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Abstract—Biometric system security requires cryptographic
protection of sample data under certain circumstances. We assess
low complexity selective encryption schemes applied to JPEG2000
compressed iris data by conducting iris recognition on the
selectively encrypted data. This paper specifically investigates the
effect of applying the approach to normalised texture data instead
of original sample data in order to further reduce the amount
of data to be processed (i.e. compressed and encrypted). Result
generalisability is facilitated by the employment of four different
iris feature extraction schemes and the systematic consideration
of three encryption variants. Depending on the applied iris
recognition scheme, protection equivalent to full encryption can
be achieved when encrypting 1/60 – 1/12 of the data amount of
a full iris sample encoded in a JPEG2000 file.

I. INTRODUCTION

The International Organisation for Standardisation (ISO)
specifies biometric data to be also recorded and stored in
(raw) image form (ISO/IEC FDIS 19794), not only in extracted
templates (e.g. minutiae-lists or iris-codes). On the one hand,
such deployments benefit from future improvements (e.g. in
feature extraction stage) which can be easily incorporated
without re-enrollment of registered users. On the other hand,
since biometric templates may depend on patent-registered al-
gorithms, databases of raw images enable more interoperability
and vendor neutrality [1]. Furthermore, the application of low-
powered mobile sensors for image acquisition, e.g. mobile
phones, and the transmission of acquired data over high-
latency, low-bandwidth wireless network connections raises the
need for reducing the amount of transmitted data. These facts
motivate detailed investigations and optimisations of image
compression in biometrics in order to provide an efficient
storage and rapid transmission of biometric records.

The certainly most relevant standard for compressing image
data relevant in biometric systems is JPEG2000, suggested
for (lossy) compression of iris sample images in the ISO/IEC
19794 standard suite on Biometric Data Interchange Formats
and in the ANSI/NIST-ITL 1-2011 standard on “Data Format
for the Interchange of Fingerprint, Facial & Other Biometric
Information” (former ANSI/NIST-ITL 1-2007). There is a vast
literature on the effects of lossy JPEG2000 compression in iris
recognition, see e.g. [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11], while we will use JPEG2000 in lossless mode here.

In (distributed) biometric recognition, biometric sample
data is sent from the acquisition device to the authentication
component and can eventually be read by an eavesdropper on
the channel. Also, biometric enrollment sample databases as
mentioned before can be compromised and the data misused
in fraudulent manner (especially when considering nation-wide

data sets like present in the Unique Identification Authority of
India’s (UID) Aadhaar project). Therefore, these data, often
stored as JPEG2000 data as described before, require crypto-
graphic protection for (long-term) storage and transmission.

Note that this application context is fundamentally differ-
ent from that which triggered the development of template
protection schemes. These are of course applied to template
data (and aim to protect their respective security and privacy
in case of data breach) and thus need to facilitate matching
in the encrypted domain. This requirement is difficult to
achieve and often causes a decrease in recognition accuracy
or an increase in computational cost when comparing template
protection schemes to recognition with unprotected data. The
protection of sample data as considered in this work does not
involve matching in either domain and thus allows the usage
of classical cryptographic techniques.

In this paper we investigate lightweight encryption schemes
for JPEG2000 compressed iris sample data based on selective
bitstream protection applied to normalised iris texture instead
of actual original sample data. In particular, we consider the
interplay between applying different types of feature extraction
and matching schemes to the protected data and the achieved
level of security / data protection when the JPEG2000 data is
encrypted in different ways.

The proposed techniques offer extremely low computa-
tional effort and there is absolutely no impact on recognition
accuracy once the data are decrypted for template extraction
/ matching. Still, in case a full AES encryption of the data
is feasible in terms of computational resources, this option
is always preferable due to unquestioned security. Section
II introduces principles of encrypting JPEG2000 data and
specifically describes the approaches tailored for iris data as
proposed in this paper. The target iris recognition schemes as
used in the experiments are sketched in Section III. Section IV
describes a large corpus of experiments, where we specifically
assess the security of the proposed encryption schemes by
applying iris recognition to the (attacked) encrypted data.
Section V presents the conclusions of this paper and an outlook
to future work.

II. EFFICIENT ENCRYPTION OF IRIS SAMPLE DATA

A. Iris Sample Data Types Subject to Compression and En-
cryption

The iris recognition processing chain typically consist of
several stages (some of these depicted in Fig. 1), the first
of which is iris localisation also termed “iris segmentation”



where the pupillar and limbic boundaries of iris texture are
determined.

To perform the experiments we use USITv21 (University
of Salzburg Iris Toolkit v2.0.x [1], [12]), a publicly available
iris recognition software package which comprises different
algorithms for iris pre-processing, feature extraction, and com-
parison. Segmentation is performed using a method based on
contrast-adjusted Hough transform (caht) proposed by [1]
(see Fig. 1.a for example boundaries).

(a) iris sample with
boundaries

(b) normalised iris texture

(c) CLAHE enhanced texture

Figure 1: Types of iris (sample) data.

In the second step the localised iris is normalised. The
reasons for this are differences in image acquisition, like the
varying size of irises caused by changes of the camera-to-eye
distance. The main idea is to transform the area between the
two boundary-curves into a rectangle texture with fixed size for
compensating such deformations. This is done by a coordinate-
transform from Cartesian-coordinates to polar-coordinates also
denoted as “rubber sheet-transform” (Fig. 1.b). The final
pre-processing step enhances contrast and compensates for
illumination variations by applying e.g. CLAHE (Fig. 1.c) to
the normalised texture.

The experiments are done on the CASIA V3 Interval data-
set. The original samples have a resolution of 320 × 280 pixels
with 8bpp grayscale (NIR data), while the normalised iris tex-
ture derived using USITv2 has a resolution of 512 × 64 pixels
with identical bitdepth, thus the pixel count is reduced by a
factor of 2.73 when considering normalised iris texture. Note
that these two types of iris data correspond to standardised iris
images (IREX records) as defined by the NIST Iris Exchange
(IREX I http://iris.nist.gov/irex/) program. In
particular, original sample data corresponds to IREX record
kind 1 or 3, while the normalised texture corresponds to record
kind 16 (which has been later abandoned by NIST).

The observation of reduced data rate for normalised iris
textures motivates the approach investigated in this paper.
Instead of compressing and encrypting the original sample
data for protected transmission or storage, we compute the
normalised texture from the sample data, apply CLAHE even-
tually, and compress and encrypt it subsequently. This has
three obvious advantages. First, the amount of data to be
compressed and encrypted is reduced. Second, the protected
data can be immediately subjected to feature extraction after
decryption and decoding as the segmentation and normalisa-
tion process has already been conducted (recognition can be
sped up significantly). Third, in case of lossy compression,
there is no impact of compression artifacts onto segmentation
results (which can be significant [13]). On the other hand, the
disadvantage be to taken into account is that by storing these

1http://www.wavelab.at/sources/USIT/

data, later improvements in the segmentation and normalisation
procedures cannot be exploited. And, of course, this strategy
puts additional computational load to the infrastructure entity
which is already responsible for compression and encryption.

Table I compares the filesize of the different data types after
lossless JPEG2000 compression, i.e. comparing the amount of
data subjected to encryption in case of full protection.

Table I: Filesize in byte after JPEG2000 lossless compression
(CASIA V3 Interval).

Data ∅ σ range
original sample 42501.80 3874.06 [27402,51998]
normalised texture 15471.84 1119.22 [10408,19803]
CLAHE limit=1 18522.91 1074.32 [12973,22373]
CLAHE limit=3 21933.45 1072.76 [16302,26679]

We observe that the relation between original sample and
normalised texture is preserved from the case of looking at
image resolution only, also the file size variability is signi-
ficantly lower for normalised textures (which is beneficial for
worst case planning). When applying contrast enhancement
(CLAHE) with increasing strength, average filesize increases
(but is still lower almost by a factor of two when compared
to the original sample). Thus, the best option would be to
compress and encrypt the normalised texture, while applying
CLAHE to the decrypted and decoded normalised texture right
before feature extraction.

B. Selective JPEG2000 Encryption Approaches

For JPEG2000, [14] provides a comprehensive survey of
encryption schemes. In our target application context, only
bitstream oriented techniques are appropriate, i.e. encryption
is applied to the JPEG2000 compressed data, as iris data might
be compressed right after acquisition but encrypted much later.
In the following, we introduce a systematic approach to assess
selective encryption techniques wrt. the question how to apply
encryption to different parts of the JPEG2000 codestream.
To enable security assessment (which involves decoding of
encrypted data), only format compliant encryption schemes
are admissible. Each packet within the JPEG2000 code stream
eventually contains start of packet header (SOP) and end
of packet header (EOP) markers. To achieve this, the used
encoding software, i.e. JJ2000, is executed with the −Psop
and −Peph options which enable these optional markers.
These markers are used for orientation within the file and for
excluding all header information from the encryption process.
Additional care must be taken when replacing the packet data
with the generated encrypted bytes not to emulate any header
data or control bytes. Thus, we apply a format compliant
JPEG2000 encryption scheme introduced in the context of
JPSEC [15] to avoid such pitfalls.

In a series of papers (i.e. [16], [17], [18]) we have defined
and analysed different ways how to apply encryption to differ-
ent parts of a fingerprint-image JPEG2000 codestream. From
these techniques, we adopt “Absolute Encryption” (encryption
is applied to one single chunk of data right at the start of
the codestream [16]) as well as “Windowed Encryption” for
encryption of iris data. The latter approach is used to accurately
spot the encryption location in the JPEG2000 bitstream with
the biggest impact (in our context on matching rates when



iris recognition systems are applied to encrypted data [17],
[18]). “Windowed Encryption” is operated by moving a fixed
window (of the size of some percent of the filesize in our
experiments) across the packet data. While the percentage of
encrypted data does not change during the experiments, only
the position of the window is changed in fixed steps within
packet data. In this manner, recognition experiments on the
protected data reveal the parts of the JPEG2000 codestream
that contain the most “valuable” iris information exploited by
the different recognition schemes for matching purposes, i.e.
that is most sensitive if protected by encryption. In particular
it is of interest if these sensitive codestream parts differ for
different feature extraction / matching schemes. For fingerprint
image encryption, a significant AFIS type dependency has
already been demonstrated [17].

In addition to these two established encryption schemes,
we consider “Subband Encryption” in this work. This means
that we encrypt all packet data corresponding to distinct
wavelet decomposition subbands with the aim of eventually
exposing certain characteristics of different feature extraction
and matching techniques when applying them to the protected
data (as the different subbands correspond to the application of
wavelet highpass and lowpass filters in different combinations
and orders, the importance of certain directions or scales for a
feature extraction scheme might be exhibited). Note that this
scheme is not meant to be applied in practice, but is aimed
to better understand the interplay of encrypting specific data
parts and the applied iris recognition scheme wrt. observed
recognition results.

C. Security Assessment

When assessing the security of format compliantly en-
crypted visual data, the data can simply be decoded with
the encrypted parts (called “direct decoding”). Due to format
compliance, this is possible with any given decoding scheme,
however, the encrypted parts introduce noise-type distortion
into the data which kind of overlay the visual information
still present in the data (see Fig. 2 left column). An informed
attacker can certainly do better than this naive approach.
Therefore, a highly efficient attack is obtained when removing
the encrypted parts before decoding and replacing them by
suited data minimising error metrics. This can be done most
efficiently using codec specific error concealment tools, which
treat encrypted data like any type of bitstream error (“error
concealment attack”). Thus, any serious security analysis needs
to consider encrypted imagery being attacked using this error
concealment approach at least. The JJ2000 version used in
the experiments includes the patches and enhancements to
JPEG2000 error concealment provided by [19], and results
obtained by error concealment are denoted by “rep” (for
replacement) in the result plots.

As visible in Fig. 2 (right column), especially after error
concealment attacks, certain parts of the iris texture can still
be present (see Fig. 1.c for the original), which could be
improved further with iris texture specific quality enhancement
techniques (thus, images like those cannot be assumed to be
sufficiently secured). Only the error concealment example with
better protection in Fig. 2.e (“5% begin encryption”) does not
seem to exhibit any more iris texture related structures which
could be exploited by an attacker.

⇒
(a) HL-subband encryption

⇒
(b) LH-subband encryption

⇒
(c) HH-subband encryption

⇒
(d) 1% begin encryption

⇒
(e) 5% begin encryption

⇒
(f) 10% window encryption, 10% offset

⇒
(g) 5% window encryption, 5% offset

Figure 2: Comparison of encrypted textures (direct decoding)
with error-concealment decoding.

In our application context, security assessment is done
by applying iris recognition schemes to the protected data
(either after direct reconstruction or after having applied error-
concealment decoding) to verify if the protection is sufficiently
strong to prevent the use of the encrypted iris data in an
automated recognition context.

III. IRIS RECOGNITION

Different types of iris recognition schemes might react dif-
ferently to image degradations caused by encrypted bitstream
parts. Therefore, we will consider fundamentally different
types of iris feature extraction and matching schemes, differ-
ent wrt. the dominant orientation and the extraction domain
considered, respectively.

We employ custom implementations of four feature ex-
traction and matching techniques (for a detailed description of
our implementation of preprocessing, feature extraction, and
matching see [1], [12]). All implementations are available in
USITv22 (University of Salzburg Iris Toolkit v2.0.x).

The first scheme has been published by Ma et al. [20]
(“Ma”) using a 1D dyadic wavelet transform maxima repres-
entation for small averaged stripes of the iris texture while the
second technique is a re-implementation of the popular 1D log-
Gabor MATLAB-code of Libor Masek [21] (“Masek”). The
third scheme has been developed by Ko et al. [22] (“Ko”) and
extracts spatial domain features, while the forth approach has
been designed by Monro et al. [23] (“Monro”) and relies on
DCT-derived features computed from rotated texture patches.

The first two schemes share the generation of a 1-D signal
onto which the 1-D transforms are applied. The normalised
iris texture is divided into ten vertical texture stripes of same

2http://www.wavelab.at/sources/USIT/



height (typically 5 rows wide) eventually ignoring several rows
close to the limbic boundary. Subsequently, the average gray-
scale value of each 1 × 5 stripe is estimated and normalised
in an adequate range in order to obtain a 1-D signal.

1) Ma: A quadratic spline wavelet transform is per-
formed on the ten signals, and two fixed subbands are
selected resulting in a total number of 20 subbands.
Subsequently, minima and maxima of the filter re-
sponses are detected and descending and ascending
sequences are encoded with 0 and 1, respectively.

2) Masek: A a convolution with a 1-D complex Log-
Gabor filter is performed. Subsequently, the phase
angle of the resulting complex values for each signal
is discretised into 2 bits.

3) Ko: The algorithm discards parts of the iris tex-
ture, from the right side [45o to 315o] and the left
side [135o to 225o], since the top and bottom of
the iris are often hidden by eyelashes or eyelids.
Subsequently, the resulting texture is divided into
basic cell regions (these cell regions are typically
of size 8 × 3 pixels), for which an average gray
scale value is calculated. Then basic cell regions are
grouped horizontally and vertically (five basic cell
regions in each group). Finally, cumulative sums over
each group are calculated to generate an iris-code.
If cumulative sums are on an upward slope or on a
downward slope these are encoded with 1s and 2s,
respectively, otherwise 0s are assigned to the code.
In order to obtain a binary feature vector (to enable
Hamming Distance computation for comparison) we
rearrange the resulting iris-code such that the first
half contains all upward slopes and the second half
contains all downward slopes.

4) Monro: Divides the normalised iris texture into over-
lapping angular patches of a particular size and a
particular orientation, with an overlapping part of
half the size of a patch. Experimental optimisation
led to a patchsize of 8 × 12 with an orientation
of 45◦. Subsequently, a weighted averaging under a
Hanning window is formed in horizontal direction
with a subsequent windowing in vertical direction
within each patch leading to a patch size of 8 × 1
pixels. Subsequently, a DCT transform is applied
to each patch. The zero-crossings of the differences
between particular coefficients of adjacent patches
form the feature vector, where it turned out that the
first three out of these 8-bit-codelets perform best.

IV. EXPERIMENTS

A. Experimental Settings

All experiments are based on images taken from the
CASIA V3 Interval iris image dataset consisting of 2647 NIR
images from 395 different classes. Images are compressed
into lossless JPEG2000 format using JJ2000 in resolution pro-
gressive ordering, using a single quality layer. The JPEG2000
bitstreams are encrypted by either “Absolute Encryption” vary-
ing the amount of encrypted data, by the different variants of
“Windowed Encryption” with different positions where to start
the encryption, and by “Subband Encryption”. Subsequently,

data are either directly decoded or decoded with enabled error
concealment with the JJ2000 variant mentioned [19].

Error analysis is conducted in two different variants, always
matching original gallery images to encrypted probe images.
First, we only look at the genuine score distributions compar-
ing the distribution of original to that of selectively encrypted
data, respectively (we use all genuine as well as impostor
scores that can be computed from the dataset, respectively).
Properly protected data should look like a impostor distribution
and the better the protection is, the closer the genuine score
distribution moves to an imposter score distribution. Second,
we conduct an ROC analysis and present EER and obviously,
higher EER corresponds to better data protection.

B. Experimental Results

For discussing genuine score distributions with encrypted
probe images, we only consider the case of conducted error
concealment assuming an informed attacker.

Fig. 3 compares the results of the four recognition schemes
in case of Subband encryption being applied to the first level
HH, LH, and HL subbands, respectively. We notice that for Ko
recognition, encryption of the LH subband has the strongest
impact, while for the other three recognition schemes this is
the case for HL encryption.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5  0.55  0.6  0.65

Hamming-distance

Masek (17910 tests)

NULL
HHrep
LHrep
HLrep

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5  0.55  0.6  0.65

Hamming-distance

Ma (17910 tests)

NULL
HHrep
LHrep
HLrep

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5  0.55  0.6  0.65

Hamming-distance

Monro (17910 tests)

NULL
HHrep
LHrep
HLrep

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5  0.55  0.6  0.65

Hamming-distance

Ko (17910 tests)

NULL
HHrep
LHrep
HLrep

Figure 3: Subband encryption: Genuine score distributions
with error-concealment.

HH and LH encryption leads to identical results except for
Ma recognition, where HH encryption has slightly stronger
impact. The observed results fit well to the expectations as the
HL subband is generated by applying the high-pass filter in
horizontal direction (i.e. horizontal detail is covered in this
subband). As at least Masek and Ma predominantly apply
filtering and coding in horizontal direction, HL encryption is
expected to have the strongest impact.

In Fig. 4 we display the effect of increasing the amount of
encrypted JPEG2000 packet data when encrypting right from
the start of the bitstream. Results turn out to be quite similar for
three out of four recognition schemes, respectively. For Masek,
Ma, and Monro, encrypting 1% has a weak effect only, while
encrypting 2% and 3% lead to exactly identical behaviour.
The strongest impact is observed with 4% and 5% of packet
data being encrypted, with almost non-existing overlap with



the original genuine score distribution (i.e. good protection is
achieved, except for Monro where we notice a slight overlap).
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Figure 4: Absolute encryption: Genuine score distributions
with error-concealment.

For Ko recognition, we have almost identical distributions
for encrypting 2% - 5% of packet data, respectively, all of
them exhibiting significant overlap with the original genu-
ine score distribution. Thus, for Ko, a larger share of the
JPEG2000 codestream needs to be encrypted to provide the
desired protection. Note also that contrasting to the other three
schemes, the Ko genuine score distributions under encryption
are centered around Hamming distance 0.55 while the for the
other recognition schemes these are centered around 0.45. This
will lead to high error rates when applying Ko recognition
to encrypted data due to confusing genuine with impostor
matches while the other schemes will still be able to at
least partially discriminate (encrypted) genuine scores from
imposter scores.

Fig. 5 illustrates the effect of moving a window encrypting
5% of packet data across the JPEG2000 bitstream in 5% steps,
starting right at the begin of the bitstream up to starting the
encryption at 25% of all packet data.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5  0.55  0.6  0.65

Hamming-distance

Monro (enc 5%) (17910 tests)

NULL
o00rep
o05rep
o10rep
o15rep
o20rep
o25rep

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5  0.55  0.6  0.65

Hamming-distance

Ko (enc 5%) (17910 tests)

NULL
o00rep
o05rep
o10rep
o15rep
o20rep
o25rep

Figure 5: Windowed encryption (5%): Genuine score distribu-
tions with error-concealment.

Only starting right at the begin of the bitstream provides
sensible protection. While the overlap with the original genuine
distribution is small for Masek, Ma (both not shown), and
Monro recognition, respectively, the overlap is considerable for
Ko recognition underpinning the requirement for encrypting
more data in this case already stated before.

Finally, Fig. 6 displays results for a 1% encryption window
moving in 1% steps across the bitstream. Contrasting to the 5%
case, we observe different behaviour (i.e. different sensitivity
against certain parts of the bitstream being protected) for the
four recognition schemes. Interestingly, best protection is never

seen when starting directly at the bitstream begin. In two out of
four schemes, it is best to start at 1% of the bitstream (Masek
& Ko) while for the rest it is best to start at 2%.
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Figure 6: Windowed encryption (1%): Genuine score distribu-
tions with error-concealment.

For Ma and Monro, encrypting right from the start does
hardly change the original genuine score distribution, while
for Masek and Ko it is at least the third-best option. Note that
overall, the encryption of 1% of the packet data does not lead
to sufficiently displaced genuine score distributions to provide
decent protection. In real applications, we need to encrypt more
data (i.e. at least 5% for Masek, Ma and Monro and more for
Ko). As the latter results indicate that starting encryption at the
begin of the bitstream is either the third best option for a 1%
window or is at least not worse than starting at later positions,
we may start encrypting right from the bistream start for larger
encryption window sizes.

In the following, we provide EER for the different encryp-
tion variants as one indicator for ROC behaviour. As Subband
encryption is meant for illustrative purposes mainly, we restrict
results to Absolute and Windowed encryption, respectively. In
these results, we compare a direct reconstruction to applying
error-concealment in decoding the encrypted data.

Fig. 7 shows that there is indeed a significant differ-
ence in the security assessment between considering direct
reconstruction and error-concealment (an informed attacker
in the latter case). Recall that the right-sided plot(s) (i.e.
with error concealment) correspond(s) to the genuine score
distributions discussed before and these are discussed first. The
differences in recognition performance on original data (Ma
and Masek are clearly superior to Monro and Ko, respectively,
compare the values at 0% encryption on the x-axis) is clearly
reflected also in the EER results on selectively protected data.
Results indicate that decent protection under Ma recognition is
achieved after having encrypted 25% of the packet data only.
Also with Masek recognition, encrypting 10% of the packet
data does not yet lead to the desired protection level (EER is
still down to 25%). On the other hand, under Monro and Ko
recognition EER is up to 42% - 44% after having encrypted
4% of the packet data only. Note that especially the poor EER
results of Ko do correspond well to the expectation after having
analysed the encrypted genuine score distributions (compare
Fig. 4).

When comparing these results to those achieved after direct
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Figure 7: Absolute encryption: EER using direct reconstruction
and with error-concealment.

reconstruction, we see a very different picture. Results suggest
that for all recognition types an encryption of 5% of the
packet data is sufficient to result in more than 45% EER
(more than 40% for Ma), thus indicating sufficiently secured
data. These results drastically underline the importance of
considering informed attackers to prevent an over-optimistic
security assessment.

Figs. 8 and 9 consider the case of windowed encryption
with encrypting 5% and 1% of the packet data respectively.
Again we notice significant differences between direct recon-
struction and applying error-concealment, at least for the lower
offset values (i.e. closer to the start of the bitstream). While
for the 5% encryption window (Fig. 8) it is clear that starting
at the begin of the bitstream is the best option no matter which
assessment is considered, the EER is over-estimated for direct
reconstruction for offset values 0%, 5% , and 10%, especially
for Ma and Masek recognition at 0% offset.
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Figure 8: Windowed encryption (5%): EER using direct re-
construction and with error-concealment.

For the 1% encryption window (Fig. 9) we again observe an
over-estimation of EER in the direct reconstruction results for
the lower offset values, in particular for Masek and Monro. On
the other hand, the varying sensitivity of different recognition
schemes against different offsets as already observed when
considering genuine score distributions (compare Fig. 6) is
confirmed also with respect to EERs.

Overall, these results reveal that proper protection is
only achieved when encrypting between 5% and 25% of
the JPEG2000 packet data (significantly depending on the
recognition scheme applied) and that encryption should start
right at the begin of the JPEG2000 bitstream.

V. CONCLUSION

We have proposed to selectively encrypt the JPEG2000
codestream of normalised iris texture to achieve a low-cost
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Figure 9: Windowed encryption (1%): EER using direct re-
construction and with error-concealment.

yet highly secure protection of iris sample data. Comparing
the security assessment done in case of directly decoding the
encrypted data to the case error-concealment has been done
during decoding reveals that security is highly over-estimated
in case the assessment does not assume an informed attacker
(who would apply error-concealment in decoding). We have
found that (i) encryption should always start at the start of
the bitstream and that (ii) the amount of data required to
be encrypted for decent protection highly depends on the
actual recognition system applied to the data. Thus, protection
equivalent to full encryption can be achieved when encrypting
1/60 – 1/12 of the data amount of a full iris sample encoded
in a JPEG2000 file. It turns out that the amount of data
required to be encrypted directly corresponds to the recognition
performance ranking of the different recognition schemes seen
on clear data. Therefore, taking future improvements in iris
recognition technology into consideration, we recommend to
encrypt 50% of the normalised texture JPEG2000 packet data,
still being only 1/6 of the data amount of a full iris sample
encoded in JPEG2000. In future work, we will explicitly
compare the proposed approach to an encryption of full iris
sample data in terms of required encryption effort and achieved
security and will analyse the reason for observed differences.
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