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ABSTRACT
The location of the pith is an important feature of cross
sections from tree logs. Images of log ends can be taken
at little cost and at almost every stage in the log processing
chain. Analysing images of rough log ends automatically
requires robust pith estimation. This work evaluates two
pith estimation algorithms using four different local Fourier
Spectrum analysis methods. Proving that size, selection
and amount of annual ring sections have an impact on both
algorithms, this work contributes to existing literature. In
comparing experiments for pith estimation for digital im-
ages of rough log ends and computer tomography (ct) cross
section images, this paper highlights the difficulties for pith
estimation on rough log end images. Finally, our results
show that peak analysis and principal component analysis
for local Fourier Spectrum analysis achieve the best accu-
racy and timing performance for pith estimation on rough
log end images.
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1 Introduction

Anatomically the pith is the growth centre of a tree stem.
At the cross section of the tree stem the pith is the inner-
most point surrounded by annual rings. Annual rings and
the pith are the only features that are always present. Thus,
the pith is a unique point on a cross section. In determin-
ing the wood quality the pith position has two main func-
tions: First, a pith located far away from the geometric cen-
ter is an indicator for the presence of other wood properties
like compression or reaction wood. Second, it represents a
unique reference point for further analysis like annual ring
counting or annual ring width measurement. Pith estima-
tion is fundamental for cross section analysis.

Currently, cross section analysis of log ends are pre-
dominantly performed manually by visually inspecting
logs. However, images of log ends can be taken with digital
cameras at almost every stage in the log processing chain
at little expenses. Automated image analysis applications
can be established at the forest site and in the sawmill envi-
ronment. Future approaches to analyse log end images can
automate existing processes in the log processing chain, de-

fine new standards for measuring and grading logs, and can
exploit novel applications, for example, to guaranty trace-
ability of wood logs.

Previous approaches for analysing cross section im-
ages mostly rely on images from polished/sanded cross sec-
tions or ct-images. Ct-images are free of distortions caused
by sawing or dust and the annual ring borders are slightly
emphasized. Pith estimation approaches treating ct-images
are presented in [1], [2], [3], [4]. All these approaches rely
on annual ring analysis. Due to the distortions annual ring
analysis approaches are not applicable to images of rough
log ends.

Local orientation estimation approaches for pith es-
timation are shown in [5], [6] and [7]. The former two
use local Fourier Spectrum analysis for pith estimation on
rough log end boards and on well prepared cross section
discs, respectively. The authors use the peak of the local
Fourier spectrum as local orientation estimate of an an-
nual ring section. Pith estimation approaches rely on the
assumption that annual rings are concentric circles. Conse-
quently, local orientation estimates point towards the pith.
With intersection of the local orientations the pith position
is determined. The experiments of [5] indicate that pith es-
timation using local Fourier Spectrum analysis could also
be applied on images from rough log ends. So far the only
work focusing on the treatment of images of rough log ends
was presented by [7] utilizing two local Fourier Spectrum
analysis methods suggested in [8] and [9]. Both methods
determine local orientations by convolution of filter kernels
in the spatial domain. Results of [7] show that the second
method ( Laplacian pyramids and linear symmetry) is more
robust to disturbances. Even though [7] provides first im-
portant insights into pith estimation of rough log ends, the
authors of [7] noticed that the used image test set is not
appropriate to draw conclusions about the performance of
pith estimation for rough log ends of a sawmill yard.

This work contributes to pith estimation by treating
images from rough log ends of a sawmill yard. For this
purpose the Peak Analysis Method ( [5] and [6]) and further
three Fourier Spectrum Analysis methods are used to com-
pute local orientations of small sections from cross section
images, denoted as annual ring sections. Contrary to [7]
it is shown that local orientation estimation in the Fourier
domain is applicable for annual ring sections from rough
log ends. For estimating the pith position two different al-



gorithms for selecting annual ring sections and intersect-
ing the gathered local orientations are assessed. One of
these methods is based on the pith estimation algorithm
presented in [6]. To the author’s knowledge, no study so
far has focused on the influence of the size and the selec-
tion of annual ring sections on the pith estimation accuracy
and timing. Thus, this work additionally contributes to ex-
isting literature by showing that the size, the amount and
selection of annual ring sections influence the accuracy and
timing of the proposed methods for pith estimation.

The empirical study compares two different sets of
cross section images. One image set consists of 109 images
of rough spruce log ends from a sawmill yard. The other set
is equal to the ct-image set used in the experiments of [4].
The results of the experiments of the ct-image set are com-
pared to the results for pith estimation using annual ring
analysis methods presented in [4]. The results of the pro-
posed methods on the rough log end images are compared
to those from [7].

Section 2 introduces the basics of local orientation es-
timation (subsection 2.1) and presents considerations about
Fourier Spectra of annual ring sections (subsection 2.2).
Subsequently, three Fourier spectrum analysis methods for
local orientation estimation of annual ring sections are in-
troduced (subsection 2.3). Two pith estimation algorithms
for selecting annual ring sections and computing a pith esti-
mate are presented in Section 3. Finally Section 4 describes
and assesses the experiments on the two image sets.

2 Local Fourier Spectra Analysis of Annual
Ring Blocks

All pith estimation approaches using annual ring analysis
or local orientation estimation methods rely on the assump-
tion that annual rings are concentric circles the center point
of which is the pith position. Annual ring analysis focuses
on finding and identifying annual rings. The detected an-
nual rings or arcs are then used to compute orthogonal vec-
tors pointing towards the pith or to compute annual ring/ arc
centre points representing votes for the pith position. Re-
gardless of using gradient operators, edge detectors or other
methods to extract annual rings or arcs, it becomes impos-
sible to extract valid data with increasing disturbances (see
Section 2.2). Local orientation estimation methods show
higher reliability in case of disturbances.

2.1 Local Orientation Estimation

Local orientation estimation is a widely used technique in
image processing systems and especially in texture analy-
sis. In [10] and [11] the terms ”linear symmetry” and ”sim-
ple neighbourhood” are introduced, respectively. These
terms are based on images where the grey values are equal
along lines and only change in one direction. Such images
are called simple images. The direction in which the grey
values vary is defined as the image orientation, denoted as a

unit vector n̂. A simple neighbourhood can be represented
by a 1-dimensional function f(x, y) = g(x) = g(xT n̂)
where xT n̂ denotes the scalar product [12]. Images that
are not simple can be divided into image sections, which
(approximately) fulfill the property of simple images. Im-
age orientations of such simple image sections are referred
to as ”local orientation”. The Fourier Spectrum of a simple
image is represented by a single line that is equally oriented
as the simple image. If the simple image can be described
as a sinusoidal function it is represented by two points in
the Fourier spectrum. The more the simple image deviates
from being simple the more the Fourier Spectrum spreads.

2.2 Fourier Spectra of Annual Ring Sections

The energy distribution of annual ring sections in the
Fourier Spectrum is influenced by the capturing device (ct-
scanner, digital or infra-red camera, ...), the wood species
(different wood species show different annual ring struc-
tures), wood properties visible at the cross section (e.g.
knots), the wood surface (sanded or rough - chainsaw or
circular saw), and several other disturbances (light condi-
tions, soiling and dirt, cracks, ...).

Annual ring sections of ct-cross section images are
nearly free from distortions and have similar properties as
images from sanded/ polished log ends. Compared to im-
ages from rough log ends they show less cracks and no cut-
ting distortions (compare the annual ring sections in Fig. 2
and Fig. 3).

(a) consistent ring width (b) varying ring width

Figure 1: Annual ring sections from a ct-cross section image and their
Fourier Spectra

Fig. 1 shows two annual ring sections from a ct-cross
section image. The annual rings in Fig. 1(a) are consistent
in width and are slightly curved. As a result the Fourier
spectrum is concentrated around two points that reflect the
main annual ring width and the annual ring orientation. In
Fig. 1(b) the annual ring widths vary more strongly and the
Fourier spectrum spreads from a point to a straight line.

(a) section with low curvature (b) section close to the pith with
high curvature

Figure 2: Annual ring sections from a sanded cross section and their
Fourier Spectra

The annual ring sections in Fig. 2 are from a sanded log end
face, captured under perfect light conditions. Apart from



the inverted colour (late wood is bright and early wood is
dark) these annual ring sections are similar to those from ct-
cross section images. Fig. 2(a) and Fig. 2(b) demonstrate
the influence of the annual ring curvature on the Fourier
Spectrum. The stronger the curvature, the more the line
spreads and forms two circle sectors. The annual ring sec-

(a) slightly disturbed due to cutting (b) strongly disturbed due to cutting

Figure 3: Annual ring sections from a rough log end image and their
Fourier Spectra

tions in Fig. 3 are from a rough log end image. It is obvious
that the noise increases in the spatial domain as well as in
the Fourier domain. While in Fig. 3(a) the dominant annual
ring orientation is clearly visible, in Fig. 3(b) two different
orientations are present. This typically occurs when the
cutting pattern, cracks, knots or light shadows disturb the
annual ring section. Commonly, many annual ring sections
from a rough log end image are disturbed in such a way, so
that no annual ring orientation can be determined.

Subsequently, different approaches for local annual
ring orientation estimation using Fourier Spectrum analy-
sis are presented. All presented methods utilize the Fourier
Spectrum of a given annual ring section as input. As re-
sults, all methods deliver an estimate of the orientation and
if possible a certainty value of the estimate. For this pur-
pose the size of the annual ring section in conjunction with
the image resolution has to be chosen carefully. Basically,
a higher image resolution provides more detailed informa-
tion about the cross section, but on the other hand it suffers
from additional noise in the Fourier Spectra of the annual
ring sections. The size of the annual ring section deter-
mines the amount of included annual rings. The bigger the
annual ring section, the higher the probability of a stronger
annual ring curvature and a variation in width. These obser-
vations also affect the performance of the following meth-
ods to some extent.

2.3 Fourier Spectrum Analysis Methods

In this subsection the Peak Analysis method (c.f. [5] and
[6]) and additionally three methods for local orientation
estimation using Fourier Spectrum analysis are described.
First, two approaches for Fourier Spectrum preprocessing
of annual ring sections are described.

2.3.1 Fourier Spectrum Preprocessing

Two circumstances require a filtering of the Fourier Spec-
trum. First, it can be expected that the annual ring texture of
an annual ring section is assigned to a certain bandpass in
the Fourier Spectrum. Consequently, a bandpass filter fil-
tering low and high frequencies is used to remove insignifi-

cant frequencies. Second, annual ring sections from images
of rough log ends cause a very noisy Fourier Spectrum. A
simple threshold is used to determine frequencies with a
high magnitude. The threshold is calculated by determin-
ing two peaks of the Fourier Spectrum. If the ratio between
them exceeds a certain value (e.g. 0.6) the threshold is set
to T = max. peak ⋅λ, where λ is chosen in a range between
0.6 - 0.9. Otherwise it is assumed that the annual ring pat-
tern is represented by the max. peak and just the maximum
peak is further processed.

2.3.2 Peak Analysis - PA

PA is a very simple technique to gather a local orienta-
tion estimate. Linear symmetry assumes that the Fourier
Spectrum of a simple image is aligned along a straight line.
Disregarding the DC coefficient the maximum frequency
should also lie on this line. Especially in the case of an-
nual rings and appropriate section sizes, it can be assumed
that the annual ring growth is approximately regular. The
more uniform the local annual ring pattern is, the more the
Fourier Spectrum converges to a single point. PA for pith
estimation was introduced by [5] with the intention to count
existing annual rings on rough log end boards from the two
top end board edges into the direction of the pith. For this
purpose, the presence of the pith on the board is not re-
quired. In this work the scope is to determine the exact
pith position in images of rough log ends. For implemen-
tation a simple maximum search in one half-plane of the
Fourier Spectrum has to be performed. The line through
the Fourier Spectrum origin and the maximum coefficient
of the preprocessed Fourier Spectrum is used as the local
orientation estimate.

2.3.3 Least Squares Regression - LSR

Regarding the concept of linear symmetry, linear regres-
sion analysis is most qualified for orientation estimation.
Linear regression methods enable the fitting of a line into a
point cloud. Regardless if one or more explanatory vari-
ables describe one independent variable, simple or mul-
tivariate linear regression models are utilized. For linear
symmetry analysis in the Fourier Spectrum the X and Y
coordinates can be used alternatively as explanatory or in-
dependent variable.

The method of least squares regression is the best
known method for fitting a regression line into a point
cloud. Since LSR reduces the summed squared error (SSE)
of the dependent variable it is necessary to determine the
correlation coefficients of the X and Y values. If one axis
shows a dominant correlation coefficient it is used as inde-
pendent variable for the LSR. As certainty value the ab-
solute coefficient of determination ∣R2

∣ is computed and
ranges between 0 and 1. For similar correlation coeffi-
cients (ratio > 0.8) LSR is computed with both axes as inde-
pendent variables. Subsequently, the results are combined
and the certainty value is set to 1. Finally the slope of the



regression line, representing the local orientation estimate
and the certainty value, are received as results.

2.3.4 Weighted Least Squares Regression - WLSR

Due to the quadratic error weighting, LSR is very sensi-
tive to outliers. A simple method to overcome the problem,
that outliers from less significant frequencies influence the
accuracy of LSR, is to utilize the magnitudes of the fre-
quencies as weights β =

∑(Xi⋅Yi⋅Wi)

∑(X2
i ⋅Wi)

. Due to the weight-
ing - the frequencies with a high magnitude have more im-
pact on linear regression than those with a low magnitude.
As weight (Wi) for a given point in the Fourier Spectrum
(Xi, Yi) the square root of the related frequency magni-
tude (Mi) is used Wi =

√

Mi. Except from using weights,
WLSR is performed in the same way as LSR to compute a
local orientation estimate and the related certainty value.

2.3.5 Principal Component Analysis - PCA

PCA for texture orientation analysis using local Fourier
Spectrum analysis was presented by [13]. In addition to
determining a local orientation estimate PCA, can be used
to make an assertion about the isotropy/ anisotropy of the
analysed texture. Computationally PCA, is based on the
Eigendecomposition of the covariance matrix for the XY
coordinates. Eigendecomposition of the covariance matrix
leads to two eigenvectors that represent the given points
of the Fourier Spectrum. These two vectors are perpen-
dicular to each other. The eigenvalues of the eigenvec-
tors provide the information about the isotropy/ anisotropy.
Anisotropy is used as a measure of the certainty of the ori-
entation estimate. The more one eigenvector dominates,
the more anisotropic is the distribution of the frequencies
in the Fourier Spectrum. This means that an anisotropic
distribution is an indicator of a simple image. For local ori-
entation estimation the dominating eigenvector is utilized
as the local orientation estimate. The ratio λ =

l1−l2
l1

be-
tween the eigenvalue l1 of the dominating eigenvector and
the eigenvalue l2 of the second eigenvector can be utilized
as a certainty value

3 Pith Estimation Algorithms

This section describes two different algorithms for select-
ing annual ring sections/ image blocks and computing a
pith estimate. The objective of both algorithms is to select
image blocks and to compute local orientation estimates for
each block. Finally, each algorithm uses the gathered local
orientation estimates to perform an intersection step and to
compute a pith estimate.

3.1 Block Area Selection - BAS

In [7], a rectangular area around the geometric image center
is used to compute local orientation estimates for a subse-

quent intersection procedure. Knowledge about the cross
section size and its location in the image is a precondition.
After specifying an area it is subdivided into image blocks.
Overlapping image blocks or a sliding window have the
advantage that more annual ring orientations can be deter-
mined. The size of the blocks depends on the image res-
olution and on the cross section image type. Appropriate
block sizes vary between 8x8 and 128x128 pixels. The ex-
periments indicate that a lower resolution provides some
advantages. High resolution images require a large block-
size and small structures and disturbances become visible.

In Fig. 4, subdivided rectangular and circular areas
of two rough log end images are shown. The rectangle and
circle dimensions were determined using the geometric im-
age properties of the pre-cut images of rough log ends.

GC

(a) Rectangular area and non-
overlapping blocks (32x32 pixels)

GC

(b) Circular area and non-
overlapping blocks (32x32 pixels)

Figure 4: Two cross section images from the rough log end image set
(RLE-IS) with two different predefined areas for BAS

For all selected blocks, a local orientation estimate is com-
puted using one of the Fourier Spectrum analysis methods.
Expect for the PA method, a certainty value is addition-
ally determined. Finally, local orientation estimates with
a certainty value exceeding a certain threshold are further
processed, (in the case of the PA method all local orienta-
tion estimates are further processed). Similar to [5] and [7]
an accumulator array is used to sum up the intersections
of all valid local orientation estimates. Finally, the accu-
mulator array is filtered with a Gaussian smoothing kernel
and the maximum accumulator value is assumed to hold
the pith position. The Gaussian filter flattens local peaks
and summarizes peak groups to a single peak. Fig. 5(a)
shows an intersection image where a rectangular area and
non-overlapping blocks with 32x32 pixels were used. It is
clearly visible that the line intersections concentrate around
the pith periphery.

3.2 Pointwise Block Selection - PBS

In [6], another technique that uses the geometric image cen-
ter (GC) as initial reference point is presented. The princi-
ple of this technique is that first, two points around a ref-
erence point are chosen. Then, two local orientation es-
timates are calculated for the annual ring sections around
these points. The intersection of these orientations is used
as a new reference point. The procedure stops after a cer-
tain number of iterations or if the new reference point is



close to the old one. The concept of this technique is based
on the assumption that annual rings close to the pith are
more circular. Optimally, the pith estimate accuracy in-
creases after performing several iterations.

For the experiments [6] used images from well pre-
pared log end images. Preliminary experiments showed
that pith estimation using only two local orientation esti-
mates (in each iteration) becomes more inaccurate the more
disturbed the cross section image. In the present work an
extension of the suggested technique is introduced to over-
come problems caused by inaccurate local orientation es-
timates. The GC is used as the initial reference point. In
contrast to [6], the number of points can be chosen individ-
ually. These points are equally distributed on a circle de-
scribed by a predefined radius around the reference point.

Each point is used as a center point of an image block

(a) BAS Intersection on a rough log
end image

GC

(b) PBS/ ct-cross section image
where 5 points with a cluster size
of 3x3 blocks were chosen

Figure 5: Intersection Images

cluster. A cluster consists of an arbitrary number of blocks.
For each block of a cluster, the local orientations and cer-
tainty values are calculated. The information of all blocks
of a cluster are then used to determine whether a valid clus-
ter orientation estimate can be calculated. If not, a new
point on a reduced radius, closer to the reference point is
chosen and the cluster orientation estimation procedure re-
peats. After a certain number of unsuccessful iterations the
procedure is cancelled and it is continued with the next ini-
tially chosen point. The cluster orientation estimation pro-
cedure is performed for all initially chosen points. At least
two valid cluster orientation estimates are necessary to per-
form an intersection procedure. Finally, the barycentre of
the intersections of all valid cluster orientations is chosen
as the intermediate pith position. This one is utilized as new
reference point and the whole procedure is repeated with a
decreased radius. The algorithm terminates if the distance
between the old and new pith position is under a certain
limit or if a certain number of iterations were performed.
In Fig. 5(b) a ct-cross section image is depicted where one
iteration of the described algorithm has been performed.
Five points in a radius of 120 pixels around the GC were
chosen. For all clusters a valid cluster orientation estimate
could be computed. Each cluster consists of 9 - 16x16 pixel
blocks. The barycentre, which is assumed to hold the pith
position, is not marked. PBS has the advantage that only a
few blocks have to be analysed, keeping the computational
effort low.

4 Experiments

The experiments provide information about the pith esti-
mation performance of the two pith estimation algorithms
(BAS, PBS) utilizing Fourier Spectrum analysis methods
for local orientation estimation. The focus is to evaluate
the performance and applicability of the particular Fourier
Spectrum analysis methods for analysing annual ring sec-
tions from rough log end images. Results for a ct-cross
section image set (CT-IS), using the same images as in
[4], show how the proposed methods perform on less dis-
turbed images. The accuracy of the proposed methods on
the rough log end image set (RLE-IS) is compared to the
results presented in [7].

The pith estimation performance is evaluated by com-
puting several statistical values. The mean (Mean) de-
scribes the deviation from all epp (estimated pith positions)
to the corresponding mpp (measured pith positions). StDev
is the standard deviation from the Mean. R is defined as the
span between the maximum and minimum pith estimation
deviation. #Blocks (#B) gives the number of valid blocks
that exceed the certainty threshold and are finally used for
the intersection step. Finally, the computation time in mil-
liseconds [ms] specifies the demand for the whole pith es-
timation process, except file IO.

Subsequently, for each of the two image sets the ac-
curacy and the timing performance for pith estimation us-
ing the two pith estimation algorithms and different Fourier
Spectrum analysis methods are presented. As a next step,
the results are summarized and general conclusions about
the accuracy and the timing performance of the particular
configurations are drawn. All experiments were performed
on an Intel Core i7-2620M processor with 2.7 GHZ and
8GB RAM, JRE 1.6.

Image Sets
Two different cross section image sets are used to evaluate
the performance of the presented Fourier Spectrum analy-
sis methods. One image set (CT-IS) was captured with a
ct-scanner. It consists of 36 (512x512 pixels) cross section
images taken from a single log. This image set was also
used for the pith estimation experiments in [4]. The second
image set (Rough Log End Image Set / RLE-IS) consists
of 109 (1024x768 pixels) spruce log end images captured
with a digital camera (Samsung WB2000). These images
were taken on a sawmill yard in Austria without flash and
at approximately the same distance from the log end sur-
face to the camera. Consequently, one pixel corresponds to
approximately 1.7 mm. The captured images represent log
ends and their features found on a sawmill yard process-
ing spruce logs. Log ends without any visible annual rings
have been excluded. At the sorting station all log ends were
cut by a circular saw. The ground truth (measured pith po-
sition - mpp) for both image sets was determined by visual
inspection. Due to the approximately equal cross section
size in all images of the CT-IS no localization of the cross
section is necessary. The diameters of the log ends in the
RLE-IS vary between 25 and 50 cm. For simplification the



images were pre-cut to the size of the log end sizes.

4.1 CT-IS Experiments

For pith estimation on the CT-IS the two pith estimation
algorithms (BAS, PBS) are tested with each of the four
Fourier spectrum analysis methods. For this purpose three
configurations are selected and evaluated in detail. The first
configuration (CT-BAS-C1) uses non-overlapping 16x16
pixels blocks and a rectangular BAS. The second config-
uration (CT-BAS-C2) first applies CT-BAS-C1. Based on
the assumption that annual rings close to the pith are more
circular, an 80x80 pixels rectangular area around the first
pith estimate is defined. Local orientation estimates closer
to the pith should point more precisely to the pith posi-
tion. Subsequently, a second BAS with non-overlapping
8x8 pixel blocks is performed with the newly defined area.
The second pith estimate is used as the final pith estimate.
For both configurations the accumulator array is smoothed
with a Gaussian filter with σ = 1, before the maximum
value is determined.

The third configuration (CT-PBS-C3) uses the PBS
algorithm. Five clusters with 16x16 pixel blocks are se-
lected at each iteration. Each cluster consists of 4 blocks
and at maximum 5 iterations are performed for estimating
the final pith estimate. The radius for the first iteration was
set to 100 pixel and decreases by a factor of 0.6 for each
iteration. As termination criteria between the results of two
iterations a value of 2 pixel is used.

The particular configurations and Fourier Spectrum
analysis methods are tested with different certainty thresh-
olds in a range between 0.3 and 0.9. For each configuration
and Fourier Spectrum analysis method the most accurate
result gathered with a particular certainty value is selected
for the statistical analysis illustrated in Table 1. For PA no
certainty value is computed and so #Blocks in the PA re-
sults using BAS gives the total number of selected blocks
in the rectangular area. Comparing the results from CT-

Config. Method C Mean StDev #B R [ms]

CT-BAS-C1

PA - 4.65 1.12 249 6 211
LSR 0.9 4.86 1.3 234 7 196
WLSR 0.9 4.78 1.25 243 7 202
PCA 0.9 4.78 1.19 230 7 199

CT-BAS-C2

PA - 3.08 1.68 346 7 303
LSR 0.5 2.27 1.0 330 4 307
WLSR 0.9 2.41 1.1 339 5 304
PCA 0.7 2.46 1.35 335 6 303

CT-PBS-C3

PA - 6.54 8.55 117 45 21
LSR 0.9 2.16 1.75 118 8 22
WLSR 0.9 1.86 1.3 114 5 21
PCA 0.7 1.49 1.06 111 4 21

Table 1: CT-IS Pith Estimation - statistical analysis of three
configurations. Mean, StDev and R are given as pixel values.

BAS-C1 and CT-BAS-C2, the accuracy of all methods in
the latter configuration increases remarkably. On the other
hand the timing performance decreases due to the higher

amount of blocks. Although the certainty thresholds are
very restrictive, a high amount of blocks (compared to the
total amount of blocks in the PA results) are used for the
intersection procedure. This shows that in ct-images only a
few blocks are too disturbed to compute a local orientation
estimate with a high certainty.

Surprisingly, the best results are reached with CT-
PBS-C3 using the three introduced Fourier Spectrum anal-
ysis methods. Compared to the two other configurations
this method is ten times faster and uses least blocks. The
PA method shows a bad performance for CT-PBS-C3. This
behaviour can be explained with the missing of a certainty
value. Thus, wrong orientation estimates are not sorted out
and affect the pith estimation accuracy. In Fig. 6 the results
of the most accurate method for each configuration are de-
picted. In the experiments of [4] the best results were

CT-PBS-C3 (PCA)CT-BAS-C2 (LSR)CT-BAS-C1 (PA)

Figure 6: CT-IS — Best methods of each configuration

reached with the method that used sets of equal gradients
and the circle equation: Mean - 2.8 pixels and Timing 16.64
seconds without preprocessing. Except the results using
PA in CT-BAS-C2 and CT-PBS-C3 all methods outperform
this mean value. Considering the timing performance it is
shown that the proposed methods are very fast compared
to the annual ring analysis methods evaluated in [4]. Addi-
tionally, no image preprocessing is required for the Fourier
Spectrum analysis methods. The experiments on the CT-IS
demonstrate that all proposed methods are well-suited for
pith estimation on less disturbed cross section images.

4.2 RLE-IS Experiments

As in the CT-IS experiments, seven configurations are se-
lected and evaluated in detail. These configurations are di-
vided into four groups (see Table 2). The first three groups
present results for rectangular and circular BAS using non-
and half-overlapping 16x16 pixels blocks. While in the
first two groups it is tried to cover a large area from the
log end face (see Fig. 4), the third group uses a smaller
300x300 pixels rectangular area around the GC. Equal to
the CT-BAS-C2 configuration the third group uses the as-
sumption that annual rings close to the pith are more circu-
lar. Compared to the CT-IS Experiments a larger Gaussian
filter with σ = 3 was applied to the accumulator array of



the BAS configurations. Finally, the fourth group presents
results for pith estimation using the PBS algorithm. For
this purpose 20 clusters, each cluster consisting of four -
16x16 pixel blocks, are selected at each iteration. No more
than six iterations are performed with a termination limit
set to a value of 4 pixels. In Table 2 a statistical analy-
sis for the most accurate configurations is presented. Be-
cause all configurations achieve at least one exact pith esti-
mate - R also gives the most deviating pith estimate. For

Config Method C Mean StDev #B R [ms]

R
ec

ta
ng

ul
ar

B
A

S-
1

non
over-
lap-
ping

PA - 5.56 4.43 710 25 1048
LSR 0.9 6.45 5.08 643 27 1008
WLSR 0.9 6.49 5.09 689 31 1032
PCA 0.5 5.75 4.3 660 25 1036

half
over-
lap-
ping

PA - 3.49 2.53 2789 13 2453
LSR 0.9 4.36 4.01 2528 24 2306
WLSR 0.9 4.2 3.81 2709 25 2357
PCA 0.9 4.03 3.23 1697 15 2003

C
ir

cu
la

rB
A

S

non
over-
lap-
ping

PA - 6.57 4.55 798 22 1053
LSR 0.9 6.0 4.7 720 27 960
WLSR 0.9 6.43 5.56 481 34 858
PCA 0.9 6.02 5.25 310 33 818

half
over-
lap-
ping

PA - 3.73 3.15 2118 20 1969
LSR 0.9 4.43 4.39 1923 30 1888
WLSR 0.5 4.19 4.25 2097 30 1962
PCA 0.9 4.39 3.77 1296 25 1650

R
ec

ta
ng

ul
ar

B
A

S-
2

non
over-
lap-
ping

PA - 4.67 3.05 321 17 768
LSR 0.9 5.91 5.1 295 33 761
WLSR 0.5 6.46 6.7 319 45 771
PCA 0.7 5.45 4.2 262 21 749

half
over-
lap-
ping

PA - 3.04 2.43 1284 13 1393
LSR 0.9 3.38 3.37 1178 19 1355
WLSR 0.3 3.01 2.49 1279 15 1396
PCA 0.9 3.1 2.34 785 11 1193

PB
S 20 -

Clus-
ter

PA 0.9 6.87 7.38 417 65 150
LSR 0.7 8.19 9.1 390 50 178
WLSR 0.7 8.37 9.53 402 48 184
PCA 0.9 6.23 7.22 299 54 229

Table 2: RLE-IS Pith Estimation - statistical analysis of 9 configurations.
Mean, StDev and R are given as mm values.

the configurations using BAS it can be summarized that
configurations using PA and half-overlapping blocks entail
very accurate estimates. The visual inspection of the pith
estimates showed that non-overlapping blocks cause inac-
curacies due to the large distances between the orientation
estimates. For 16x16 pixels blocks half-overlapping blocks
reduce this effect significantly (see Fig. 7). Additionally,
it turned out that a higher amount of blocks, on the same
area, almost always increases the accuracy and on the other
hand it worsens the timing performance. For the circular
BAS it was assumed that due to the optimal covering of the
log end face the accuracy increases significantly. Results
from Rectangular BAS-2, considering a smaller rectangu-
lar area around the GC, indicate that it is more essential to
consider the area around the pith position in detail.

Overall configurations Rectangular BAS-2 using half-
overlapping blocks reaches the best performance regard-
ing the accuracy and timing performance for all methods.

The best accuracy was reached with PCA (mean: 3.1 and
StDev: 2.34) where all pith estimates are located within
11mm to the mpp (see Fig. 7).

RECTANGULAR BAS-2 (PEAK / non-overlapping)

RECTANGULAR BAS-2 (PCA - 0.9/ half-overlapping)

Figure 7: RLE-IS Pith Estimation accuracy - Rectangular BAS-2 with
non-overlapping and half-overlapping blocks

Compared to the CT-IS Experiments the Fourier
Spectrum threshold and the orientation certainty values
have a major impact on the accuracy. Although the PA
method assesses all blocks as valid, it is remarkable that the
PA results are very accurate and robust regarding the StDev
and R values. Because all blocks are valid - all blocks are
used for the intersection procedure and thus slow down the
pith estimation algorithm. Compared to the CT-IS experi-
ments it can be recognised that higher certainty thresholds
(C) reduce the amount of #Blocks to a higher degree. Since
Fourier Spectrum preprocessing in the CT-IS and RLE-IS
experiments was performed with the same parameters, the
decreasing amount of #Blocks confirms that annual ring
sections from rough log ends and their related preprocessed
Fourier Spectra contain more disturbances. Thus, a huge
amount of local orientation estimates have lower certainty
values. In contrast to the PA method the introduced meth-
ods require that Fourier Spectrum thresholding filters out
insignificant frequencies. Too low a threshold may have
the affect that the introduced methods compute incorrect
local orientation estimates and certainty values.

Comparing the PA and PCA results (Rectantgular
BAS-2) it can be recognised that the PCA method assessed
500 blocks as not valid and is thus faster and additionally
achieves a slightly better accuracy regarding the StDev and
R values. It can be concluded that the PCA method pro-
vides reliable certainty values for all configurations using
BAS and thus improves the timing performance neglecting
disturbed blocks. LSR and WLSR also improve the timing
performance, but they are almost always less robust regard-
ing the StDev and R values.

Results from the fourth group show that the PBS al-
gorithm is less suitable for rough log end images. Although
the mean values are in a range between 6.23 and 8.37 pix-
els some unacceptable outliers are included. The best ac-
curacy for PBS is reached with PCA (mean: 6.23 StDev:
7.22). Although the PCA method used fewest of all blocks



for determining the final pith estimate it was slower than
the other methods. Similar to the BAS configurations the
PCA methods assess a huge amount of blocks as not valid
and thus more iterations to find valid clusters are required.
As for the PBS results in the CT-IS experiments the PA
method is very fast since no certainty values are available
and thus valid clusters are found faster.

Finally, the accuracy is compared to the results pre-
sented in [7] using the Ultuna image set. This one consists
of 20 log end images captured from 10 logs. Except for
one pith estimate all deviations were smaller than 4 mm for
the approach using Laplacian pyramids and linear symme-
try [7]. Compared with the best configuration in Table 2
(Rectangular BAS-2 - PCA with half-overlapping blocks -
mean: 3.1, stdev: 2.34) the accuracies are somewhat equiv-
alent. Unfortunately in [7] no timing measurements are
presented.

However, the experiments show that the proposed
methods show an acceptable performance for spruce log
end images of a sawmill yard. Results show that BAS and
Fourier Spectrum analysis methods are well suited for pith
estimation on rough log ends.

5 Conclusions

The experiments on the two different cross section image
sets (CT-IS and RLE-IS) showed that local orientation es-
timation with Fourier Spectrum analysis methods are fast,
robust, and very accurate in estimating the pith position.
Results of the two pith estimation algorithms and the com-
parison of four Fourier Spectrum analysis methods high-
lighted the difficulties of pith estimation on images from
rough log ends. The introduced PBS pith estimation algo-
rithm achieves the best performance in the CT-IS experi-
ments, but results show that the algorithm is inappropriate
for pith estimation on images from rough log ends.

Although the PA method uses the least information
of the Fourier Spectrum and provides no certainty value it
reaches very accurate results for pith estimation using BAS.
PCA shows a good reliability for determining valid orienta-
tion certainty values and improves the timing performance
for BAS pith estimation significantly. Eventually, it was
shown that it is more essential to consider sections close to
the pith than to consider as much area as possible from the
cross section.

Generally, it can be summarized that the block size,
the distribution and amount of the blocks as well as Fourier
Spectrum preprocessing are very important for pith estima-
tion on images from rough log ends. Future research should
develop more sophisticated block selection techniques. Es-
pecially for images from rough log ends a proper segmenta-
tion (using Fourier Spectrum Analysis) of the cross section
could further increase the pith estimation accuracy.
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