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Abstract. Tree log biometrics is an approach to establish log traceability from
forest to further processing companies. This work assesses if algorithms devel-
oped in the context of fingerprint and iris recognition can be transferred to log
identification by means of cross-section images of log ends. Based on a test set
built up on 155 tree logs the identification performances for a set of configurations
and in addition the impacts of two enhancement procedures are assessed.
Results show, that fingerprint and iris recognition based approaches are suited for
log identification by achieving 100% detection rate for the best configurations. In
assessing the performance for a large set of tree logs this work provides substan-
tial conclusions for the further development of log biometrics.

1 Introduction

Commonly the term biometrics stands for the study of behavioural or physiological
characteristics to identify living people. But the theoretical background and the concepts
of human biometrics have been carried over to the recognition of plants, vegetables,
animals, industrial products and most relevant for this study to the recognition of tree
logs or boards [20]. This study deals with concepts of fingerprint and iris recognition
and explores their applicability to the identification of tree logs using cross-section
images (CS-Images) of log ends.

In order to close the traceability gap between the forest site and the further process-
ing companies tree log identification is an economic requirement to map the ownership
of each log. Additionally, social aspects have become more important and sustainabil-
ity certificates like Pan European Forest Certification (PEFC) and Forest Stewardship
Council (FSC) are a must have for all end-sellers. Finally, traceability is legally bound
by the European Timber Regulation (EUTR) to prohibit illegal logging in the EU [4].

State-of-the art traceability approaches rely on physically marking each log and in
the past decade huge efforts were taken to push the development of new traceability
approaches. For example, the final report of the Indisputable Key Project [19] promotes
the usage of Radio Frequency Identification transponders to establish log traceability.

First investigations on the hypothesis that logs are separate entities on the basis of
biometric log characteristics were carried out in the works of [2, 3, 5]. For the purpose of
tracking logs within the sawmill 2D and 3D scanners were utilized to extract geometric
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wood properties as biometric features. Such devices are not applicable for industrial
usage at forest site.

On account of the fact, that log end faces show features in terms of annual rings,
pith position, shape and dimension it is assumed that CS-Images of log ends can be used
as biometric characteristic to set-up a biometric system. A first work on log biometrics
using CS-Images was presented by [1] as an effort to curb poaching of trees. For this
purpose, pseudo Zernike moments are computed for CS-Images captured from poached
tree stumps and first results were presented for a small testset. The achieved results
were quite good but the extracted features more or less rely on the cutting pattern and
the shape of the CS.

By superficially comparing annual ring patterns of log ends to human fingerprints
one perceives their similarity. Based on this observation, [16] investigated temporal
and longitudinal variances of CS-Images of a single tree log. The authors adopted the
FingerCode approach [7] to compute and compare templates from CS-Images. Further-
more, in [15] the impact of different real world CS variation types on the robustness of
biometric log recognition is assessed. Although the authors draw first conclusions on
the identification performance, the utilized testset is too small and the results are not
convincing.

In considering the identification performance for 150 different tree logs this work
demonstrates that a biometric system using log end images is suited for log tracking.
Additionally to the fingerprint-based approach utilized in [16, 15], this work evaluates
the applicability of well-known iris recognition approaches. Furthermore, it is not clear
to which extent the enhancement procedure utilized in [16, 15] influences the verifi-
cation and identification performance. For this purpose, all approaches are evaluated
with and without enhancement. Results show, that enhancement basically is beneficial
to overcome issues caused by CS variations.

Section 2 introduces the computation and matching of log templates using ap-
proaches from fingerprint and iris recognition. Subsequently, the experimental evalu-
ation is presented in Section 3 followed by the conclusions in Section 4.

2 CS-Code Computation and Matching

An exemplary enrolment and identification scheme for log biometrics is depicted in
Fig. 1. Enrolment of a tree log is performed in the forest. After a tree log is cut and
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Fig. 1: Exemplary enrolment and identification schemes

processed by a har-
vester the log end is
captured by a digital
camera mounted on the
harvester head. Tem-
plates of logs which are
computed by means of
CS-Images are denoted
as CS-Codes. For en-
rolment the computed
CS-Code is stored in
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the database. Identification can be performed at each stage of the log processing chain
where an appropriate capturing device is available. Typically, identification is required
when a log is delivered to a sawmill. Independent of the template computation approach
procedure the CS-Image is registered and enhanced preliminary. The fingerprint- and
iris-based CS-Code computation schemes are depicted in Fig. 2.

2.1 CS Registration and Enhancement

For registration the pith position and CS boundary have to be determined in advance.
Automated approaches for pith estimation and CS segmentation were presented in [18,
12] and [17], respectively. The CS-Image is rotated around the pith position, cropped
to the CS boundary box and scaled to 512 pixels in width. Rotation is performed to
generate rotated versions of the input image or to align the CS to a unique rotational
position.

The registered CS-Image is then utilized for the enhancement procedure. Com-
monly, the annual ring pattern is disturbed due to cutting and there arise different types
of intraclass CS variations in real world identification scenarios [15]. The purpose of en-
hancement is to strengthen the annual ring pattern contrast and to compensate CS varia-
tions. Similarly to fingerprint enhancement [6], three consecutive stages are performed:
Local orientation estimation, local frequency estimation and local adaptive filtering.
Initially, the CS-Image is subdivided into half-overlapping blocks to reduce boundary
effects caused by local filtering. On the basis of registered CS-Images which are scaled
to 512 pixels in width, 32 × 32 pixels blocks are a good choice in terms of timing
performance and capturing local annual ring pattern information.
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Fig. 2: Fingerprint- and iris-based template computation and matching schemes
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In the first stage, the local orientation of each block is determined based on peak es-
timation in the Fourier Spectrum (see [18]). Next, the local orientation field is low-pass
filtered with a Gaussian to correct wrong orientation estimates. Based on the orientation
estimates of each block the corresponding dominant frequency in the Fourier Spectrum
is determined. Therefore, the Fourier Spectrum of each block is subdivided into sub-
bands and sectors and the dominating frequency is defined as the sector sub-band which
shows the maximum integral of its magnitudes. If this sector sub-band does not corre-
spond to the block orientation it is neglected and the local frequency is interpolated
using a Gaussian. Finally, the Fourier Spectrum of each block is filtered with a Log-
Gabor which is tuned to the block orientation and frequency. As in [16] a bandwidth of
three times the variance of the Fourier Spectrum and as spread value the blocksize/4 is
utilized. After filtering, the filtered spectra are inverse transformed and utilized as new
block values.

In this work additionally a variant of this procedure is evaluated which differs in
the local orientation estimation procedure. Initially, local orientations are computed for
each block as described above. Subsequently, the pith position is used to detect wrong
orientation estimates in case the angular distance between the block origin/pith position
and the local orientation estimate exceeds a threshold. Thereby, the threshold for a each
block is specified by t = λ ∗ log(pith distance), where λ is an arbitrary value and the
pith distance is the distance between the block origin and the pith. Thus, the threshold
increases with an increasing pith distance which takes into account that annual rings
close to pith are more circular. For each local orientation estimate which exceeds this
threshold the estimate is replaced by the direction to the pith position. All further steps
are performed like as for the first approach (exemplary enhancement results see Fig. 6).

2.2 Fingerprint-based CS-Codes

Same as in [16, 15] the FingerCode approach is adopted to compute and compare CS-
Codes from CS-Images. With intent to capture different annual ring pattern frequencies
the utilized Gabor filterbank is built up on six different filters and for each filter eight
rotated versions are created.

CS-Code computation is performed in three stages: First, the registered and en-
hanced CS-Image is filtered with each filter in the filterbank. The filtered images are
further subdivided into blocks (e.g. 16 × 16 pixels). For all blocks of each filtered im-
age, the grey value standard deviations are computed and stored into a matrix. Values
of blocks which are not within the CS border are assigned with a marker value. These
markers are used to discriminate between background and CS in the matching proce-
dure. All matrices are stored as a one-dimensional vector.

Compared to fingerprints, the rotational misalignment range of a CS-Image is not
restricted to a certain range. Rotational variances are compensated by repeatedly com-
puting features for rotated versions of the input CS-Image. All feature vectors computed
for different rotations (Θ1, . . . , Θn) compose the CS-Code of a CS-Image.

Matching procedures Matching between two CS-Images is performed by computing
the minimum matching score (MS) between all feature vectors (Θ1, ..., Θn) of the CS-
Codes from both CS-Images.
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Three different matching procedures are evaluated to investigate the impact of in-
cluding shape information. The MS is computed by:

MS(CS1, CS2) =
1

M

n∑
i=0

D(CS1(i), CS2(i)) (1)

where CS1, CS2 are two feature vectors of the CS-Codes which are compared, i speci-
fies the index of the feature value in both vectors and MCS1,MCS2 are masks which
allow to differentiate between background and CS.

The first matching procedure MSAP uses a distance function which just uses fea-
ture value pairs which are in the intersection of both CSs . For normalization, M is
defined by the amount of considered feature value pairs: M = |MCS1 ∩ MCS2|.
Thus, this procedure relies on the discriminative power of the annual ring pattern.

DAP =

{
|CS1(i)− CS2(i)| if i ∈MCS1 ∩MCS2

0 otherwise
(2)

For the second procedure MSAP&S the distance function DAP&S includes a penalty
value PAP&S . The penalty is added to all feature value pairs which are in the symmetric
difference of the CS masks and for normalization M = |MCS1 ∪ MCS2| is used.
Hence, the MS increases for differently shaped CSs. PAP&S is defined by the mean
value of the feature value distributions of both feature vectors.

DAP&S =


|CS1(i)− CS2(i)|+ PAP&S if i ∈MCS1 4 MCS2

|CS1(i)− CS2(i)| if i ∈MCS1 ∩ MCS2

0 otherwise

(3)

Finally, the third procedure uses score level fusion of the MSAP score and the False
Negative Rate (F) which is computed for (MCS1,MCS2). F is defined as the ratio
between the symmetric difference of the two masks and total amount of pixels in the
smaller mask. For score level fusion MSAP and F are normalized using the factors
σAP , σF . They are precomputed based on the feature value ranges of MSAP and F so
that they become equally weighted in the score level fusion.

F =
MCS1 4 MCS2

min(|MCS1|, |MCS2|)
, MSAP,F =MSAP · σAP + F · σF (4)

2.3 Iris-based CS-Codes

The pith of a cross-section is a unique feature which can be used as reference point. In
combination with the CS border it is used to polar transform CS-Images. In this work
polar transformed CS-Images are treated like polar iris images and it is evaluated if iris
feature extractors and comparators are applicable for log biometrics.

For this purpose, the registered and enhanced CS-Image is transformed by using bi-
cubic interpolation. For normalization each pixel in the polar image is stretched accord-
ing to the max. pith to border radius. Two different formats for the polar-transformation
are evaluated. The first is equal to the usual format demanded by many iris feature
extractors: 512 × 64 pixels. Compared to the size of the iris, CSs are larger and the
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Fig. 3: CS-Image polar transformation scheme

transformation is not re-
stricted to an annular shaped
ring. In case of more than
64 annual rings the com-
mon polar transformation
format of 512 × 64 pixels
causes a loss of informa-
tion. Because of that and the
quadratic format of the registered CS-Images, in addition a format of 512× 512 pixels
is evaluated. The polar transformation scheme is depicted in Fig. 3 and exemplary polar
transformed CS-Images for both formats are shown in Fig. 6. For iris recognition based
CS-Code computation and template matching the USIT package [14] is utilized.

3 Experiments

In the experiments the verification and identification performances for different config-
urations are assessed. Introductory, the testset is outlined and the experimental setup
for the utilized configurations is described (see Section 3.1). Finally, the results are
presented and discussed in Section 3.2.

Testset Two testsets (TS1 and TS2) are utilized. For TS1 50 different tree logs were
captured four times with and without flash. Additionally, the ends of eight logs were
cross-cut and captured once again, with and without flash. In TS2 105 logs were cap-
tured three times without flash. For each CS-Image the pith position and the CS border
were determined manually and are utilized for the experiments.

3.1 Experimental Setup

For all CS-Images of the testsets CS-Codes and MSs were computed for different con-
figurations and enhancement procedures. Subsequently, the setup for the enhancement
procedures and the different CS-Code computation approaches are outlined.

Fig. 4: Testset One (TS1): Each row shows four CS-Images of a single log. The first two
CS-Images illustrate the difference of capturing the log end with and without flash. The
latter two images are taken after the log end was cross-cut, with and without flash.
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Fig. 5: Testset Two (TS2): CS-Images from 4 logs

Enhancement The first procedure, entitled as ENH1, is equal to the procedure sug-
gested in [16]. As described in Section 2.1 the second just differs in the local orientation
estimation procedure and is entitled as ENH2. For comparison, all configurations are ad-
ditionally evaluated without enhancement ENHNO. Exemplary results for ENHNO and
ENH2 are shown in Fig. 6.

Fingerprint (FP) configurations Rotational variances are compensated by computing
feature vectors for rotations in the range from−15◦ to 15◦. The CS-Codes are computed
using 16×16 non-overlapping blocks and the Gabor filterbank is build up on six differ-
ent filters tuned to 8 directions: G(λ, θ, σ, γ) = G(λ, σ) = ((1.5, 2), (2.5, 2), (3.5, 3),
(4.5, 3), (5.5, 3), (6.5, 3)), θ = {0, 22.5, ..., 135, 157.5}, γ = 0.7

Iris configurations Different configurations based on the feature extractors and com-
parators provided by the USIT package [14] are utilized. Compared to iris images, the
resolution of CS-Images is higher and the polar transformation is not restricted to an
annular ring.

(a) ENHNO (b) ENH2 (c) 512×512 ENHNO (d) 512×512 ENH2

(e) 512×64 ENHNO

(f) 512×64 ENH2

Fig. 6: Illustration of the impact of enhancement for CS-Image #2 - TS2. The original
CS-Image is depicted in the top left image of Fig. 5.
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In case of 512×64 pixels we utilize the following feature extractors: lg [11], ko [8],
cr [13] and qsw [9]. Except for ko which uses koc as comparator all MSs are computed
using the Hamming distance (hd).

For 512 × 512 pixels polar CS-Images the lg algorithm was extended to formats
bigger than the 512 × 64 in accord with the original algorithm by defining the region
of interest (ROI) through a number of rows r with a height hr. Like the original, a
row is condensed into a 1-D signal which is run through the Gabor filtering process.
Since it is not clear which configuration of r and hr is best we choose to use a vari-
ance of combinations, including combinations where the ROI does not span the whole
polar-transformed CS-Image. However, unlike the iris biometry case which excludes
the outer iris boundary, which frequently exhibits occlusions by cilia, we choose to ex-
clude the inner residual part of the polar CS-Image. This part consists of a low number
of pixels which are stretched to the polar CS-Image width, thus providing nearly no
usable information. Note that the size of the feature vector is dependent on hr.

Furthermore the algorithm by Ko et al. was simply adopted by allowing bigger tex-
tures without adapting the cell-size which is averaged. Note that as a result the length of
the feature vector increases with the size of the texture. Rotational variances are com-
pensated by shifting the CS-Codes in a range between −7 to 7 feature vector positions.

3.2 Results and Discussion

The experimental evaluation is performed in two stages. First, we evaluate the verifi-
cation and identification performance for all configurations. Based on the Equal Error
Rates (EERs) and Rank 1 recognition rates conclusions on the general applicability of
the FP and iris approaches and the impact of enhancement are presented. Second, a
closer examination on the intra- and interclass matching score distribution (SD) subsets
points out how the enhancement and CS variations affect the intra- & interclass sepa-
rability and thus the biometric system performance. Note that the intra- and interclass
SDs correspond to the genuine and impostor distributions in biometrics [10].

Configuration ENHNO ENH1 ENH2

FP

MSAP 15.7 1.7 0.9
MSAP&S 1.85 0.74 0.68
MSAP,F 1.53 0.37 0.17

IR
IS

51
2x

51
2 lg, hd(16/32) 0.21 0.68 0.82

lg, hd(50/10) 0.16 0.72 0.32
lg, hd(64/08) 0.16 0.76 0.51
ko, koc 2.73 4.88 4.24

IR
IS

51
2x

64

cr, hd 5.27 3.41 4.97
lg, hd 1.34 3.64 5.42
qsw, hd 3.44 5.73 8.33
ko, koc 4.95 8.09 7.35

Table 1: EERs [%] for the FP and iris
configurations

Verification Performance Evaluation The
EERs for all configurations computed for TS1

and TS2 are depicted in Table 1. Most impor-
tant for this work, most of the EERs are quite
low and show a high degree of separability be-
tween the intra- and interclass SD for a large
set of tree logs. Same as in [15] the EERs of
the FP configurations show that shape infor-
mation improves the verification performance.

ExceptMSAP , all other configurations in-
clude shape information in some way, e.g. the
polar transformation relies on the CS bound-
ary. Basically, the results for MSAP show the
discriminative power of the annual ring pattern
solely and it is very amazing that MSAP and
ENH2 achieves an EER of 0.9%.
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As expected, the utilized enhancement procedures improve the EERs of all FP con-
figurations. Furthermore, the results of the FP configurations show that ENH2 leads to
better EERs than ENH1.

For the iris configurations enhancement does not improve the EERs. This is very
likely caused by the block artefacts of the enhancement procedures which are carried
to the polar CS-Images. The best EERs for the iris configurations are reached using lg
as feature extractor. Furthermore, the different variations for lg in terms of number of
rows and row height lg, hd(r / hr) show that an increasing number of rows improves
the verification performance. Overall configurations the best EERs are achieved using
lg, hd(50,10) and lg, hd(64,08). Although lg, hd(50,10) ignores 12 pixel of each image
the results are equal to the second configuration. Regarding the two different polar
transformation formats, the results show that the larger format improves the EERs for
the feature extractors which are assessed for both formats (lg and ko).

In Fig. 7 the intra- and interclass SDs for selected FP and iris configurations are
depicted in the first and second row, respectively. These charts point out a significant
difference which is not recognizable when considering just the EERs. Basically, they
illustrate that the intra- and interclass SDs of the depicted FP and iris configurations are
statistically significantly different.

For the FP configurations the charts for the three different matching procedures
(ENHNO) illustrate that by including shape information the separability is improved.
Compared to the FP configurations, the interclass SDs of the iris configurations show a
low variance and are thus narrow shaped. On the other hand, the intraclass SDs show
a high variance and are broad shaped. Thereby, an increasing number of rows enforces
this observation and the separability increases.

Inter Intra
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Fig. 7: Intra-, Interclass SDs for selected FP and Iris configurations
(ENHNO). [ X-Axis: Matching Score, Y-Axis: Probability]
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Fig. 8: Identification performance evaluation - Rank 1 detection rates.

3.3 Identification Performance Evaluation

An overview on the identification performance is depicted in Fig. 8. For each config-
uration, the Rank 1 recognition rates are given for TS1, TS2 and for the combination
of both (TS1 & TS2). Results show, that the recognition rates for TS1 are lower than
for TS2. The total recognition rate for TS1 & TS2 is somewhere in-between. The lower
rates for TS1 are caused by the higher degree of CS-variations in TS1.

For the FP configurations each matching procedure achieves 100% recognition
rate for at least one enhancement procedure. Surprisingly, nearly all iris configurations
which use lg and 512 × 512 pixels achieve a recognition rate of 100% independent of
the enhancement.

3.4 Intra-, Interclass Subset Analysis

In order to illustrate the impact of the testset structure and the enhancement procedures
on the performance an analysis of the intra- and interclass SD subsets is presented. For
this purpose, the cumulative distribution functions (CDFs) of the intra- and interclass
SDs of each testset are considered individually for MSAP (without and with enhance-
ment). The intraclass CDFs in Fig. 9a illustrate that the intraclass MSs of TS1 are infe-

TS1/TS2-INTER TS1-INTRA TS2-INTER

TS2-INTRA TS1-INTER

0 . 0 0 0 . 2 5 0 . 5 0 0 . 7 5 1 . 0 0
0

0.25

0.5

0.75

1

(a) MSAP / ENHNO

0 . 0 0 0 . 2 5 0 . 5 0 0 . 7 5 1 . 0 0
0

0.25

0.5

0.75

1

(b) MSAP / ENH2

Fig. 9: CDFs for the intra-/ interclass SD subsets of two selected configurations.
[ X-Axis: Matching Score, Y-Axis: Probability]
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rior than those from TS2. Thereby, Fig. 9b shows that ENH2 reduces this difference and
the intraclass CDFs get closer and shift to the left. Although the interclass CDFs also
shift slightly to the left the overlap between the intra- and interclass CDFs decreases
and thus the performance is improved. The inferior intraclass MSs of TS1 are caused
by CS variations included in TS1.

The CDFs for all intraclass SD subsets of TS1 computed with MSAP / ENHNO are
shown in Fig. 10. As expected, the CS-Images captured with and without flash (F, NF)
are quite similar to each other. Furthermore, CS-Images of CSs captured with flash (F)
are more similar to each other than those captured without flash (NF).

NF NF-F F NF-CNF NF-CF

F-CNF F-CF CNF-CF

0 . 1 0 0 . 1 5 0 . 2 0 0 . 2 5 0 . 3 0 0 . 3 5 0 . 4 0 0 . 4 5 0 . 5 0 0 . 5 5 0 . 6 0
0

0.25

0.5

0.75

1

Fig. 10: Intraclass SD Subset Analysis for TS1. NF =
No Flash, F = Flash, CNF = Cut No Flash, CF = Cut
Flash. [ X-Axis: Matching Score, Y-Axis: Probability]

MSs computed between CS-
Images captured without and
those with flash (NF-F) show
up inferior MSs. Finally, and
as investigated in [16, 15] the
chart illustrates the impact
of cross-cutting the log end
on the performance. Match-
ing scores computed between
the initial log end CS-Images
and the cross-cut log end CS-
Images are shown in the sub-
sets: F-CF, F-CNF, NF-CF and
NF-CNF. Fig. 10 illustrates
that these subsets show in-
ferior MSs compared to the
other subsets.

4 Conclusions

This work demonstrates that FP and iris recognition based approaches can be success-
fully transferred to the field of wood log tracking. Based on the variety of 155 logs the
results are a first indication for the applicability of log biometrics to log identification.

In case of the FP recognition based approach the best results were achieved by
including shape information in the matching procedure MSAP,F . Furthermore, the re-
sults show that the performance of the FP configurations is significantly improved by
the enhancement procedures. For the iris recognition based approaches the best results
were achieved using lg features and hd as comparator. Thereby, a larger format and an
increasing number of rows for the feature extraction is beneficial for the performance.

In the identification performance experiments the FP based approach and all iris
configurations which use lg and 512×512 pixels achieve 100% detection rate at Rank 1.
It can be concluded that Gabor features are well suited to extract discriminative annual
ring pattern features.

Future research should deal with the impact of automated pith estimation and CS
segmentation on the biometric system performance.
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2. Chiorescu, S., Grönlund, A.: The fingerprint approach: using data generated by a 2-axis log
scanner to accomplish traceability in the sawmill’s log yard. Forest Products Journal 53,
78–86 (2003)
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