#E001B at 445 nm (b) FX17—#E001B at 990 nm
Figure 3. Unsupervised segmentation using superpixel, model estimation and GraphCut.

All computations which are described subsequently, were performed using Java code which was
was developed in the context of the respective publications and extended for this work. For specific
details, we refer to the referenced publications. Same as in previous works (e.g., [10]), biometric
templates of CS-Images are computed in order to assess the similarity of CS-Images of a wood disc
captured at different wavelengths. Therefore, the CS is registered to a unique position in terms of
rotation and scale. The pith position serves as unique reference point and is determined using the
approach proposed in [17]. Local orientation estimates and their intersections are utilized to determine
a candidate for the pith position. Local orientation estimates are computed in the segmented CS area.
In Figure 4, the pith estimation results for wood disc #E001B captured with the spectral camera FX10
and F17 are shown in the first and second row, respectively. Furthermore, the center of mass (CM) is
computed and the pith position to CM vector is used to rotationally align the CS to the horizontal axis
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as shown in images of the first and second column of Figure 4. Rotated images are scaled to a width
of 400 pixels which results in a registered CS-Image. Consequently, for all registered CS-Images the
pith to CM boundary vector has a fixed length of 200 pixels. This differs to the width utilized in our
previous works due to the lower image resolution provided by the spectral cameras. Furthermore,
our feature extraction approach is based on a circular grid as described in the next section.

FX
10

FX
17

(a) Pith Estimation/Segmentation (b) Registrated CS (c) Circular grid

Figure 4. Illustration of the feature extraction pipeline for wood disc #E001B for the first band of
both cameras.

3.2. Feature Extraction

As in [10], the texture-feature based approach by [27] is adopted and extended to
compute and compare CS-Codes from CS-Images. Thus, the Gabor filterbank is extended
to six different filters based on the following parameters: G(λ, θ, σ, γ) = G(λ, σ) =

((2, 1), (3.5, 2), (4.5, 3), (5.5, 3), (6.5, 3), (7.5, 3)), θ = {0, 22.5, ..., 135, 157.5}, γ = 0.7. λ is the filter
wavelength, θ represents the orientation, σ is the standard deviation and γ specifies the filter
aspect ratio. This filterbank enables to capture the annual ring pattern frequency and orientation in
local regions.

For feature extraction, the Gabor filterbank is applied to the local image regions of the registrated
CS-Image, predefined by the circular grid as shown in the images in the right column of Figure 4.

Only local image regions within the CS area are processed. For each local region the Gabor
filterbank is applied which results in a filter response for each filter. For each filter response the
standard deviation is computed which leads to a feature vector with 48 standard deviation values per
local region. Finally, the biometric template of a CS-Image is composed by all feature vectors computed
for the local regions in the circular grid. Feature vectors of local regions outside the CS are set to NULL.
Note, that in previous works a rectangular grid was utilized. This should have less impact on the
biometric templates but is suited to reduce the size of the biometric templates because a large amount
of background region is ignored while the shape information still is part of the biometric template.

3.3. Template Matching

In [8], three different matching procedures have been introduced. Note, that for this work no
rotation compensation in the matching procedure is required. There are no rotational variations
to compensate for. The first matching procedure of [8] which is focused on annual ring pattern
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information is utilized. This procedure is denoted as an annual ring pattern matching score (MSAP).
The aim of the other two procedures is to include shape information and the results in [8] confirmed
the positive impact in terms of discriminative power resulting in a higher recognition accuracy. We are
mainly interested in changes of the textural information shown at different wavelengths and thus
shape information is not valuable. MSAP for two CS templates is computed by

MS(CS1, CS2) =
1
M

n

∑
i=0

D(CS1(i), CS2(i)) (1)

where CS1, CS2 are two feature vectors of the CS-Codes which are compared, i specifies the index of
the local region. As distance function (D) the L1 norm is utilized which outperformed the L2 norm in
a previous work [28]. The distance function (DAP ) ignores feature vector pairs which are not in the
intersection of both CSs. In the current implementation this is the case if one of both feature vectors is
set to NULL. For normalization, M is defined by the amount of considered feature value pairs.

4. Experiments and Results

For the experimental evaluation for all spectral CS-Images of each wood disc, captured with FX10
or FX17, biometric templates were computed. For each wood disc and the captured spectral CS-Images
with a camera, the segmentation result computed for the first band (FX10 = 444 nm, FX17 = 990 nm) and
the group segmentation model is utilized for all other spectral CS-Images. In the exactly identical way
the pith is estimated for the segmented CS-Image from the first band and utilized for the remaining.

This ensures that all CS-Images of a wood disc captured with a camera are registrated in the
exact same way. This is crucial in order to avoid side affects caused by varying segmentation and pith
estimation results. Furthermore, for some bands CS segmentation is very difficult and pith estimation
is impossible due to the absence of a clear annual ring pattern (see Figure 2). For feature extraction,
a local region size of 16 pixel was utilized and biometric templates were computed for all CS-Images.

Matching scores were computed for all pairs of biometric templates from each wood disc captured
with a camera. In human biometrics scores computed between templates of one individual are are
referred to as intraclass scores. Interclass scores are computed between templates from different
individuals. For this work, we denote intraclass scores which are computed between templates from
on individual but different bands as spectral scores. Interclass scores are computed between biometric
templates from different wood discs for the same band.

Based on the spectral scores, the similarity and non-similarity of different spectral bands is
analyzed. The interclass scores for each band enable to draw conclusions on the suitability of the
different bands to discriminate between different wood discs. The overall mean spectral distances of
all pairs of spectra for 100 wood discs of each camera are shown in the distance matrices of Figure 5.
This distance matrix is calculated for all CS’s hence it can be seen if the spectral score between different
spectra bands can be observed for all CS’s or not.

The matrices in Figure 5 are symmetric and bright areas indicate that the feature vectors between
two spectra bands are similar while dark areas indicate that feature vectors between two spectra bands
are different. In Figure 5a,b the results for one specific CS-image (#E001B) are shown and compared to
the mean values over all CS-images in Figure 5c,d. Based on this matrix for the spectral camera FX10
(see Figure 5c) two different spectral ranges are estimated by visual inspection. These are the spectral
ranges from 450 nm to approx. 740 nm and from 740 to 950 nm. These two ranges seem to show
different features, as the feature vectors are different. For the spectral camera FX17 (see Figure 5d) it
is estimated that there are three different spectral ranges (from 900 nm to 1150 nm, from 1050 nm to
1360 nm and from 1360 nm to 1800 nm) where the feature vectors show different values based on the
matching score.

To get an impression about the usability of different spectral bands for log traceability the mean
interclass scores per band for all CSs are shown in Figure 6. Note that no normalization has been
applied. A high mean-interscore expresses that the matching scores between CS-Images from different
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wood discs are high and the wood discs are not similar to each other. A low mean-interscore shows
that different wood discs are very similar to each other which is a problem for a biometric system.
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(c) FX10—Mean spectral distances
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(d) FX17—Mean spectral distances

Figure 5. The distance matrices illustrate the spectral distances computed for all bands captured with
the FX10 and FX17 hyperspectral camera. In the first row, the distance matrices for disc #E001B are
shown and in the second row the mean distance matrices for all 100 discs are illustrated.
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Figure 6. Mean interscores for all captured spectral bands.
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The higher the mean-interscore, the more discriminative are the CS-Images of the 100 discs in
the chosen spectral band, i.e., if this value is high, this spectral band is good to identify different log
end faces. Based on the interclass-scores in Figure 6, it seems that the NIR spectra (>760nm) are much
better for detecting different log end faces as the interclass scores are much higher for the spectral
bands of spectral camera FX17 compared to the spectral camera FX10. Furthermore, approx. five
local maxima can be expected out of the mean-interscore plot, two for the spectral camera FX10 and
four for camera FX17 while one peak appears in the crossing spectra measured by camera FX10 and
camera FX17 and is only counted as one. The wavelength at the peaks in the NIR spectra correspond
to specific overtones of OH-bond and CH-bond vibration modes what allows a chemical interpretation
of these observations.

5. Conclusions

The results of the spectral analysis showed that log end face images improved with hyperspectral
camera systems in the spectral range between 400 nm and 1800 nm lead to different images.
This supports the assumption that it is possible to gain additional information about one log end face
if images in different spectral ranges are taken.

The fingerprint related method of feature extraction was applied successfully which led to
specific feature vectors per image. These vectors are the basis to calculate pattern matching scores.
The matching scores are used to investigate the similarity of spectral bands per log end face and
the differences between the different log end faces per spectral band. The following observations
were made for the investigated samples: In the spectral range between 450 nm and 1000 nm two
intervals to gain different spectral images were observed and in the spectral range between 1000 nm
and 1700 nm three intervals to gain different spectral images were observed. Based on this observation,
it is assumed that up to 5 spectral bands (one of each spectral range) contain most of the information
within the feature vectors. This assumption is supported by the results of the interscores between the
log end faces per spectra. Here it can also be seen that the differentiation between logs takes local
maxima in five different spectral band regions. There is evidence that the NIR spectra create a better
distinction between different log end faces than the visible spectra. The objective of this study was the
development of a methodological basis to use hyperspectral images for log tracking. The results are
promising for the development of a system based on the methods described, but it is not possible to
derive an overall valid model for Norway spruce wood (picea abies [L.] Karst.) or other wood species
from this specific sample.

Nevertheless, the method shown is applicable to use hyperspectral imaging for different wood
samples and species and we invite different research groups in log tracking all over the world to work
on this approach to develop the basis for a globally accepted log tracking system, as wood trade is
a global issue.

Further investigations should and will focus on following questions:

• More detailed analysis on the ’best’ spectral bands for the camera system. It is assumed that
cameras which works in two up to four different spectral bands will be applied in the future.

• Usage of wood log end faces from different locations and different wood species to be able to
work in practical surroundings.

• Development and implementation of statistical process control methods to optimize the
production processes between forest and forest product industries.

Summarizing the usage of hyperspectral images are promising to reach a tracking method for
wood logs and the next steps will be from lab scale to field application. Therefore the technical
equipment necessary has to be reduced and the analysis algorithms have to be improved. For both
tasks the findings in this work are useful and existing results of other fields of research (e.g., algorithms
from remote sensing) will be utilized in future research.
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Abstract—By bringing concepts of precision farming to in-
tensive aquaculture fish production, it can be optimized to be
more sustainable while focusing on fish welfare criteria. This
requires a shift from mass to smart production and to consider
each fish as an individual. Therefore, it is required to be able to
identify each fish in a tank or sea cage. In this paper, we prove
the feasibility of fish identification using the iris as a biometric
characteristic. Based on a new dataset, captured in a controlled
out of water environment (i) a fully automated iris recognition
system is presented and utilized for the experiments and (ii)
the distinctiveness and the stability of the iris pattern of Atlantic
salmon (Salmo salar) is assessed. Results prove the distinctiveness,
which indicates that the iris pattern of Atlantic salmon is suited
for biometric identification. However, the iris pattern has a low
stability, which means it changes over time. Due to frequent
interaction of fish and system, usually multiple times a day during
feeding, there is ample opportunity keep the biometric template
up-to-date which makes the lack of long-term stability a non-
issue. It can be concluded that a biometric fish identification
system is feasible, with the precondition that biometric templates
of each fish are periodically updated to combat the low stability.

Index Terms— Precision Fish Farming, Fish Iris Identification

I. INTRODUCTION

The production requirement of aquaculture in the last 30
years has risen steeply and continues to do so. The edi-
ble fish consumption per capita is rising and outpaces the
naturally occurring fish population, making this consumption
sustainable only through aquaculture production. This trend
will not decline and aquaculture production plays a crucial
role to ensure sustainable development in economic, social
and environmental terms [1].

For intensive aquaculture, the fish is cultivated in tanks
or sea cages. An increase in production can often only be
achieved through a higher density of fish. This exacerbates
problems in the management of disease and health of the
fish. Optimization of fish production therefore also requires an
improvement of fish welfare. Towards Precision Fish Farming
(PFF) control-engineering principles are applied to fish pro-
duction, thereby improving the farmer’s ability to monitor,
control and document biological processes [2]. The move
from mass to smart production allows application of control-
engineering principles to individual fish instead of the popula-
tion as a whole. It is all about data which is collected, analyzed
and exchanged almost in real time, allowing for medication
or removal of individual fish as well as the optimization of
yield per fish. Smart production requires that data is assigned
or linked to a set of objects or single (living) objects in the

* Corresponding author. E-mail: rudi.schraml@gmail.com
This work is partially funded by the Austrian Science Fund (FWF) under
Project No. I 3653 and by the AquaExcel2020 TNA Project AE050006.
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production. Data and information enable to improve and/or
completely rethink well-established processes.

Further, regarding intensive aquaculture considering each
fish as an individual, requires non-invasive monitoring to set
up a farming decision support system (FDSS). This type of
smart fish farming as envisioned by a FDSS relies on the
identification of individual fish. Fig. 1 illustrates our vision
for such a system which follows the paradigm of ecological
intensification. This system enables to assign information
about fish traits such length, weight, sex and maturity and fish
skin colour during different growth stages to the corresponding
animal or stock record, to monitor growth status for better
management [3]. Common ways for individual identification
of fish are invasive methods relying on tagging and marking
[4]. Invasive methods may cause technical as well as health
and animal behavioral problems amplifying a problem we want
to solve. Even currently available non-invasive approaches
(e.g. external colorants) may cause behavioural alteration and
pose health risks which require to take care of welfare issues
[5]. Furthermore, invasive identification is time consuming
and incurs a substantial cost. To avoid these problems and
additional cost it would be optimal to be able to have a non-
invasive and contact free identification method.

For this work, and the envisioned FDSS, the focus is on
non-invasive fish identification using biometric characteristics
of the fish body. Specifically, we will evaluate the suitability of
the iris for this purpose since it is always visible (due to lack
of eyelids), permanent (as opposed to skin patterns e.g. [6])
and has a good track record for humans and other animals
(e.g. for cow identification [7]).
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First, in Sec. II, a review on related work is presented,
followed by the main contributions of this work. Sec. III
introduces the computation and matching of fish iris codes.
The experimental setup and evaluation is presented in Sec. IV
followed by the conclusions in Sec. V.

II. RELATED WORK AND CONTRIBUTIONS

Literature on fish identification can be categorized based
on (i) the direction from which the fish and the biometric
characteristic is captured: Lateral, Dorsal or Ventral and (ii)
based on the utilized feature extraction/ matching approach,
e.g. skin pattern or shape features. Although there exists plenty
of research, only a few approaches make use of machine vision
methods.

In the works of [8], [9], [10] the identification of different
fish species was examined on the basis of lateral images.
The regions, utilized for biometric feature extraction, were
selected manually. For Patagonia catfish identification in [8]
skin pattern spots were marked manually (position, size) and
three reference points set the region of interest (ROI). For 45
fish, which were captured 14 times for 254 days, a Rank-
1 identification accuracy of 96% was reported. Similarly, for
Atlantic salmon identification in [9] spots were marked manu-
ally and utilized for a specific matching algorithm, requiring at
least 3 spots. At the age of 12 months most fish showed less
than three spots and 17 out of the 20 remaining fish were
identified correctly. For lionfish identification in [10] three
different ROIs were selected in which SURF (Speeded up
robust features) keypoints are detected, computed and used for
matching. For the best body part (flank) and 48 individuals,
captured at one point in time, the authors report a Rank-1
identification accuracy of 68%.

In [11], [12] dorsal head view images were assessed as
biometric characteristic. For Chinook salmon identification in
[11] the ROI was marked manually, the spot pattern was
binarized and the spot centroid coordinates were used as
biometric features. Results show 100% identification accuracy
for fish which developed a pattern, which was only the case
for 42% of all fish (=295 fish captured seven times over 251
days). The authors of [12] used a reverse image search engine
to assess delta smelt identification based on three manually
selected ROIs. Fish were captured at three points in time and
for the fusion of the two best areas, an identification rate of
94% for adjacent sessions and 59.2% between the first and the
last session was reported.

In [5] naked-eye and computer-assisted identification of ar-
mored catfish based on ventral images, captured in laboratory
and field conditions, were evaluated. The computer-assisted
approach is based on SIFT (Scale invariant feature transform)
key points. ROIs were selected manually and results for 120
comparisons from the laboratory and 224 comparisons from
the field data showed an identification accuracy (Rank-1) of
82.2% and 93.8%, respectively. These prior works have two
major shortcomings:
• Manual annotation of the ROI and/or the utilized biometric

information/pattern is required. Such an approach is well
suited for small-scale experiments, but it is not applicable
on a large scale, i.e. for intensive aquaculture and the

envisioned FDSS. For example, the authors in [5] reported
that for 225 comparisons, 17 minutes were required for
computer assisted identification.

• Related literature has shown that the skin pattern is not
universal; some fish do not form them and are not stable
once formed. That is, the assessed skin patterns change over
time and some fish showed no pattern at all or only formed
them at some later stage of growth. This can even vary for
minimal divergence from a base strain of fish; for example,
[6] showed that some Zebrafish mutations show no more
pattern at all.
Regarding these shortcomings, we will look at iris patterns

in Atlantic salmon as member of the Salmonidae family. All
members of this family have eyes and are lidless, making the
iris a universal trait. The basic layout of the iris biometric
toolchain known from human iris biometric identification will
be used (and be described later). While this solution sounds
reasonable, the following has been evaluated in order to see
if the iris is a usable biometric characteristic.
Localization and Orientation of the Iris: To establish fully
automated fish identification, it is required to detect the iris
region automatically and to rotationally pre-align each iris
preliminary to feature extraction and matching. Hence, for the
Atlantic salmon iris, a segmentation approach is introduced,
and a set of rotational pre-alignment strategies is tested.
Stability: The lifespan of an intensive aquaculture fish is
short, but the fish grows rapidly within this timespan. Thus,
another contribution of this work is to evaluate the stability
of the Atlantic salmon iris pattern, i.e. if and how the pattern
changes over time.
Automatic Iris Recognition System: In contrast to other
works in this field, the evaluation is done using state-of-the-
art biometric system evaluation protocols and metrics. Re-
garding fish iris image processing and biometric identification
a fully automated system will be assessed.
R3 Research principles: Replicability, Reproducibility and
Reusability. In order to repeat, improve or develop new
methods for fish iris biometry a database is required. Thus,
we make public the acquired database of fish iris images (see
Sec. IV-A) including source code and libraries at a GitHub
repository1.

To sum up: Our contribution is a state-of-the-art based fish
iris identification system based on a universal trait. However,
we note that the main objective of this work is to assesses the
basic feasibility of such a system and that the experimental
evaluation is based on fish iris images acquired in a controlled
out of water environment.

III. FISH IRIS CODES (FICS)
The first step in the biometric toolchain is to acquire an iris

image for which an FIC is computed in four consecutive steps
(see Fig. 2): iris segmentation, rotational pre-alignment, iris
normalization and feature extraction.
A. Fish iris anatomy

The anatomy of fish eyes is similar to the human eye
anatomy on a basic level. Considering the human eye we are

1https://github.com/rschraml/fishid
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Fig. 2: Illustration of the pipeline to generate the fish iris code (FIC) from a segmented image.

looking at the stroma, a fibrovascular layer connecting the
sphincter (for closing the iris) and dilation (for opening the
iris) muscles or the eye. The layer consists of fibers (fibro-
), some running in a circular pattern, but mostly radially
mixed with nerves and blood vessels (-vascular). In addition
to the fibres the dilation muscle also runs along the radial
axis. The formation of the fibres in the stroma is different
for individuals and stable over time which makes it a perfect
candidate for biometric recognition of humans. If the stroma
contains pigments it appears dark and the structures are
not apparently visible. To counteract this, the human iris is
captured with near-infrared cameras where the pigmentation
does not interfere with image acquisition.

For fish there are differences pertaining the iris which are
not uniform over classes of fish. Iris of different fish species
can differ in terms of muscle, shape and function, which leads
to a non-circular iris pattern, for example. As such the usability
of the iris for fish identification has to be judged for different
fish classes and species. For salmon the iris is non-functional
in that it does not open or close to moderate light, i.e. it does
not exhibit a photometric response. Instead, the salmon uses
retinomotor movement of photoreceptors and retinal pigmenta-
tion to change the light exposure of rods and cones [13], [14].
The iris is well formed and prominent despite its vestigial
function. It is an extension of the epithelial pigment layer of
the retina (which is used to moderate illumination)[15]. The
pupillary opening shows rounded diamonds shape (see Fig.2).

B. Fish iris segmentation

For iris recognition the pupillary boundary, i.e., between
pupil and iris, and the limbic boundary, i.e. , between iris and
sclera (the white of the eye in humans), need to be detected.
This allows (i) to segment the ROI containing the biometric
information and (ii) to polar transform this ROI to an uniform
rectangular representation. Traditional human iris segmenta-
tion approaches are not well suited as they often rely on the
circular shape of the human iris. For example, we mention
the segmentation approaches CAHT (Contrast-adjusted Hough
Transform) [16] and WAHT (Weighted Adaptive Hough and
Ellipsopolar Transform) [17]. Preliminary experiments using a
traditional morphological-based segmentation approach led to
poor results which are not worth to be considered. However,
recent research showed segmentation approaches based on
Convolutional neural networks (CNN) which are well suited
for human iris segmentation. For instance the authors in
[18] show that a CNN-based semantic segmentation approach
outperforms traditional approaches like CAHT in case of low
quality databases. Based on this insight, the inapplicability
of traditional iris segmentation methods and the insufficient
results with the tested morphological approach a CNN-based

Fig. 3: CNN-based segmentation results for fish #0F571E captured
in 4 time delayed sessions. As shown, the iris is growing significantly
from Session 1 to 4, accompanied by changes in the iris pattern.

semantic segmentation approach, requiring groundtruth data,
has been envisioned. Thus, for all images in the utilized
database the pupil (=inner boundaries shown in Fig. 3) was
detected in a semi-automated manner. The black pixels of the
pupil where clustered, holes where filled and the boundaries
were corrected manually to avoid under/over segmentation.
The limbic boundary (=outer boundary) was approximated
based on the pupillary boundary. Basically, by a circle the
center of which is defined as the pupil center of mass (CM).
The radius is 2× larger as the mean distance between the CM
to pupillary boundary vector lengths. Thw semi-automated es-
timated pupillary boundary and approximated limbic boundary
are supposed to bound the groundtruth for the iris.

CNNs are a multi-layered class of artificial neural networks
that gained great success in resolving many key computer
vision challenges such as visual segmentation. The network
architecture we used to segment the fish pupil is identical to the
”SegNet-Basic” fully convolutional encoder-decoder network
[19]. The network’s encoder architecture is organized in four
stocks, containing a set of blocks. Each block comprises a
convolutional layer, a batch normalization layer, a ReLu layer,
and a Pool layer with kernel size of 2 × 2 and stride 2. The
corresponding decoder architecture, likewise, is organized in
four stocks of blocks, whose layers are similar to those of
the encoder blocks, except that here each block includes an
up-sampling layer. The decoder network ends up to a softmax
layer which generates the final segmentation map. The network
implementation is realized in the Caffe deep learning frame-
work. As ground-truth data the semi-automated segmented
pupils were utilized. In order to perform the segmentation on
all available images in the database and yet keep the training
and testing separate, we used the Two-Fold training scheme. In
particular, we divided the whole database into two equal parts,
and used one part as our testing data and the other one as our
training data. Then, we switched the training and testing folds,
and so we obtained the pupillary boundary for each iris image
in the database. The limbic boundary was approximated in the
same way as for the semi-automated segmentation. Exemplary
results are shown in Fig. 3.

C. Rotational pre-alignment & polar transformation

During matching of two FICs rotation compensation can
be performed by comparing shifted versions of the FICs.
However, the available fish iris data shows exceptionally strong
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rotational differences between images of the same iris (see
Fig. 3). Compensating for such large angular differences is
too slow. The goal of rotational pre-alignment preliminary to
feature extraction is to reduce the rotational differences to
an extent where they can be compensated in the matching
phase without undue loss of speed. For this work two different
pre-alignment strategies (PCA, MAX) have been implemented
which are assessed in the experimental evaluation (see Fig. 2).
Both strategies rely on the observation that the fish pupil
is not circular and thus it is assumed that a pre-alignment
vector (Θ0) can be determined. For the first strategy, principal
component analysis (PCA) is applied to the points of the
pupillary area which leads to two perpendicular eigenvectors
giving the major axes of the pupillary. The dominant axis is
then used as pre-alignment vector. For MAX the pupillary
boundary is first smoothed with a Gaussian filter and the
vector with the maximum CM to pupillary boundary distance
is utilized as pre-alignment vector (Θ0). In the experiments it
was observed that for both approaches it happens that for iris
images captured at different dates the pre-alignment can lead
to 90◦ flipped versions.

D. Normalized polar transformation

Features are extracted from a normalized iris texture. Note
that no image enhancement has been applied to the iris texture.
The iris is polar transformed using Daugman’s rubber-sheet
model [20], this is in essence an unrolling of the iris texture,
and stretching to a uniform size. This normalization corrects
two factors which can lead to a different iris texture area: 1)
The distance and angle between the camera and iris can vary
which introduced a scale change and geometric distortion; and
2) as the fish grows, so does the skeletal and soft tissue,
including the eye. The polar transformation on the other
hand allows for a rotation of the eye to be expressed as
a horizontal shift, which is much easier to compute. Such
a rotation can happen due to a rotation of the fish in the
water or of the eyeball in the eye-socket. For our normalized
polar transform Θ0 (calculated in prior steps) is used as
initial vector to unroll the iris into the polar domain and is
aligned at the left boundary of the transformed fish iris (see
Fig. 2). For normalization each pixel in the polar image is
stretched according to the length of Θnorm which is specified
as the largest pupillary to limbic boundary vector. For the
transformation bicubic interpolation is applied.

E. Feature Extraction

For feature extraction and matching of FICs we use the open
University of Salzburg Iris Toolkit (USIT) [21]. A note on
transfer learning and domain specific improvement: To transfer
knowledge from one domain (human iris) to another (fish iris),
we simply used the USIT methods as is to see what does work
and what doesn’t. Specifically, the 1-D-Log-Gabor [16] based
feature extraction worked very well and we kept that as is, the
segmentation on the other hand did not work at all, mostly due
to a difference in the shape of the iris and periocular tissue, so
most of our attempts to improve the knowledge transfer fell
into this part (=feature extraction) and the polar transformation
of the iris biometric toolchain.

(a) Dino-Lite AM3113T with spacer

(b) Fish with ID #0F571E –Session 1

Fig. 4: SSIDB: Utilized sensor and exemplary lateral image of an
Atlantic salmon fish from the LT dataset

1-D local Gabor features are extracted from a number of 1-
D signals. To generate the 1-D signals from the texture we first
split the texture into horizontal bands with a height of roughly
8% of the distance from pupillary to limbic boundary. Then
the remaining verticality is removed by averaging the values
for each horizontal position. This combination of information
along the radial axis counteracts sampling artifacts due to
resolution and different pupillary dilations. Since the outer
boundary is only an approximation we will not use the
outermost parts (about 20%) in the comparison since they
might contain scleral or non-eye textures. The Gabor filter used
has a real and an imaginary component which roughly equate
to an edge (change in signal) and a line (constant signal) filter.
This relates to radial edges and lines features in the unrolled
image. Note: To reduce the size of the FIC we only use the
signs of the line & edge filters which represent the absence of
lines and edges respectively.

IV. EXPERIMENTS & RESULTS

A. Salmon Iris Image Database (SIIDB)

SIIDB was captured 2018 by the authors within the
AquaExcel2020 TNA project AE050006, FISHID. SIIDB is
hosted at https://github.com/rschraml/fishid. For image acqui-
sition 330 adult Atlantic Salmon (˜1kg, 42–46 cm length) were
selected initially. The cultivation period is usually between 12
to 18 months in tanks and between 12 to 24 months in sea
cages. For iris image acquisition the USB microscope Dino-
Lite AM3113T (no additional light) was utilized. A spacer
(Fig. 4a) was utilized to keep the distance, roughly constant.

S2 S3S3S3 S4

S1all

ST 
#330

LT
#30

S2S2S2S2

S1S1S1S1S1S1S1allallall

STST

S1

2018

Feb. Apr. Jun. Aug.

Temporal Session

Fig. 5: Testset structure overview

Each fish was anes-
thetized (Fig. 4b) and
one iris (head showing
to the left) was cap-
tured several times (8–
16×) with minor rota-
tions caused by move-
ments of the fish. Unus-
able images due to blur
of focus problems were
removed. The database
is subdivided into a short-term (ST) and a long term (LT)
dataset. A schematic overview of the database structure is
illustrated in Fig. 5. The ST dataset is composed of iris images
from 330 different salmon fish which were captured within
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Fig. 6: Exemplary iris images of the ST (row 1) and LT dataset (row
2 & 3)

one week. For the LT dataset a subset consisting of 30 fish
from Session 1 (S1) was captured again in three subsequent
sessions (S2,S3,S4) with approximately two months time span
in between. Exemplary iris images for four different fish of the
ST dataset and two fish of the LT dataset are depicted in Fig. 6.

B. Experimental setup

For all fish iris images in the LT and ST dataset FICs
were computed for different rotational pre-alignment strate-
gies which results in a set of configurations (MAX, PCA,
MAXOPT , PCAOPT ) as described in Sec. III-C.

Furthermore, two additional configurations based on PCA
and MAX were used, utilizing four FICs per iris image. One
FIC is the same as for regular PCA and MAX and the other
three have a 90◦, 180◦and 270◦rotational offset from the first.
These configurations are denoted as PCAROT and MAXROT .
The goal is to avoid errors caused due to 90◦ rotated versions
of the same fish iris. During matching the best match (=highest
similarity) between the four FICs of each iris is determined
and used as matching score (MS). One baseline configuration
(NO) is computed without applying rotational pre-alignment.
All configurations were computed for semi-automated (GT)
and CNN segmented (CNN) fish irides in SIIDB.

For each configuration and all combinations of FICs MSs
are computed. MSs which are computed between FICs from
the same session are denoted as session MSs and MSs
computed between FICs from different sessions as temporal
MSs (see Fig. 5). Session MSs are computed for the ST
dataset together with the data of S1 from the LT dataset.
The corresponding score distribution (SD) is denoted as S1all.
Furthermore, session MSs are computed for the different
sessions of the LT dataset which results in four different
SDs denoted S1,S2,S3 and S4 respectively. Temporal MSs
are computed between the different sessions of the LT dataset
which leads to six different comparisons: S1↔S2, S2↔S3,
S3↔S4, S1↔S3, S2↔S4 and S1↔S4. Note that each session
and temporal SD is further subdivided into an intra- and
interclass SD which correspond to the genuine and impostor
SDs in biometrics [22]. Genuines are MSs computed between

FICs from the same fish and impostor MSs are computed
between FICs from different fish.

a) Fish iris distinctiveness and stability: The results for
ST and LT evaluations present an insight into the distinctive-
ness (same session performance) and stability (change over
time) of the Atlantic salmon fish iris. Both are quality criteria
of a biometric characteristic. Distinctiveness is the main pre-
requesite and expresses that the biometric characteristic en-
ables the distinction between different individuals. Stability is
crucial for the robustness of a biometric system and expresses
that the biometric characteristic does not change or vary over
time. Intrinsic changes mainly result from ageing. Extrinsic
changes are caused by different acquisition conditions, e.g.,
light or position (rotation, tilt, camera distance) of the fish.

In the following we experimentally assess fish iris distinc-
tiveness and stability. The session SDs enable to draw conclu-
sions on the distinctiveness of the fish iris and the temporal
SDs enable to assess fish iris stability. Furthermore, results for
semi-automated and CNN-based segmentation enable to draw
conclusions on the theoretical performance as well as for a
fully automated biometric system.

C. Results and Discussion

The experimental evaluation is done in four steps: (i) It
is assessed how much rotation is in the data. Since rotation
negatively influences the MSs we need to ascertain if rotational
pre-alignment is required or if rotation compensation in the
matching stage is sufficient (Sec. IV-C1). Thus, rotational
differences in the session and temporal SDs are assessed by
comparing the results of the baseline configurations where
no rotational pre-alignment (NO) is applied. (ii) We assess
the basic suitability of the different rotational pre-alignment
strategies by analyzing the verification performances for the
temporal and session SDs. (Sec. IV-C2). (iii) Identification
performance results are presented. Results for the temporal and
session SDs reflect real world scenarios in terms of repeated
identification with no time delay and varying time delays for
tracking and monitoring of a fish (Sec. IV-C3). (iv) Finally,
the presented results are contrasted with the results presented
in related literature.

1) Rotation compensation performance: In order to get
an impression of the rotation which is contained in the LT
& ST dataset an analysis of the verification performances
of NO for the session and temporal SDs is performed. For
verification performance evaluation the equal error rate (EER)
is a general benchmark. Basically, the question is if shifting
during matching is sufficient to overcome rotational variations,
i.e. to show the need for rotational pre-alignment. To avoid
side affects caused by segmentation errors the semi-automated
segmented fish irides (GT) were utilized.

It is expected that with an increasing shifting value the EER
decreases until a lower boundary is reached. Therefore, the
shifting value in the matching stage is varied from 0 to 16 for
the session SDs and from 0 to 64 (stepsize 2) for the temporal
SDs and it is assessed how the EERs change. A shifting value
of 1 corresponds to a rotation of 360◦/512=0.7◦where 512 is
the width of the polar transformed and normalized iris. This
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means that the maximum amount of rotation, in case of the
temporal SDs, which has been compensated for is +/- 44.8◦.

The charts in Fig. 7 show the EERs achieved for different
shifting values and the different session- and temporal SDs,
respectively. For the session SDs rotation compensation in
the matching stage is sufficient to achieve good performances
(EERs<4%) with a shifting value set to 16. Even with a lower
shifting value of 8 EERs below 9% are achieved. However,
rotation compensation is required to attain acceptable EERs
for the temporal SDs. The difference between the session
and temporal SDs can be attributed to the data acquisition.
Within a session the rotational variation for the iris images of
a fish were nominal and mainly caused by body movements
of the fish. For each new acquisition session each fish was
once again positioned on a table which leads to stronger
rotational differences in the temporal SDs. For the temporal
SDs in the right chart of Fig.7 it is obvious that this shift-
based rotation compensation is not sufficient to overcome the
rotational variations. Even with very high shifting values no
acceptable EERs are achieved. Whereas for the session SDs
a shifting value of 16 is suited to achieve EERs below 4%,
for the temporal SDs all EERs stay over 39%. While it would
be possible to use a higher shift-based rotation compensation
this affects the outcome in terms of timeliness, i.e., matching
would take longer, as well as in performance since interclass
FIC matches are also improved, see [23] for research on this
topic as pertaining to the human iris. Based on these results it
can be concluded that for fish iris images captured at different
dates (as present in the LT dataset) rotational pre-alignment is

required, in addition to rotation compensation in the matching
stage. This finding also applies to data recorded in a realistic
application, since this will result in different rotations of the
iris from the same fish.

The low EERs (<4%) for the session SDs already give a
first evidence that the fish iris shows a high distinctiveness,
i.e. it enables to discriminate between fish in the individual
sessions (S1all = 330 fish). On the other hand, the temporal
SD EERs are affected by external variations (i.e. rotational
variations) and it is not possible to draw conclusions on the
stability of the fish iris.

2) Rotational pre-alignment and verification performance
analysis: The verification performances, expressed as EERs,
for the different rotational pre-alignment strategies as well as
the session- and temporal SDs enable to draw first conclusions
on the stability. The results allow to determine to which degree
the verification performance is affected by intrinsic changes
of the fish iris and if pre-alignment is suited to overcome
extrinsic changes, i.e. , rotational variations. Also, it is not
clear how the results for the session SDs, which show less
rotational variations, are affected by rotational pre-alignment.
Again, all results were computed for the semi-automated
segmented fish irides to avoid side effects. Results for CNN-
based segmentation enable to investigate the feasibility of a
fully automated fish identification system and how it impacts
the verification performances.

Results are summarized in Table I. Based on the insights of
the rotation compensation analysis all EERs are computed with
shifting values 16 and 32. It is not clear if a shifting value of

Seg
men

t.

Con
fig. Session SDs (ST) Temporal SDs (LT)

S1 al
l

S1 S2 S3 S4 S1↔
S2

S2↔
S3

S3↔
S4

S1↔
S3

S2↔
S4

S1↔
S4

SHIFT 16

G
T

NO 0.65 0.71 2.52 0.15 3.91 / / / / + -
PCA 0.92 1.03 0.29 0.19 * / 11.69 / / + -
MAX 3.94 0.45 0.21 0.06 * 15.52 10.32 / 15.42 29.28 -
PCAROT * * * * * / 12.81 / / + -
MAXROT * * * * * 14.96 9.87 19.6 15.96 24.44 32.56

C
N

N

NO 0.62 0.96 2.9 1.43 * / / / / + -
PCA 0.52 0.77 1.13 1.39 4.92 / 12.73 / / + -
MAX 1.14 0.4 1.3 1.2 * 15.52 10.89 / 16.73 26.31 -
PCAROT * * * * * / 12.92 / / + -
MAXROT * * * * * 15.52 11.46 19.7 16.85 24.85 33.01

SHIFT 32

G
T

NO 0.21 0.41 0.0 0.06 1.04 / / / / + -
PCA 0.27 0.47 0.02 0.02 2.94 17.58 9.71 18.21 19.23 + -
MAX 4.11 0.48 0.01 0.05 * 15.67 9.72 / 15.83 28.84 -
PCAROT * * * * * 18.4 10.21 19.41 18.69 29.83 -
MAXROT * * * * * 14.6 10.17 17.24 15.15 23.54 34.02

C
N

N

NO 0.17 0.45 1.09 1.44 2.04 / / / / + -
PCA 0.18 0.37 1.09 1.41 1.95 17.87 11.15 19.55 / + -
MAX 1.11 0.35 1.17 1.25 * 15.46 11.59 / 16.4 26.43 -
PCAROT * * * * * 17.65 11.79 19.65 / + -
MAXROT * * * * * 14.58 10.86 18.87 15.98 24.58 33.77

TABLE I: Verification performances
(EERs [%]) for the session and
temporal SDs, different rotational
pre-alignment configurations, rotation
compensation shifting values 16/32
and for semi-automated (GT) and
CNN segmented (CNN) fish irides. Ir-
relevant EERs are replaced as follows:
Session SDs EERs worse than 5% are
replaced by a star (∗). Green coloured
results signalize all EERs < 1% in
the session SD results. For the first
four columns in the temporal SDs
EERs worse than 20% are replaced by
a slash (/). For the S2↔S4 EERs re-
sults worse than 30% and for S2↔S4
EERs worse than 35% are replaced by
a plus (+) and minus (-), respectively.
For all temporal SDs yellow coloured
results highlight EERs < 10% .
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Fig. 8: Intra-/Interclass CDFs of the tem-
poral SDs and selected rotational pre-
alignment strategies (GT, SHIFT 16)
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32 always improves the EER. Basically, a higher shifting value
increases the chance to find the correct rotational alignment
of two FICs from the same fish, but it also increases the risk
of finding a rotational alignment of two FICs from different
fish at which they are more similar to each other.

Results for GT and NO show that for the session SDs a
shifting value of 16 is sufficient to achieve acceptable EERs
< 4% which improves to EERs < 1.04% when shifting with a
value of 32. As already stated, this indicates the distinctiveness
of the salmon fish iris pattern. Fortunately, the EERs for the
CNN results of NO (SHIFT 16 and 32) are close to the GT
EERs which indicates that the employed CNN segmentation
performs well and enables to set up a fully automated system.

When considering the temporal EERs for NO (GT&CNN)
two assumptions can be made: (i) as already concluded in
Sec. IV-C1 there is more rotational variation in the temporal
SDs compared to the session SDs and (ii) the salmon fish
iris definitely changes over time. The first assertion is shown
by comparing the NO temporal SD results (GT&CNN) to all
others where rotational pre-alignment, as well as a shift of 16,
is applied. In contrast to the session SDs the EERs of the tem-
poral SDs improve when applying rotational pre-alignment.
This means that in case of the session SDs, which contain
only little rotational variations, some of the rotational pre-
alignment strategies add rotation to the data (EERs increase)
and for the temporal SDs the majority of strategies reduce
rotational variations significantly, i.e., the EERs decrease.

Results also show that for all pre-alignment strategies the
higher shifting value 32 improves the EERs for the majority of
results. Another interpretation of the results is that the current
pre-alignment is future work and should be improved. Due to
the good performance of the CNN-based segmentation most of
the results are similar to the GT results. Thus, all subsequent
conclusions hold for GT as well as for CNN. For the session
SDs, S1 and S4 the results for SHIFT 16 and SHIFT 32 show
that PCA performs better than MAX. For S2 and S3 there is
no significant difference.

Contrary to the session SDs, for the temporal SDs MAX
significantly outperforms PCA, especially when considering
the SHIFT 16 EERs. Fig. 8a, Fig. 8b illustrate the cumulative
MS distribution functions (CDF) for the different intraclass
temporal SDs of MAX and PCA (GT), respectively. Further-
more, the interclass CDF computed over all temporal SDs
(GT) is shown. The CDF of a SD gives the probability
that a certain MS exists which is less or equal to that MS.
The CDFs of certain intraclass SDs and the interclass SD are
used to observe their overlap and to draw conclusions about
their separability. It is easy to see that compared to PCA for
MAX the intraclass CDFs shift away from the interclass CDF.
However, there still remains an intersection with the interclass
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Fig. 9: Intra-/Interclass distribution charts for selected temporal SDs
and selected rotational pre-alignment strategies (GT, SHIFT 16).
[X-Axis: Matching Score, Y-Axis: Probability]

CDF for all temporal CDFs where S4 is involved. This is
also reflected by the high EERs achieved for all temporal SDs
which indicates that the salmon iris pattern changed from S3
to S4. This is further substantiated by the fact that for the
session SDs and S4 with SHIFT 32 and NO (GT) an EER of
1.04% is achieved. Thus, it is very likely that the high EERs
for all temporal SDs with S4 are caused by internal variations
of the iris, i.e. growth of the fish eye and changing iris pattern.

Considering MAXROT and PCAROT the session SDs show
that the EERs (Table I) increase significantly compared to
NO. Note that EERs worse than 5% are replaced by a star
(*) in the table. An explanation for this effect is that four
FICs per iris and additional shifting significantly increases
the risk of finding rotational alignments where the iris of
different fish are similar to each other. However, the MAXROT

EERs for the temporal SDs are superior to all other results.
This is independent of the shifting value, confirming the
assumption that if the rotational pre-alignment works further
shift based compensation beyond what is required for a single
session is not needed. Interestingly, PCAROT is not suited to
improve the verification performances of the temporal SDs.
The corresponding intraclass CDFs for the temporal SDs of
MAXROT (GT, SHIFT 16) are shown in Fig. 8c. Compared to
the MAX CDFs in Fig. 8a it is obvious that the intersection of
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the intraclass CDFs with S4 and the interclass CDF decreases.
Finally, Fig.9 enables to compare the intra- and interclass SDs
for the temporal SDs S1↔S2 and S3↔S4 (GT, SHIFT 16)
computed with NO, MAX and MAXROT . For NO the charts
illustrate that rotational misalignment causes an overlap of
intraclass SDs with the interclass SDs. Considering MAX this
overlap is significantly reduced by rotational pre-alignment
and rotation compensation. For MAX there still is a high
overlap of the inter- and interclass SD which is reduced when
applying MAXROT for rotational pre-alignment.

3) Identification and real world scenario performances:
By considering the identification performances for the session
and temporal SDs first conclusions on the feasibility of salmon
fish iris identification in a real world scenario can be drawn.
Hence, the CNN-based segmented fish irides were utilized for
the identification performance experiments.

Basically, session SDs indicate the feasibility of short term
identification and temporal SDs show the performance for
long term identification. Identification performances are as-
sessed based on the Rank-1 recognition rate (RR). In Fig. 10
and Fig. 11 the Rank-1 RR for the rotational pre-alignment
strategies and the session and temporal SDs are summarized,
respectively. The temporal SDs results are comparable to the
verification results for SHIFT 16 and the general statements
are the same. Summarized, PCA performs better than MAX
and MAXROT and PCAROT improves the performance for S4
slightly. With PCA, except for S4, all Rank-1 RRs are higher
than ∼98.5%. The best performance for S4 is achieved with
PCAROT showing a Rank-1 RR close to ∼96%.

Results confirm that the salmon fish iris is highly distinctive
and enables short term fish identification. However, same as for
the verification results the identification performances for the
temporal SDs again show that intrinsic variations, i.e. aging,
cause decreasing Rank-1 RRs. Again, the best performances
are achieved with MAX and MAXROT . The best performance
is shown for the temporal SD S2↔S3 with ∼80% followed
by S1↔S2 and S1↔S3. Again, this indicates that the iris
changed significantly from the S3 to S4. Even S1↔S3 with
∼65% is better than ∼50% achieved for S3↔S4 with a shorter
time-span between the acquisition sessions. Together with the
verification performance results it can be concluded that the

robustness of fish iris biometrics suffers from a missing long
term stability of the fish iris. However, the S1↔S2, S2↔S3
and S1↔S3 results indicate that identification in a real world
scenario is feasible but the system needs to consider this issue
by updating the biometric templates of each fish (FIC) in short
periods. Especially, at an age over 6 months this becomes
crucial as the pattern changes significantly at this age.

This is also an interesting result with regard to the biometry
of the human iris, since the human iris shows ageing effects,
although the severity of the impact is controversial (see [24]).
The fish under study have now also shown an ageing effect,
which can much more readily observed and researched owing
to the faster life cycle of the Atlantic salmon.

4) Comparison to related literature: Finally, the Atlantic
fish iris identification results are compared and discussed with
the literature presented in Section II. Different to the low
stability of the Atlantic salmon iris, the results for Patagonian
catfish in [8] showed that the lateral skin spot pattern has a
high distinctiveness as well as long term stability. A direct
comparison of the results is not feasible, as the approach
in [8] relies on I3S [25] which is a computer-aided photo
identification application for underwater animals. With the
help of this software, three reference points and all spots in
each lateral image were annotated manually and the software
performed the matching. If the authors achieve similar results
in the future with an automated method, the approach would
have great potential in terms of distinctiveness and stability.

If the skin pattern is used as a characteristic it is often
not clear if it is present for all fish of the same species
and if this pattern is present at all ages. The results for
Atlantic salmon identification in [9] which are based on the
lateral opercolum pattern indicate the non-suitability as a
biometric characteristic because some fish showed no pattern
or it disappeared. Similarly, in [11] the absence of the dorsal
head view pattern of Chinook salmon for a large amount of
individuals has been reported.

The results presented by [12] for delta smelt identification
based on dorsal head view images are comparable to ours in
terms of stability. Even if the pattern was localized manually,
results for automated matching indicated that the pattern
changes over time and matured fish show more distinctive

S1aS1S2S3S4s1as1s2s3s4 S1aS1S2S3S4s1as1s2s3s4 S1aS1S2S3S4s1as1s2s3s4 S1aS1S2S3S4s1as1s2s3s4 S1aS1S2S3S4s1as1s2s3s4
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Fig. 10: Session SDs (CNN, SHIFT 16) –
Identification performance evaluation
[Y-Axis: Rank-1 recognition rate %]
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patterns. On the contrary, our results show that the distinc-
tiveness of Atlantic salmon based on the iris pattern could
get a little worse with older age. A comparison regarding the
distinctiveness is not possible because the fish sample size was
smaller and no results for one point in time (= session SDs in
our work) were presented.

Compared to our session SD results the experiments for
armored catfish identification using ventral images [5] and
lionfish identification using lateral images [10] showed poorer
recognition accuracies, although manual localization was per-
formed.

It can be concluded, that the suitability of the skin pattern
as a biometric characteristic must be examined closely, same
as for the iris pattern. In the future approaches with automated
skin pattern localization should be sought by the community.

The basic advantage of the iris is that most fish species
show a visible iris pattern which is likely suited as a biometric
characteristic to set up a FDSS. Additionally, as shown in
our work the iris pattern can be localized automatically which
enables automated identification.

V. CONCLUSION
Fish identification is a basic tool required to move from

mass to smart production in intensive aquaculture. Non-
invasive methods are fast, cheap and beneficial for fish welfare.
Biometric approaches based on the individuality of the skin
pattern lack of visible patterns in general and missing patterns
in various life phases of a single fish. Therefore, this work
demonstrated the principal feasibility of Atlantic salmon fish
identification using iris images as biometric characteristic.
Distinctiveness and stability of the salmon fish iris were
assessed based on a short and long term dataset.

Results for 330 different fish in the short term dataset
showed that the fish iris is highly distinctive. For all subsets in
the short term dataset identification rates of over 95% could be
achieved. The stability of the fish iris was assessed based on
the long term dataset. Due to different rotational alignments
between iris images of the same fish captured at different
points in time a set of rotational pre-alignment strategies
were applied and evaluated. Experiments showed that rotation
compensation in the matching stage, even with a high shifting
value, is not sufficient to achieve acceptable EERs. The best re-
sults for the long term dataset were achieved with the rotational
pre-alignment strategy MAX which uses the maximum length
pupillary center of mass to boundary vector for alignment.
An additional improvement could be achieved by enrolling
four 90◦rotated templates of each iris (MAXROT ), reducing
errors caused by rotational pre-alignment resulting in at most
45◦rotational error in iris images.

Results showed that the verification performances decrease
with an increasing time span between the different acquisition
sessions. Interestingly, results for the first two (S1↔S2 =
14.96%) and the last two successive session (S3↔S4 = 19.6%)
sessions are worse than for the middle sessions (S2↔S3 =
9.87%). This leads to two main conclusions: (i) The salmon
fish iris shows a weak stability, i.e. due to ageing (=size and
pattern changes). (ii) The variations caused from ageing from
month 2 to 4 and 6 to 8 are much stronger than in-between
from month 4 to 6.

Results achieved with semi-automated segmented fish irides
were compared to those computed with a fully automated
CNN-based approach. The results show that automated seg-
mentation is possible and comparable to that achieved with
the semi-automated segmented irides. This is crucial in or-
der to establish a fully automated fish identification system.
Additionally, for a real world scenario the identification per-
formance of the long term dataset is of relevance and the
identification rates for MAXROT on the different subsets vary
between 28% and 80%. Based on the missing stability of
the salmon fish iris and the accuracies for the successive
subsets S1↔S2 = 72.00%, S2↔S3 = 80.00% and S3↔S4 =
51.00% the following conclusion can be made: Salmon fish
iris identification is feasible in a real world scenario with
the precondition that the biometric template of each fish in
the database of the biometric system is updated periodically,
especially when the fish gets older than 6 months. In human
biometrics this is referred to as adaptive biometric systems.

A. Future Work

It was not feasible to consider the impact and change of
pigmentation with age in this work. The change in pigmenta-
tion can be disregarded for short time spans. However, given
the decrease in identification performance between image
acquisition sessions that are further apart in time, this may
be the reason for the decrease.

Future work needs to consider a realistic environment, i.e.
underwater iris images of swimming fish. For example, fish
could be forced to pass through a narrative tube with their
lateral side to the camera at a relatively constant distance
similar to what explained in [26], [27]. In order to compensate
for differences between iris images from different sessions
future experiments should consider iris image preprocessing.

Furthermore, the use of near-infrared imaging could im-
prove the identification performance since the iris is likely
pigmented given that it is an extension of the epithelial layer.
It is known that the speed of adaptation and the pigmentation
of the epithelial layer changes, stronger pigmentation with
increasing age [15]. The impact on the pigmentation of the
iris is unknown but is likely to happen. Independent of visible
light or near infrared imaging, an appropriate illumination
as common in human iris imaging needs to be considered.
However, special care must be taken to ensure that the lighting
does not pose any health risks or impacts fish welfare.

Finally, the use of other or additional biometric performance
metrics should be considered in future work. The use of other
metrics will depend in particular on the respective application
or the focus of the investigation.
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4. Conclusion

The main paradigm in the scope of Industry 4.0, is that the real world conflates with the vir-
tual in the IoT. The most common approach to integrate non-electric and non-communicating
objects is physical labeling using RFID transponders. As shown in this thesis, physical object
identification is a promising alternative to recognize non-electric and non-communication ob-
jects in the industry. The greatest advantages are that the objects are not physically marked and
that the use of the object’s own features can increase security against counterfeiting.

For this thesis, roundwood and fish identification were investigated. The benefits for round-
wood identification are manifold. Within the forest-based industries it is a key technology to
increase the digitization and on a global scale it could be a method, to fight against illegal log-
ging. Fish identification (on the other hand) is a pre-requisite in intensive aquaculture to move
from mass to precision fish farming. By considering each fish as an individual, health and culti-
vation related information for each fish as well as for the total stock can be gathered and utilized
to improve the production by focusing on fish welfare criteria.

We investigated the basic feasibility of roundwood tracking using log end images and At-
lantic salmon identification using iris images. For both applications, datasets were acquired
and verification and identification performance experiments were performed. Moreover, dis-
tinctiveness and stability of the utilized biometric characteristic were assessed.

In case of roundwood tracking, the applicability of fingerprint and iris recognition methods
for roundwood identification using log end images has been demonstrated. Results indicate
that the annual ring pattern is highly distinctive. Regarding the stability of the annual ring
pattern, longitudinal, temporal and surface variations were investigated. Results show a high
stability in case of log end cutting, i. e. the annual ring pattern does not change significantly if a
thin slice is cut off from the log end. Furthermore, results indicate a high robustness to temporal
variations caused by light and humidity, which result in deformations and discolourations.
Finally, surface variations were assessed, which result from using different cutting tools for the
first cut in the forest and the clearance cut in the sawmill. Results show, that surface variations
have no impact on the performance and stability of log end biometrics.

For the Atlantic salmon iris, we were also able to prove its distinctiveness, i. e. the results
demonstrate, that the iris as biometric characteristic is suited to discriminate between #330 fish.
However, regarding stability our experimental evaluation on the long term dataset showed a
weak stability of the iris, i. e. the Atlantic salmon iris changes rapidly over time which relates
to ageing effects in human biometrics. This led to the conclusion, that for Atlantic salmon
iris identification the biometric template of each fish needs to updated periodically, which is
referred to as an adaptive biometric system.

Finally, we demonstrated the feasibility of classification-based drug packaging authentication
which is an alternative to serialization-based authentication. In our experiments we investi-
gated two basic requirements: positional and instance generalization of the packaging material
texture. Our experiments for 45 different drugs proved both requirements successfully. Fur-
thermore, single sensor and cross-sensor experiments towards a mobile-device based system
were performed. Results indicate the principal feasibility of mobile-device based drug packag-
ing authentication, however, in case of the cross-sensor scenario the authentication performance
degraded significantly.

In summary, we were able to show the principal feasibility of physical object identification
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and authentication for all three applications. Confirming the basic feasibility is however only
the first step toward a real world application. As outlined in the open challenges section for
each application future work needs to consider realistic data acquisition in order to enable the
move from technology to scenario and operational evaluation.
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