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Abstract—Texture patch classification is an important task in
many different computer-aided medical systems. Convolutional
Neural Networks (CNN’s) have become state-of-the-art for many
computer vision tasks in recent years. In this paper, we propose
the use of CNN’s for the automated classification of colonic
mucosa for colon polyp staging in the context of colon cancer
screening. This deep learning approach has the property of ex-
tracting features and classifying images in the same architecture
by exploiting directly the input image pixels being successful in
handling distortions such as different light conditions, presence of
partial occlusions, etc. For this type of deep learning approach it
is common to require that the database contains large amounts
of data, which is quite rare in the medical field. The method
proposed allows the use of small patches (subimages) to increase
the size of the database as well to classify different regions in the
same image. We show experimentally that this model is more
efficient than some of the commonly used features for colonic
polyp classification.

Index Terms—Deep Learning, Colonic Polyp Classification,
Convolutional Neural Networks

I. INTRODUCTION

Due to the size and complexity of the gastrointestinal tract,

many diseases are associated with it, for example: adenomas,

polyps, Crohn’s disease, celiac disease, Helicobacter pylori

infection, among others. However, the leading cause of death

related to intestinal tract is caused by the growth of cancerous

cells (polyps) in its various parts. Especially in the final

segment of the large intestine (colon) and rectum, the colonic

polyps have a rather high prevalence and are known to either

develop into cancer or to be precursors of colon cancer.

The diagnosis of cancer in an advanced stage increases

the mortality risk among patients with color-rectal cancer

and can be detected by a physician through an endoscopy

procedure. The use of this endoscopic apparatus integrated

with high resolution acquisition devices further expanded the

research in clinical decision support system area. Intelligent

systems can assist in many aspects of colon polyp diagnosis

such as accentuating parts of the colon that can possibly

have lesions or polyps while the physician performs the

colonoscopy procedure, or generating automatic reports about

parts of colonoscopy videos that require more attention when

they are being analyzed by the physician. Such systems are

used to support medical diagnosis, detecting abnormal lesions

and/or classifying them, improving the readability of the

information, segmenting areas of interest or even predicting

possible diagnosis automatically [1], [2].

In the literature, apart from being based on traditional

low-resolution white-light colonoscopy, some studies focus

mainly on the use of computer-aided diagnosis (CAD) systems

related to more advanced colonoscopic images and videos. For

computer assisted staging of colon polyps, high-magnification

colonoscopes have been used, providing images which are

up to 150-fold magnified, thus uncovering the fine surface

structure of the mucosa as well as small lesions. Depend-

ing on the light source used, colon cancer-oriented CAD

systems are divided into two categories: High-magnification

chromoendoscopy [3], [1] and high-magnification endoscopy

combined with narrow band imaging [4], [5]. However, these

expensive devices are only used in larger center and require

intensive training of the endoscopist to deliver high quality

imagery. Recently, High-Definition (HD) colonoscopes rep-

resent a significant advance and are on the way to become

clinical standard due to the significantly better image quality

(and reasonable costs). Example images of colonic polyps,

acquired with such an endoscope, are given in Fig. 1 (a).
In this work we used highly detailed images acquired by

a HD endoscope without chromoendoscopy (staining the mu-

cosa). Instead, we employ Pentax virtual chromo-endoscopy

(i-Scan technology) which is a method consisting of the

combination of surface enhancement and contrast enhance-

ment aiming to help detect dysplastic areas and to accentuate

mucosal surfaces [6]. In Fig. 1 (b), an adenomatus polyp

acquired using the i-Scan 1 image enhancement technology

can be seen [7].

(a) Original (b) i-Scan 1

Fig. 1: Images of a polyp without image enhancement (a) and

using digital i-Scan 1 technology (b).

For classic white-light endoscopies, several studies have

shown that automatic image analysis can be successfully em-

ployed to detect colorectal polyps in order to assist physicians

to decrease the polyp miss rate by detecting image regions that

may contain polyps within the colon [8], [9]. Such detection

can be performed by analyzing the polyp appearance generally

based on color, shape, texture or spatial features applied to

the video frames [10], [11], [12]. Colonic polyps may present

different aspects of color, shape and texture depending on the
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way they are captured by the camera, being influenced, for

example, by the viewing angle, the distance from the capturing

camera or even by the colon insufflation as well as the degree

of colon muscular contraction [11].

Besides that, automatic polyp classification, e.g. based on

the so-called pit pattern scheme [13], can help in diagnosing

tumorous lesions once suspicious areas have been detected

[2], [14], [3]. In this paper we also focus on classification

and aim to differentiate polyps into two classes: normal

mucosa or hyperplastic polyps (class healthy) and neoplastic,

adenomatous or carcinomatous structures (class abnormal) as

can be seen in Fig 2 (a-d). The different types of pit patterns

[13] of these two classes can be observed in Fig. 2 (e-f) [7].

However, the classification can be a difficult task due to several

factors such as the lack or excess of illumination, the blurring

due to movement or water injection and the appearance of

polyps [14], [11].

(a) Healthy (b) Healthy (c) Abnormal (d) Abnormal

(e) Healthy (f) Abnormal

Fig. 2: Example images of the two classes (a-d) and the pit-

pattern types of these two classes (e-f).

In the literature, existing computer-aided diagnosis tech-

niques generally make use of feature extraction methods of

color, shape and texture in combination with machine learning

classifiers to perform the classification of colon polyps [15],

[16]. Convolution Neural Networks are a promising method-

ology to help to improve these tasks.

Convolution Neural Networks (CNN’s) have been demon-

strated to be effective for discriminative pattern recognition

in big data and in real-world problems mainly to learn both

the global and local structures of images [17]. More recently,

CNN were also tested for Computer-aided diagnosis systems

such as the analysis, segmentation and prediction of knee

cartilage as well as feature extraction from lung CT images

[18]. The main advantage of this approach is that the same

method can be used for the extraction of strong features

that are invariant to distortion and position at the same time

of the image classification. The intrinsic feature extractor is

formed during the CNN training adapting to the context of

the database. Finally, the neural network classifier can make

use of these inputs to delineate more accurate hyperplanes

helping the generalization of the network. However, one of the

problems in the application of this approach is that the deep

layers of the CNN work best with structures based on edges,

lines and curves, originating from object detection, however

most medical databases have more texture-like images having

no distinct structures of exactly these types. Another concern

is the limitation of the availability of annotated images from

medical image databases, since to avoid overfitting a large

number of images is necessary to be available during the

network training. In this work, we use smaller subimages

and some strategies such as Dropout and ReLU activation

functions to minimize this problem.

II. METHODOLOGY

We use an architecture of Convolutional Neural Network

based on [17] to show that is possible to use this approach

to also classify colonic polyp images. The network will need

some modification to allow texture pattern recognition. Fig.

3 shows an illustration of the Convolutional Neural Network

used in one of the experiments of this work.

A CNN is very similar to traditional Neural Networks

in the sense of being constructed by neurons with their

respective weights, biases and activation functions. As in

Neural Networks, each neuron receives a series of inputs

(representing dendrites) which are weighted and summed by

the output neurons (representing a neuron’s axon). In the case

of CNN’s, convolutional layers form the first levels (usually

with a subsampling step) followed by one or more fully-

connected neural networks similar to the multilayer neural

networks [19].

In this work, the CNN input is a (m ×m × d) image (or

patch) where (m × m) is the dimension of the patch and

d the number of channels (depth) of the image, in the case

of this work: the 3 RGB channel, d = 3. The convolutional

layer consists of k learnable filters (also called kernels) with

size (n × n × d) where (n ≤ m). Such filters are convolved

throughout the image by the product between the inputs and

the filter resulting in a new output matrix. Convolving all the k
filters and stacking these matrices will form the output volume

also called activation maps or feature maps.

In addition, in the convolution step a padding in the input

volume is used with zeros (zero padding) to control the spatial

volume of output maps as it is appropriate to preserve the

exact size of the original inputs. Besides, the stride of the

convolution along the spatial dimension has to be specified:

the larger the stride, the smaller the overlapping, decreasing

the output volume dimensions.

After the convolution, a pooling layer is included to sub-

sample the image by average functions (mean) or max-pooling

over regions of size (p×p). These functions are used to reduce

the dimensionality of the data in the following layers (upper

layers) and to provide a form of invariance to translation thus

making over-fitting control.

One of the most used activation functions in the CNN’s

and also used in this work is the ReLU rectifier function

f(x) = max(0, x) where x is the neuron input that is demon-

strably more efficient than other activation functions [20].

This function accelerates the convergence of the stochastic
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Fig. 3: An illustration of the CNN architecture for colonic polyp classification (CNN-05).

gradient descent algorithm mainly because of its non-linear

and unsaturated characteristics.

An alternative to prevent overfitting in large neural networks

also used in this work is the Dropout approach [21]. The

Dropout disables (drops) feature detector nodes that are weak

in the hidden layers of the network during the training forward

pass. This is done to reduce interdependence between nodes

simulating the training of many large networks with different

connections in each iteration [21].

At the end of CNN there is a fully connected layer as a reg-

ular Multilayer Neural Network with the activation functions

and its offset bias. The activation function used in this part is

the Softmax function that generates a well-formed probability

distribution on the outputs.

III. EXPERIMENTAL SETUP AND RESULTS

Due to the limitation of colonic polyp images to train a good

CAD system, the main elements of the proposed method are:

(1) extracting and preprocessing images in order to have a

database with a suitable size (2) the use of CNN’s for feature

learning and good generalization, (3) the use of methods to

avoid overfitting in the training phase.

For the evaluation tests we use a colonic polyp image

database consisting of 100 images of size 256 × 256 from

62 patients using a high-definition (HD) endoscope (Pentax

HiLINE HD+ 90i Colonoscope) with i-Scan mode 1 with-

out chromoscopy (staining the mucosa) [6], [7], [22]. These

images were extracted from HD video frame regions having

histological findings, thus polyp detection is covered in this

stage of data preparation. Despite the fact the frames being

high-definition, the image size was chosen (i) to be large

enough to describe a polyp and (ii) small enough to cover

just one class of mucosa type (only healthy or only abnormal

area). The database consists of two classes containing 25

healthy images from 18 patients and 75 abnormal images

from 56 patients. Some patients may appear in both classes

considering that different types of lesions or healthy tissues

may be established inside the colon of a single patient. The

videos were acquired during colonoscopy sessions between the

years 2011 and 2013 at the Department for Internal Medicine

(St. Elisabeth Hospital, Vienna).

Usually, some simple preprocessing techniques are neces-

sary for the image feature generation. In this work we apply

the normalization by subtracting the mean and dividing by the

standard deviation of its elements as in [23] corresponding to

local brightness and normalization contrast. We also perform

data augmentation by flipping each original image horizontally

and vertically, and rotating the original image 90◦ for the

right and left. Besides that, we flipped horizontally the rotated

images, then we flipped vertically the horizontally flipped

image, totalizing 7 new samples for each original image.

After the data augmentation (resulting in 800 images), we

randomly extract 75 subimages from each healthy image and

25 subimages from each abnormal image for the training set.

In this work we propose to extract subimages of size

128× 128 form the original images. We explored the hypoth-

esis that the colonic polyp classification with the CNN can be

done only with a part of the image, and then we trained the

network with smaller subimages instead of the entire image.

This helps to reduce the size of the network, reducing its

complexity and can allow different polyp classifications in the

same image using different subimages in different parts of the

image. Additionally, choosing smaller regions in a textured

image can diminish the degree of intra-image variances in the

dataset as the neighborhood is limited.

The CNN proposed by this work to satisfy the requirements

cited in the beginning of this section is presented in Fig. 3 and

consists of the following layers, parameters and configuration.

• Input Layer: subimages from the original image, of size

128× 128× 3.

• Two combinations of convolutional and pooling layers:

first convolutional layer consisting of 48 filters of size

11× 11 and second convolutional layer consisting of 72

filters of size 5×5. Both layers have padding 0 and stride

set to 2 being followed by a ReLU rectifier function.

After each convolutional layer there is a max-pooling

layer consisting of windows with size 3 × 3 and stride

set to 2;

• One convolutional layer to map the feature maps to the

fully-connected output layer consisting of 1024 filters of

size 6× 6.

• Fully-connected output layer: consists of a neural network

with a hidden layer (with 1024 neurons) and a Softmax

output layer depending on the number of the classes (in

this case, two classes). Also, the Dropout method was

used to regularize the two last fully-connected layers.

These hyperparameters were selected based on the works
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TABLE I: Accuracy results from different CNN configurations

for inputs of size 128× 128× 3.

Network
Index

No. of Convolutional
Filters/Size

Connected
Layer

Acc
Layer 1 Layer 2 Layer 3

CNN-01 48/7x7 72/4x4 512/5x5 512 76%
CNN-02 48/11x11 72/5x5 512/6x6 512 84%
CNN-03 24/11x11 48/5x5 1024/6x6 1024 86%
CNN-04 24/11x11 72/4x4 2048/5x5 2048 80%
CNN-05 48/11x11 72/5x5 1024/6x6 1024 87%

TABLE II: CNN configuration for input subimages of size

227× 227× 3 and its respective accuracy.

Size of
Inputs

No. of Convolutional
Filters/Size

Connected
Layer

Layer 1 Layer 2 Layer 3 Layer 4

227x227
x3

96/11x11 256/5x5 384/3x3 384/3x3
4096Layer 5 Layer 6 Layer 7 Layer 8

256/3x3 384/3x3 384/3x3 4096/6x6
Accuracy: 79%

[19] and [23] that investigated the impact of filter sizes

likewise the number of filters in classification and consider this

a satisfactory architecture. Also, empirical adjustment tests in

the architecture such as changing the size and number of filters

as well as the number of units in the fully connected layer

were made and are shown in Table I. In this case, to compare

the 5 different architectures in a faster way compared to the

final experiments, we used cross validation evaluation with 10

different CNN’s for each architecture. In nine of them, we

removed 56 patients for training and used 6 for tests and, in

one of them, we removed 54 patients for training and used 8

for test. The accuracy result given for each architecture is the

average accuracy from each of the 10 CNN’s trained. It can

be seen that the architecture CNN-05 (described previously)

obtained the best results, therefore, chosen to perform the

subsequent tests.

We also tested a CNN architecture to be trained with bigger

subimages (227× 227× 3) with the same cross-validation as

for the results in Table I. The CNN configuration can be seen

in Table II and it can be concluded that the accuracy result was

not satisfactory (79%). This can be explained by the fact that

neural networks involving a large number of inputs require a

great amount of computation in training, requiring more data

to avoid overfitting (which is not available given the size of

our dataset).

For the subsequent experiments, with CNN-05 configura-

tion, we trained one CNN for each patient from the database

assuring that there are no images from patients of the val-

idation set in the training set and configuring what we call

leave-one-patient-out (LOPO) cross validation as in [24] to

make sure the CNN’s classifier generalizes to unseen patients.

We choose the LOPO instead the classical leave-one-out cross

validation (LOOCV) to try avoid overfitting in the training

database at the same time that reduce the number of training

networks (62 patients instead of 100 images). This cross-

validation was also used in the methods used to compare from

the literature.

TABLE III: Accuracy of different strides for overlapping

subimages in the CNN-05 evaluation.

Stride No. of Subimages Accuracy
1 16384 90.22%
5 676 90.22%
20 49 90.21%
32 25 90.96%
48 9 89.27%

Random 16 90.31%
Random 32 90.65%
Random 64 90.49%

Specifically, the results from the CNNs presented in Tables

III and IV are the mean values of the validation set from 62

different CNN’s, one for each patient, implemented using the

MatConvNet framework [25].

After training the CNN, in the evaluation phase, the final

decision for a 256 × 256 pixel image from the dataset is

obtained by majority voting of the decisions of all 128 ×
128 pixel subimages (patches). One of the advantages of

this approach is the opportunity to have a set of decisions

available to acquire the final decision for one image. Also,

the redundancy of overlapping subimages can increase the

system accuracy likewise to give the assurance of certainty

for the overall decision. As it can be seen in Table III, first

we tested with a stride of 1 extracting the maximum number

of 128 × 128 subimages available, totalizing 16384 subimages

for each image, resulting in an accuracy of 90.22%. This

evaluation is very computationally expensive to perform, so we

decided to evaluate with different strides resulting in different

number of subimages as it is shown in Table III. We also

perform a random patch extraction and it can be concluded

that there is not much difference between 16384 subimages or

just 32 subimages (accuracy of 90,96%), saving considerable

computation time and achieving good results.

In this work, we evaluated the CNN approach comparing

with the results obtained by the following state-of-the-art

feature extraction methods for the classification of colonic

polyps [26]:

• (BFD) The blob-adapted Local Fractal Dimension al-

gorithm [22] is based on computing the local fractal

dimension with filters adapted to the shapes and sizes

of the connected components (blobs).

• (SSF) The Blob Shape and Contrast algorithm [7] is a

method that analyzes the shape of the blob.

• (DT-CTW) The Dual-Tree Complex Wavelet Transform

is a multi-scale and multi-orientation wavelet transform.

The means and standard deviations are extracted as

features from the subband coefficients [3].

• (MB-LBP) In the Multi-Scale Block Local Binary Pat-

tern approach [27], the LBP computation is done based on

average values of block subregions. This approach is used

for several image processing tasks including endoscopic

polyp detection and classification [16].

• (SIFT) The Dense SIFT Features incorporates the bag-

of-visual-words (BoW) method to the SIFT features [5].
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The visual words are the cluster centers from the k-means

clustering applied to the means of the SIFT descriptors.

• (VASC-F) The Vascularization Features represent the

shape, contrast, size and underlying color of connected

components (blood vessels) [15]. These vessel structures

on polyps are segmented by means of the phase symmetry

filter.

As the focus of several of the original publications was the

feature extraction, all the previously cited feature extraction

algorithms were evaluated using a k-NN classifier to allow

comparison wrt. discriminativeness of the features [22], [7].

In order to stay consistent to the results published, the results

of the feature extraction methods presented in Table IV are the

mean values of the 10 results of the k-NN classifier (k-values

k = 1−10) also using the leave-one-patient-out cross (LOPO)

validation.
Experiment 1 from Table IV shows our best result using

overlapped subimages with stride of 32 resulting in 25 subim-

ages for each image in the evaluation tests compared to the

feature extraction methods applied to the original images of

size 256 × 256. The results demonstrated that our proposed

method has a superior performance (90.96%) to the feature

extraction methods generally used for colonic polyp image

classification. In Experiment 2 from Table IV we also applied

the feature extraction methods to overlapped 128 × 128 pixel

subimages with stride of 32 (25 subimages) using majority

voting in the final classification as in the CNN evaluation.

It can be seen that the results do not exhibit a significant

change and our method still outperforms all other feature

extraction methods. Some of the reasons for this surpassing

result may be the use of three RGB bands from the original

image by the CNN instead gray-scale images used by the

presented feature extraction methods and the use of k-NN

classifier instead of the SVM classifier. Table IV also shows

the statistical significance of our results using the McNemar

test [28] for the Experiment 1. In this case, number 1 indicates

that the CNN is significantly different from the method (with

significance level α = 0.05). As we can see, the DT-CWT

and the SIFT approach are classifying images significantly

different to the CNN. However, the McNemar test is highly

dependent of the database size [26], which may explain the

“no significant differences” between the CNN and the other

approaches.
The detailed classification results for the CNN evaluation

result with stride of 32 (25 subimages) can be consulted in the

confusion matrix displayed in Table V. It is also presented its

respective Sensitivity (SE) and Specificity (SP) to delineate the

CNN’s ability to correctly identify the polyps. The confusion

matrix represents the mean of the normalized 62 confusion

matrices obtained by the LOPO evaluation with 62 patients.
From the confusion matrix presented in Table V it can

be concluded that, the classification accuracy was 90.96%

while the sensitivity was 95.16% which represents a quite

positive result since it meant that most of the abnormal polyp

images were genuinely classified as such. Besides that, there

is a reduced score for false negatives which is relevant for

TABLE IV: The classification results comparing our proposed

method with feature extraction algorithms used for colonic

polyp classification.

Methods Acc. Exp. 1 Acc. Exp. 2 Sig.

BFD [22] 87.80% 87.00% 0

SSF [7] 84.70% 85.00% 0

DT-CWT [3] 83.90% 81.00% 1

MB-LBP [16] 82.90% 86.00% 0

SIFT [5] 82.00% 89.00% 0

VASC-F [15] 73.00% 62.00% 1

CNN 90.96% 90.96% 0

TABLE V: Confusion Matrix associated with CNN Colonic

Polyp Classification.

A
ct

ua
l

Va
lu

e

Prediction Outcome

p n total

p′ True Positive
47.2

False Negative
2.4

P′ = 49.6

n′ False Positive
3.2

True Negative
9.2

N′ = 12.4

total P = 50.35 N = 11.64

SE = 95.16% SP = 74.19%

this type of application concerning to be cautious with non-

detected disorders. In contrast, the specificity score (SP) was

lower than the sensibility with 74.19% meaning that the false

positive rate was high. It can be explained by the fact that

the number of negative samples was quite low comparing to

the positive images for the CNN training. In future work, we

intend to decrease this false positive percentage by increasing

the training database. Even so, in general, the results were

very effective.

Fig. 4: Filters from the first convolutional layer visualized as

small image patches.

The weight matrices in the convolutional layer represent

sets of features learned by the network (filters). These features

from the first convolution layer of our trained network are

presented in Fig. 4. It can be seen that the network has learned

a collection of frequency and orientation-selective kernels, as

well as many colored blobs intrinsic to the colonic polyp

patterns. Some of them are like Laplacian/Gaussian filters,

some are like edge detectors at different directions and others

like texture extractors. Based on this observation, it can be

inferred that the shape, color ant texture information has been

learned by the network as good discriminative features to
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distinguish the mucosal texture of the colonic polyp image

patches. Significant visual features should be captured by these

filters for being directly connected to the input image source.

Too small filters or too few filters may not capture all the

features and generate poor feature maps for the subsequent

layers, however, too big or too much filters require a large

number of data to improve the accuracy of classification.

IV. CONCLUSION

In this paper, we propose the use of Convolutional Neural

Networks (CNN’s) to improve the accuracy of colonic polyp

classification. This method has the advantage of combining

image patches to enlarge the training database, increasing

the data volume and consequently the information to perform

the deep learning, by the fact that databases containing large

amounts of annotated data are often limited for this type of

research. The CNN’s also use all the intrinsic features of

the images such as color, shape and texture, by sharing the

filter weights generating strong and representative features that

are invariant to local distortions and translations. Different

architectures were tested to evaluate the impact of the size and

number of filters in the classification as well as the number

of output units in the fully connected layer. Our method

achieves superior performance compared to the state-of-the-art

feature extraction techniques for colonic polyp classification.

In future work, to enable even fairer comparison, we will use

the outputs of the one-but last CNN layer as inputs into an

SVM classifier, and apply an SVM classifier to the classically

generated features as well.
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[6] M.l Häfner, A. Uhl, and G. Wimmer, “A novel shape feature descriptor
for the classification of polyps in hd colonoscopy,” in Medical Computer
Vision. Large Data in Medical Imaging, vol. 8331 of Lecture Notes
in Computer Science, pp. 205–213. Springer International Publishing,
2014.
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