
© This paper is a preprint of a paper accepted by IET Biometrics Journal and is subject to Institution of
Engineering and Technology Copyright. When the final version is published, the copy of record will be
available at IET Digital Library.

Methods for Accuracy-preserving Acceleration of Large-Scale
Comparisons in CPU-based Iris Recognition Systems

C. Rathgeb1 • N. Buchmann1 • H. Hofbauer2 • H. Baier1 • A. Uhl2 • C. Busch1

1da/sec – Biometrics and Internet Security Research Group, Hochschule Darmstadt, Germany
{christian.rathgeb, nicolas.buchmann}@h-da.de

2Multimedia Signal Processing and Security Lab, University of Salzburg, Austria
{hhofbaue,uhl}@cosy.sbg.ac.at

Abstract

To confirm an individual’s identity accurately and reliably
iris recognition systems analyse the texture that is visible in
the iris of the eye. The rich random pattern of the iris con-
stitutes a powerful biometric characteristic suitable for bio-
metric identification in large-scale deployments. Identifica-
tion attempts or deduplication checks require an exhaustive
one-to-many comparison. Hence, for large-scale biometric
databases with millions of enrollees the time required for a
biometric identification is expected to significantly increase.

In this work we analyse techniques to accelerate Ham-
ming distance-based comparisons of binary biometric ref-
erence data, i.e. iris-codes, in large-scale iris recognition
systems, which preserve the biometric performance. Focus
is put on software-based optimizations, an efficient two-
step iris-code alignment process referred to as TripleA, and
a combination thereof. Benchmarking the throughput and
identifying potential bottlenecks of a portable commodity
hardware-based iris recognition system, is of particular in-
terest. Based on conducted experiments we point out practi-
cal boundaries of large-scale comparisons in CPU-based iris
recognition systems, bridging the gap between the fields of
iris recognition and software design.

Contents

1 Introduction 2
1.1 Contribution of Work 2
1.2 Organisation of Article 2

2 Related Work 2

3 Iris Recognition System 3
3.1 Preprocessing and Feature Extraction 3
3.2 Iris-Code Comparison 4

4 Software-based Optimizations 4
4.1 Look-up Tables, Intrinsics and Loop-Unrolling 4
4.2 Multithreading and Statistical Micro-Ops Op-

timisation . 4

5 Accelerated Accuracy-preserving Alignment 5
5.1 Iris-Code Analysis 5
5.2 TripleA . 5

6 Experiments 6
6.1 Experimental Setup and Methodology 6
6.2 Software-based Optimizations 7
6.3 Accelerated Accuracy-preserving Alignment 9
6.4 Simulation of Large Scale Identification . . . 9

7 Conclusions 10

1 Introduction

The rich random structure of the iris, and hence its resis-
tance to false matches, constitutes one of the most pow-
erful biometric characteristics [1]. Following Daugman’s
approach [1], which represents the core of most public op-
erational deployments, four processing components form
an iris recognition system: (1) acquisition, where most cur-
rent deployments require subjects to fully cooperate with
the system in order to capture images of sufficient quality;
(2) pre-processing, which includes the detection of the pupil
and the outer iris boundary. Subsequently, the iris (approx-
imated in the form of a ring) is normalized to a rectangular
texture. To complete the preprocessing, parts of the iris
texture which are occluded by eye-lids, eye-lashes or reflec-
tions are detected and stored in an according noise-mask;
(3) feature extraction, in which an iris-code is generated by
convolving local regions of the pre-processed iris texture
with filters and encoding responses into bits. This binary
data representation enables compact storage and rapid (4)
comparison, which is based on the estimation of Hamming
distance (HD) scores between pairs of iris-codes and corre-
sponding masks. In the comparison stage circular bit shifts
are applied to iris-codes and HD scores are estimated at 𝐾
different shifting positions, i.e. relative tilt angles. The min-
imal obtained HD, which corresponds to an optimal align-
ment, represents the final score. It is important to note, that
the number of shifting positions employed to determine
an appropriate alignment between pairs of iris-codes may
vary depending on the application scenario. Some public
deployments of iris recognition go as far as 𝐾 = 21 shifting
positions when handheld cameras are used for which it is
more difficult to ensure an upright capture orientation [2].
Hence, score distributions are skewed towards lower HD
scores, which (for a given threshold) increases the probabil-
ity of a false match by the factor 𝐾 [2].

Nowadays iris recognition technologies are already de-
ployed in numerous nation-wide projects. Simplicity in
design and development as well as the usage of commod-
ity hardware are driving factors behind the deployment
of large-scale biometric systems, e.g. the Indian Aadhaar
project [3] in which thousands of CPU cores are processing
millions of transactions on a daily basis. In such systems
identification attempts or de-duplication checks might rep-
resent a bottleneck, since these require an exhaustive 1 : 𝑁
comparison where 𝑁 represents the number of subjects reg-
istered with the system. In particular, comparison time rep-
resents a crucial factor, which dominates the overall compu-
tational workload in any large-scale biometric identification
system, especially if large values of 𝐾 are unavoidable.

1.1 Contribution of Work
In this work focus is put on an iris recognition system,
which performs a CPU-based exhaustive search for each

authentication attempt. The presented study represents a
more common scenario, in contrast to proposed studies,
which analyse hardware-specific acceleration of iris recog-
nition systems. Our analyses include a comparative study
of the most efficient ways to count disagreeing bits between
iris-codes. The potential of manual loop-unrolling as well
as different extensions to the x86 instruction set architec-
ture for microprocessors are analysed. In addition, multi-
threading techniques and statistical optimization of micro-
operations are considered. Furthermore, we estimate the
inter-relation between throughput and rotation compensa-
tion provided by an iris recognition system. In order to fur-
ther accelerate a single pair-wise comparison of iris-codes,
we build upon the work of [4], where we proposed a novel
technique for comparing pairs of iris-codes, which we refer
to as Accelerated Accuracy-preserving Alignment – TripleA.
This method focuses on the alignment process, in which
an adjustable two-step search-procedure is employed in or-
der to efficiently determine alignments between iris-codes.
Within this procedure only a fraction of 𝐾 shifting positions
has to be considered during a single pair-wise comparison,
while covering the same range of possible tilt angles. In
this work, we enhance the TripleA scheme by applying it to
an optimized CPU-based iris recognition scheme. We show
that, the TripleA method can be seamlessly integrated, such
that the resulting system takes full advantage of TripleA
on top of software-based optimisations. In summary, this
work provides a detailed guidance of how to substantially
accelerate large-scale iris biometric systems on commodity
hardware in an accuracy-preserving manner, by combining
software-based optimizations with a technique for efficient
iris-code alignment. Moreover, summarized key observa-
tions might as well provide explanations for anomalies re-
ported in existing studies.

1.2 Organisation of Article
This article is organized as follows: related works are dis-
cussed in Sect. 2. In Sect. 3 the employed iris recogni-
tion system is summarized. A detailed analysis of software-
based acceleration techniques is given in Sect. 4 and the
TripleA method is described in Sect. 5. Experimental results
are presented in Sect. 6. Finally, conclusions are drawn in
Sect. 7.

2 Related Work

To circumvent the bottleneck of an exhaustive 1 : 𝑁 com-
parison, different concepts have been proposed in order to
reduce the workload in an iris biometric (identification) sys-
tem. We might differentiate between four key concepts: (1)
coarse classification or “binning”, (2) a serial combination
of a computationally efficient and a conventional system, (3)
indexing schemes, and (4) hardware-based acceleration.

2

By binning an iris biometric database into several classes,
the workload can be divided by the number of classes, given
that irises of registered subjects are equally distributed
among them. Natural features to be utilized include eye po-
sition (left or right) [5] or eye colour [6, 7]. Recent advances
in the field of soft biometrics suggest further possible clas-
sification based on gender [8], age groups [9], or ethnicity
[10, 11] (for further details on soft biometrics the reader
is referred to [12]). Instead of creating tangible, human-
understandable classes, it is also possible to rely on distinct
iris texture features [13–15]. Binning is equivalent to the
combination of biometric systems. Hence, classification er-
rors might significantly increase the false non-match rate
(FNMR) of the overall system. Moreover, the potential ben-
efit of binning is limited by the number of bins which deter-
mines the factor by which the database size can be reduced.

Within serial combinations computationally efficient
biometric systems are used to extract a short-list, i.e. small
fraction, of most likely candidates. This procedure might
be referred to as pre-screening. While generic iris recog-
nition systems already provide a rapid comparison, more
efficient biometric comparators can be obtained by employ-
ing compressed versions of original iris-codes during pre-
screening [16, 17]. Further, a rotation-invariant iris recog-
nition scheme can be applied in the pre-screening step [18].
Similar to binning approaches, a serial combination of a
computationally efficient and an accurate (but more com-
plex) scheme might increase the FNMR of the overall sys-
tem. However, a serial combination enables a more accurate
operation of the resulting trade-off between computational
effort and accuracy by choosing an adequate size for the
short-list.

Indexing schemes aim at constructing hierarchical search
structures for iris biometric data, which tolerate a certain
amount of biometric variance. Such schemes substantially
reduce the overall workload of a biometric identification,
e.g. log 𝑁 in case of a binary search tree. Such search struc-
tures might be designed for iris-codes [19, 20] as well as iris
images [21–23]. While the majority of works report hit/ pen-
etration rates on distinct datasets, required computational
efforts are frequently omitted. The application of complex
search structures on rather small datasets may as well cloud
the picture about actual gains in terms of speed and leaves
the scalability of some approaches questionable.

Adapting comparison procedures to adequate hardware,
e.g. multiple cores within a CPU, allows for parallelization
[24]. By simultaneously executing a number of threads the
workload can be significantly reduced since a 1 : 𝑁 compari-
son can be performed in parallel on various subsets of equal
size. Also the estimation of HD scores at various shifting
positions during alignment can be parallelized. Moreover,
iris-code comparisons can be efficiently performed on the
GPU using GPGPU or CUDA [25], FPGA [24, 26], or other
specialized hardware like CELL processors [27].

(a) Image (b) Detection

(c) Enhanced texture

(d) LG iris-code using real filter response

(e) QSW iris-code using a single wavelet subband

Figure 1: Common iris biometric processing chain for image
S1008L02 of the CASIAv4-Interval iris database.

Apart from hardware-based acceleration, most of pre-
sented schemes either fail to provide a significant accelera-
tion or they suffer from a significant decrease in recognition
accuracy. Hence, existing approaches often obtain a trade-
off between biometric performance (recognition accuracy)
and speed-up, compared to a traditional iris recognition sys-
tem. In practice most concepts do not allow for a seamless
integration into a conventional identification system. The
majority of hardware-specific acceleration techniques of iris
recognition systems is custom-built, which makes it diffi-
cult to derive generally applicable methodologies or con-
cepts. Moreover, anomalies in runtime tests are frequently
left uncommented.

3 Iris Recognition System

The following subsections summarize the key components
of the employed iris recognition systems.

3.1 Preprocessing and Feature Extraction
In the employed iris recognition system, which builds upon
common processing components, the iris of a given sam-
ple image is detected and transformed to a rectangular tex-
ture of 512×64 pixels applying a contrast-adjusted Hough
transform. The enhanced texture is obtained by applying
contrast limited adaptive histogram equalization (CLAHE).
In the feature extraction stage the enhanced texture is di-
vided into stripes resulting in 10 one-dimensional signals,
each one averaged from the pixels of 5 adjacent rows (the
upper 512×50 rows are analysed). The first feature extrac-
tion method follows the Daugman-like 1D-LogGabor fea-

3

ture extraction algorithm of Masek [28] (LG) and the sec-
ond follows the algorithm proposed by Ma et al. [29] (QSW)
based on a quadratic spline wavelet transform. Both fea-
ture extraction techniques generate an iris-code IC, which
consists of of 𝐵=512×10=5, 120 bits. Fig. 1 illustrates the de-
scribed processing chain for a sample iris image. Custom
implementations of employed segmentation and feature ex-
tractors are freely available in the University of Salzburg
Iris Toolkit (USIT) [30]. For further details on the employed
feature extraction algorithms the reader is referred to [31].
Note that a compression of iris-codes, e.g. to 2,048 bits as
suggested in [1], might cause a decrease in biometric per-
formance [16], especially in challenging unconstrained sce-
narios.

3.2 Iris-Code Comparison
In the comparison stage circular bit shifts are applied to iris-
codes and HD scores are estimated at 𝐾 different shifting
positions, i.e. relative tilt angles. In the used scheme a 1-
bit shift equals 0.7∘ of rotation. Let 𝑓 (𝐼𝐶, 𝑖) denote an iris-
code shifted by 𝑖 bits. Assuming that blocks of 𝐿 bits are
processed at a time, the final comparison score between a
query and a reference iris-code, ICQ and ICR, and their cor-
responding noise masks, MQ and MR, is estimated as,

min
𝑖∈𝐾

∑𝐵/𝐿
𝑗=1 ‖(ICQ𝑗 ⊕ 𝑓 (ICR, 𝑖)𝑗) ∩ MQ𝑗 ∩ 𝑓 (MR, 𝑖)𝑗‖

∑𝐵/𝐿
𝑗=1 ‖MQ𝑗 ∩ 𝑓 (MR, 𝑖)𝑗‖

. (1)

Since iris-codes can be shifted prior to comparison and only
a single division is required, the workload for calculating
scores between iris-codes is dominated by the following
three (per-block) processing steps:

1. XOR: the exclusive or (⊕) detects disagreeing bits be-
tween two 𝐿-bit blocks, resulting in bit block of same
size where 1s indicate differing bits.

2. POPCNT: the population count (‖⋅‖), or Hamming
weight, counts the number of 1s in the vector extracted
in the first step, i.e. the amount of detected differences.

3. ADD: the amount of disagreeing bits is added up (∑)
for all 𝐿-bit blocks.

Of these processing steps, POPCNT represents the most
complex one and most of presented software-based optimi-
sations will focus on speeding up its calculation (see Sect. 4).
Nevertheless, the other two steps are also analysed where
appropriate.

4 Software-based Optimizations

From a practical point of view, we identified seven settings
as most relevant, S-1 to S-7, which are described in the fol-
lowing subsections.

4.1 Look-up Tables, Intrinsics and Loop-
Unrolling

Look-up table (S-1): the population count of 𝐿 = 8 bit blocks
is stored in a pre-computed look-up table. An 8-bit look-up
table has a small memory footprint (256 byte) and is univer-
sally applicable in contrast to a register-sized look-up table,
e.g. 64-bit (∼16.7 million terabyte), which is far too big even
for common memory sizes in the foreseeable future. For the
XOR and ADD step common arithmetics are used.

Hardware POPCNT (S-2): intrinsics are used to calculate
the population count with the SSE4 POPCNT CPU instruc-
tion. Experiments are performed in 32-bit and 64-bit opera-
tion mode.

Assembler POPCNT (S-3): instead of high level intrinsics
the POPCNT command is directly invoked via inline assem-
bler code in a C++ function.

Manual loop-unrolling (S-4): even though loop-unrolling
is activated for the compiler, this experiment measures the
impact on the overall duration regarding the (manually ad-
justed) number of bit blocks processed per loop iteration.

SSE2 and AVX (S-5): we also consider calculating XOR
for 128-bit blocks with the Streaming SIMD Extensions
2 (SSE2) instruction PXOR, the Advanced Vector Exten-
sions (AVX) 256-bit equivalents VXORPD, the AVX2 256-
bit version VPXORPD and measure the impact of addition
trees using the AVX2 8-bit and 16-bit vectoring commands
VPADDB and VPADDW. The latter operations can add 32
8-bit packed integers and 16 16-bit packed integers with one
operation, respectively.

4.2 Multithreading and Statistical Micro-
Ops Optimisation

Multithreading (S-6): iris-code comparisons are split upon
multiple threads. Like in the previous settings, S-2 to S-5,
POPCNT and ADD operations are performed alternatingly
(PAPA). First a given query iris-code is compared to all pre-
shifted versions of stored reference iris-codes. Hence, no
shifting operations have to be performed at the time of com-
parison, while storage requirement, which is usually not a
crucial factor, increases. In an alternative implementation
the query iris-code is shifted prior to comparison against all
stored non-shifted reference iris-codes. Both settings, which
are referred to as PAPA𝑅 and PAPA𝑄, describe the same
transposed algorithm and result in the same amount of bit
comparisons.

Statistical micro-ops optimisation (S-7): static data depen-
dency, latency and throughput analysis are utilized to min-
imise latencies of micro-operations. The resulting strategies,
which are referred to as PPAA𝑅 and PPAA𝑄, perform all
POPCNT operations first and add up all intermediate re-
sults afterwards.

4

16 12 8 4 0 4 8 12 16
0.1

0.2

0.3

0.4

0.5

0.6

0.7

Shift between iris-codes (in bits)

H
D

sc
or

e

LG
QSW

left local maxima right local maxima

near-optimal
alignment

optimal alignment

Figure 2: Sample HD-scores obtained from three genuine
pairs of iris-codes at various shifting positions.

5 Accelerated Accuracy-preserving
Alignment

The following subsections present an analysis of HD scores
estimated from genuine iris-code comparisons across vari-
ous shifting positions, which motivates the adjustable two-
step search-procedure, referred to as TripleA [4].

5.1 Iris-Code Analysis
For both feature extractors Fig. 2 shows the HD scores
across different shifting positions for three genuine com-
parisons of iris-codes. It can be seen that, for each feature
extraction algorithm the HD scores of the three genuine
comparisons seem almost identical. Within a certain range
HD scores constantly decrease towards the minimum (best)
score. This range is enclosed by local maxima resulting
in HD scores significantly beyond 0.5. For the sample HD
scores in Fig. 2 these local maxima can be detected at shift-
ing positions of ±8 bits for LG and ±6 bits for QSW. A
detailed analysis of this phenomenon is provided in [4].

Intuitively, the distance between the shifting position re-
sulting in a minimum HD score and those of surrounding
local HD score maxima might be approximated by the av-
erage length of 1-bit and 0-bit sequences 𝜇, as ±𝜇 bit shifts
are expected to cause the most drastic misalignment. The
sequence of HD scores between genuine iris-codes across
various shifting positions might be interpreted as an oscil-
lation which decreases its amplitude with the distance to
the minimum score. For such a signal it can be empirically
verified that distances between consecutive vertices are vir-
tually the same for a constant value of 𝜇 even in case of large
standard deviations.

5.2 TripleA
The TripleA approach comprises the following two key steps:
(1) estimation of near-optimal alignment and (2) estimation
of subset-minimum. An example of the approach is illus-
trated in Fig. 3.

Pre-processing,
feature

extraction

Step 1:

Step 2:

HD-based comparison

0.42 0.300.38 0.39 0.450.450.56

Query iris-code

Reference iris-code

s = 4
−k k0

0.300.38 0.390.240.320.35 0.31 0.34 0.37

p

p − s p + sp

shift

Iris-code
database

Figure 3: Example of the TripleA procedure: In the first step
comparisons between a query and reference iris-code are
performed at 2 ⌈𝑘/𝑠⌉ + 1 = 7 positions according to the ref-
erence’s step size 𝑠 = 4. After detecting the near-optimal
shifting position 𝑝 = 4, the final score (marked bold) is de-
tected in the interval [𝑝−𝑠+1 = 1; 𝑝+𝑠−1 = 7] at a shifting
position of 3. HD scores are estimated at a total number of
13 shifting positions compared to 𝐾 = 25 in a linear search.

In the first step the range of 𝐾 = 2𝑘 +1 shifting positions
[−𝑘; 𝑘] is divided into 2 ⌈𝑘/𝑠⌉ intervals, where 𝑠 denotes the
employed step-size. Then HD scores are estimated at inter-
val boundaries, i.e. for a subset of 2 ⌈𝑘/𝑠⌉ + 1 shifting posi-
tions. In other words, the sequence of scores, interpreted as
signal, is sampled every 𝑠 bits. For a genuine comparison a
sampling with at most the average length of 1-bit and 0-bit
sequences, 𝑠 < 𝜇, is expected to detect a minimum score
which represents a near-optimal alignment. We consider
an alignment as near-optimal if the corresponding shifting
position is close enough to the optimal alignment revealing
a HD score, which is significantly smaller compared to re-
maining sampling positions. For the sample comparisons
of Fig. 2 near-optimal alignments would be found in the
range of approximately ±2 bit shifts.

After detecting a near-optimal alignment at shifting po-
sition 𝑝 the interval [𝑝 − 𝑠 + 1; 𝑝 + 𝑠 − 1] is considered for
the second step. Note that the scores for positions 𝑝 ± 𝑠
have already been estimated in the first step. Based on a
linear search the second step detects a minimum HD score
for a subset of 2(𝑠 − 1) shifting positions. That is, the num-
ber of shifting positions to be considered is reduced to 𝐶 =
2 ⌈𝑘/𝑠⌉ + 1 + 2(𝑠 − 1). To further accelerate the TripleA align-
ment procedure it is suggested to process only half of the
subset detected in the first step during the second step. This
bisected interval is defined by 𝑝 and minimum of surround-
ing HD scores at 𝑝 ± 𝑠. Hence, the number of shifting posi-
tions is further reduced to 𝐶 = 2 ⌈𝑘/𝑠⌉ +𝑠. In the example of
Fig. 3 the interval [𝑝 − 𝑠 + 1, 𝑝 − 1] would be chosen for the
linear search of the second step, since the HD score at shift-
ing position 𝑝−𝑠 is smaller than that at 𝑝+𝑠. This derivation
is referred to as TripleA-Single-Sided. In Fig. 4 the number of

5

2 3 4 5 6 7 8

8

12

16

20

24

28

Shift size s

S
h
if
ti
n
g
p
o
si
ti
o
n
s
C k=4 k=8

k=16 k=24

(a) TripleA

2 3 4 5 6 7 8

8

12

16

20

24

28

Shift size s

S
h
if
ti
n
g
p
o
si
ti
o
n
s
C k=4 k=8

k=16 k=20

(b) TripleA-SS

Figure 4: Number of shifting positions to be considered 𝐶
using TripleA and TripleA-SS for different values of 𝑘 and 𝑠.

shifting positions 𝐶 is plotted for different values of 𝑘 and
𝑠. To obtain a maximum speed-up 𝐶 has to be minimized,
such that 𝑠 = √2𝑘/√2 and 𝑠 = √2𝑘 represent the theoret-
ical optimal step-size in terms of speed-up for TripleA and
TripleA-SS, respectively.

In [4] we showed that, 𝜇 can be dynamically estimated
from a single reference iris-code during enrolment, how-
ever, this dynamic estimation was not found to yield any sig-
nificant gains in terms of performance are obtained. Hence,
we restrict to applying static values of 𝑠 for each compari-
son performed by the system. In this case 𝜇 can be averaged
from a training set of extracted iris-codes.

6 Experiments

The following subsections describe the experimental setup
and summarize results obtained by the presented approaches.

6.1 Experimental Setup and Methodology
Experimental evaluations are carried out on the CASIAv4-
Interval iris database [32]. The database consists of 𝑁=2, 639
good-quality 320×280 pixel NIR iris images of 249 subjects.
We consider two types of experiments, where in both exper-
iments an iris-code is compared against 𝐾 shifted versions
of another one:

Experiment 1 (E-1): the maximum number of 𝑁(𝑁−1)/2 =
3, 480, 841 iris-code cross-comparisons is performed. Based
on obtained scores we identify an adequate trade-off be-
tween biometric performance and provided rotation com-
pensation. Subsequently, diverse settings with the aim

of accelerating these iris-code cross-comparisons are com-
pared and the best setting is identified. For time measure-
ments we execute a total number of 40 iterations and the
obtained median time elapsed is reported. The considered
number of iterations minimizes the influence of outliers
with respect to time measurements, which assures signifi-
cance of relative improvements or degradations in compar-
ison speed. This experiment might reflect a de-duplication
check on an iris-code database with 𝑁 registered subjects.

Experiment 2 (E-2): the dataset is partitioned into a refer-
ence set of 2,500 iris-codes and a query set of 139 iris-codes.
To simulate identification attempts on a large-scale database
the reference set is extended to a large-scale dataset by
replicating the subset 20,000 times, resulting in a set of
𝑁=2, 500×20, 000=50, 000, 000 iris-codes. Note that the ob-
tained set is used for runtime experiments only. For the best
setting of E-1, in terms of throughput, all 139 identification
attempts (1:𝑁) are performed and the obtained median time
elapsed is reported for various degrees of rotation compen-
sation. Subsequently, the TripleA method is applied with
different parameter configurations on top of the best setting
of E-1 in order to obtain further speed-ups.

The main difference between these experiments is that,
while in E-1, the de-duplication experiment, a total num-
ber of 𝑁 query iris-codes are successively compared against
the database, in E-2, the identification experiment, a single
query iris-code is compared against a huge database.

Biometric performance is estimated in terms of FNMR
at a target false match rate (FMR) and equal error rate
(EER) obtained from E-1. The test system for measuring
the duration of E-1 and E-2 with different settings uses
an x86_64 Linux operating system with kernel version 4.4
and GCC 5.3.0 as C++ compiler. While other CPU-types,
e.g. ARM-based, have been analysed with respect to the
required operations [33], focusing on large-scale biometric
systems x86_64 hardware is considered as most relevant.
The utilised CPU is an Intel Core i7-6700 with sufficient
DDR4-SDRAM 2133.

In order to identify an appropriate degree of rotation
compensation in E-1, we first calculate EERs and FNMRs at
a FMR of 0.01%, denoted as FNMR0.01, considering ±𝑘 shift-
ing positions during alignment. The progress in terms of
EER and FNMR0.01 with respect to rotation compensation
is shown in Table 1. As can be seen, the majority of misalign-
ments is compensated by ±8 bit shifts (∼6∘) while biomet-
ric performance converges at approximately ±16 bit shifts
(∼11∘). Focusing on recognition accuracy versus required
bit-shifting we choose 𝑘 = ±16, resulting in 2𝑘+1 = 33 shift-
ing positions, is considered as reasonable trade-off for the
used iris recognition systems resulting in an EER of 0.80%
and a FNMR0.01 of 1.75% for LG and an EER of 0.74% and
a FNMR0.01 of 1.06% for QSW.

6

Rot. comp. LG QSW
±𝑘 bits EER FNMR0.01 EER FNMR0.01

0 6.81 11.98 16.14 20.35
1 5.65 10.73 11.51 15.12
2 5.01 10.18 8.22 11.33
4 2.78 9.89 3.03 6.24
8 1.04 2.26 0.94 1.46

12 1.01 2.23 0.79 1.28
16 0.80 1.75 0.74 1.06
20 0.80 1.75 0.73 1.05
24 0.79 1.71 0.70 1.01

Table 1: Progression of EERs and FNMR0.01s in relation to
rotation compensation (the selected setting for the used iris
recognition system is marked bold).

Setting Time Setting TimeID Description ID Description
S-1 8-bit Look-up table 157.95

S-6a

3 Threads PAPA𝑅 4.78

S-2 POPCNT 32-bit 14.98 4 Threads PAPA𝑅 4.62
POPCNT 64-bit 9.16 5 Threads PAPA𝑅 4.46

S-3 POPCNT ASM 8.16 6 Threads PAPA𝑅 4.21

S-4

2 Blocks 8.71 7 Threads PAPA𝑅 4.09
4 Blocks 7.98 8 Threads PAPA𝑅 4.45
8 Blocks 7.65 9 Threads PAPA𝑅 4.50
10 Blocks 9.54 10 Threads PAPA𝑅 4.47
16 Blocks 9.05

S-6b

1 Thread PAPA𝑄 6.24
32 Blocks 9.21 2 Threads PAPA𝑄 3.33

S-5a

2 Blocks SSE2 12.08 3 Threads PAPA𝑄 2.21
4 Blocks SSE2 12.43 4 Threads PAPA𝑄 1.70
8 Blocks SSE2 10.26 5 Threads PAPA𝑄 2.42
16 Blocks SSE2 9.37 6 Threads PAPA𝑄 2.06
32 Blocks SSE2 8.33 7 Threads PAPA𝑄 1.79

S-5b

4 Blocks AVX 10.76 8 Threads PAPA𝑄 1.58
8 Blocks AVX 12.34 9 Threads PAPA𝑄 1.68
16 Blocks AVX 8.01 10 Threads PAPA𝑄 1.65
32 Blocks AVX 8.05

S-7

1 Thread PPAA𝑄 5.73

S-5c

4 Blocks AVX2 11.90 2 Threads PPAA𝑄 3.02
8 Blocks AVX2 12.32 3 Threads PPAA𝑄 2.03
16 Blocks AVX2 8.00 4 Threads PPAA𝑄 1.57
32 Blocks AVX2 8.06 5 Threads PPAA𝑄 2.33

S-5d AVX2 8-bit ADD 9.63 6 Threads PPAA𝑄 1.99
AVX2 16-bit ADD 9.32 7 Threads PPAA𝑄 1.72

S-5e SSSE3 20.66 8 Threads PPAA𝑄 1.54

S-6a 1 Thread PAPA𝑅 7.96 9 Threads PPAA𝑄 1.63
2 Threads PAPA𝑅 5.31 10 Threads PPAA𝑄 1.58

Table 2: Overview of time measurements (in seconds) ob-
tained for different settings in experiment E-1 performing
all 3,480,841 iris-code cross-comparisons at 33 shifting posi-
tions.

1 2 4 8 16 32

7.5
8

8.5
9

9.5

Number of blocks

T
im

e
(s
ec
)

(a) S-4

1 2 3 4 5 6 7 8 9 10

2

4

6

8

Number of threads

T
im

e
(s
ec
)

S-6a S-6b S-7

(b) S-6 and S-7

Figure 5: Time measurements (in seconds) obtained for (a)
setting S-4 and (b) settings S-6 and S-7 in experiment E-1
performing all 3,480,841 iris-code cross-comparisons at 33
shifting positions.

6.2 Software-based Optimizations
Table 2 summarizes time measurements for all settings in
experiment E-1. Since time measurements might highly
depend on hardware components of a system, emphasis
should be placed on relative improvements obtained by ac-
cording optimization techniques. Optimal parameters of
each setting are preserved in subsequent settings where
appropriate.

With over two minutes runtime the 8-bit look-up table
of S-1 turns out to be by far the slowest implementation.
Nevertheless it represents a baseline for a hardware inde-
pendent implementation.

Without any optimisation the 32-bit population count
implementation in S-2, using intrinsics to invoke the SSE4
POPCNT instruction provides a tenfold speed-up compared
to S-1. The 64-bit version can double the data processing per
instruction and is therefore even faster. It is not twice as fast
as the 32-bit implementation due to overhead of the bigger
64-bit address handling for data access and pointer deref-
erencing. Based on this observation subsequent settings
process blocks of 𝐿 = 64 bits.

The inline assembler of S-3 also provides a clear speed-
up over high level POPCNT intrinsic calls used in S-2.

Focusing on S-4, Fig. 5(a) shows that the preferred num-
ber of 𝐿-bit blocks processed per loop iteration is 8. We iden-
tify two reasons to justify this behaviour: on the one hand 8
64-bit blocks fit very well in the general purpose registers of
the x86_64 processor and no memory access is needed for
the XOR, POPCNT, ADD operation, see Fig. 6(b) lines 20-36;
on the other hand 8 × 64 bit are exactly 64 byte which is the

7

same size as one CPU cache line. Since a cache line copied
from memory is exactly 64 byte it is preferable to process the
complete cache line resulting in a favourable cache hit/miss
ratio. We therefore recommend the processing of data in 64
byte blocks and storing it as a continuous array for an opti-
mal exploitation of the CPU caches. Hence, in settings S-6
and S-7 a total number of 8 64-bit blocks are processed per
loop iteration.

Settings S-5a, S-5b and S-5c make use of SSE2, AVX and
AVX2 instructions to process bigger data chunks with the
XOR operation. However, no significant speed-up over
the common x86 64-bit XOR instruction is obtained. The
reason for this is very straightforward, since SSE works
on specific registers, the so called 128-bit XMM registers
and AVX on the 256-bit YMM registers. Data has to be
loaded to and retrieved from these registers before it can
be used with SSE/AVX instructions. In contrast, the SSE4
POPCNT command operates on 64-bit general purpose reg-
isters of a CPU. Therefore, a transfer between these regis-
ters is necessary where the overhead for these transfers is
higher than a straightforward processing by the common
XOR command which operates on the same registers as
the POPCNT instruction. SSE and AVX are optimised for
algorithms which do a lot of operations on a comparably
low amount data. Calculating a great amount of iris-code
comparisons, which requires only very few operations on
extreme amounts of data, is no such problem. Settings S-5d
and S-5e, which implement the AVX2 vector addition, are
slower for the same reasons. Note that the SSSE3 imple-
mentation tested in S-5e is considered the fasted POPCNT
implementation by experts in the field [34]. In contrast, we
observe that the hardware POPCNT instruction used in S-2
to S-4, is clearly superior to the SSSE3 implementation. Still,
for older CPUs where no POPCNT instruction is available,
this could still be of interest since it is faster than an 8-bit
look-up table.

The common idea to compare a freshly extracted query
iris-code to a large pre-shifted database of reference iris-
codes is represented in S-6a. As shown in Fig. 5(b) for 1 to 3
threads this setting behaves as expected, but starting from
4 threads the runtime stagnates at roughly 4 seconds, i.e.
dividing the workload in more threads provides no further
speed-up. As one iris-code consists of 512×20 bits (1280
byte), we have 3,480,841 comparisons and for each compar-
ison a new iris-code has to be loaded from memory, result-
ing in roughly 137 GB of data transferred from memory to
the CPU. Our experiment computer uses DDR4-2133 RAM
with a speed of 17.0 GB/s per channel according to speci-
fication [35]. We are using a common dual channel setup
and, hence have a maximum RAM bandwidth of 34 GB/s.
Hence, transferring 137 GB from memory to CPU takes at
least 4 seconds. In this setup the execution speed of the
implemented algorithm is interfered by the relatively slow
RAM to CPU interface. The RAM as bottleneck is a common
problem for highly multithreaded tasks performing a few

1 buf[0]=ic[x].dat[k][i]^ic[y].dat[i];

2 buf[1]=ic[x].dat[k][i+1]^ic[y].dat[i+1];

3 buf[2]=ic[x].dat[k][i+2]^ic[y].dat[i+2];

4 buf[3]=ic[x].dat[k][i+3]^ic[y].dat[i+3];

5 buf[4]=ic[x].dat[k][i+4]^ic[y].dat[i+4];

6 buf[5]=ic[x].dat[k][i+5]^ic[y].dat[i+5];

7 buf[6]=ic[x].dat[k][i+6]^ic[y].dat[i+6];

8 buf[7]=ic[x].dat[k][i+7]^ic[y].dat[i+7];

9

10 asm(".intel_syntax noprefix\n");

11

12 __asm__(

13 "popcnt %1, %1 \n\t"

14 "popcnt %2, %2 \n\t"

15 "popcnt %3, %3 \n\t"

16 "popcnt %4, %4 \n\t"

17 "popcnt %5, %5 \n\t"

18 "popcnt %6, %6 \n\t"

19 "popcnt %7, %7 \n\t"

20 "popcnt %8, %8 \n\t"

21

22 "add %0, %1 \n\t"

23 "add %0, %2 \n\t"

24 "add %0, %3 \n\t"

25 "add %0, %4 \n\t"

26 "add %0, %5 \n\t"

27 "add %0, %6 \n\t"

28 "add %0, %7 \n\t"

29 "add %0, %8 \n\t"

30

31 : "+r" (dist)

32 : "r" (buf[0]), "r" (buf[1]),

33 : "r" (buf[2]), "r" (buf[3]),

34 : "r" (buf[4]), "r" (buf[5]),

35 : "r" (buf[6]), "r" (buf[7])

36);

(a) C++ / Inline ASM

1 prefetcht0 ptr [r13+r11*1]

2 prefetcht0 ptr [r13]

3 xor edi, edi ; XOR

4 mov rax, qword ptr [r12]

5 mov rdx, qword ptr [r12+0x8]

6 xor rax, qword ptr [r13-0x138]

7 xor rdx, qword ptr [r13-0x130]

8 mov rcx, qword ptr [r12+0x10]

9 mov r8, qword ptr [r12+0x18]

10 xor rcx, qword ptr [r13-0x128]

11 xor r8, qword ptr [r13-0x120]

12 mov r9, qword ptr [r12+0x20]

13 mov r10, qword ptr [r12+0x28]

14 xor r9, qword ptr [r13-0x118]

15 xor r10, qword ptr [r13-0x110]

16 mov rbx, qword ptr [r12+0x30]

17 mov rsi, qword ptr [r12+0x38]

18 xor rbx, qword ptr [r13-0x108]

19 xor rsi, qword ptr [r13-0x100]

20 popcnt rax, rax ; POPCNT

21 popcnt rdx, rdx

22 popcnt rcx, rcx

23 popcnt r8, r8

24 popcnt r9, r9

25 popcnt r10, r10

26 popcnt rbx, rbx

27 popcnt rsi, rsi

28 add rdi, rax ; ADD

29 add rdi, rdx

30 add rdi, rcx

31 add rdi, r8

32 add rdi, r9

33 add rdi, r10

34 add rdi, rbx

35 add rdi, rsi

36 mov rcx, rdi ; final result

(b) ASM

Figure 6: Comparison between (a) C++ code using Inline As-
sembler and (b) corresponding Assembler code for setting
S-7.

operations on a big amount of data [36]. The bottleneck gets
enhanced by the fact that this biometric scenario floods the
CPU caches with all new data and is practically not using
them at all, resulting in a very poor cache hit/miss ratio. In
S-6b 𝐾 shifted versions of the given query iris-code are com-
puted and compared to 𝑁 non-shifted reference iris-codes
of the database. From a computational perspective, this
setup seems less intuitive because the shifted versions have
to be computed before the actual comparison can start, but
the 𝐾 iris-codes can stay in the CPU caches across all com-
parisons and only one 1,280 byte block has to be loaded
for each comparison, resulting in much less actual memory
access since the CPU caches have a high hit count for the
shifted iris-codes [37]. Therefore, S-6b scales much better
with multiple threads as highlighted in Fig. 5(b). Hence,
the subsequent setting will be based on this strategy. More-
over, in S-6b we observe the effect that 5 threads are actually
slower than 4 threads. The used Intel Core i7-6700 proces-
sor has 4 physical cores of which each can process 2 threads
at once due to hyper threading [38]. As depicted in Fig. 7,
in case 5 threads are used 2 threads have to share the L1 and
L2 cache on one core. Therefore, the iris-code prefetching,
see Fig. 6(b) lines 1-2, is not as effective as if one thread uses
the complete cache. This effect occurs since both threads are
working on completely independent parts of the iris-code
database. Due to this aspect 8 threads are only negligibly
faster than 4 threads.

Setting S-7 implements the results obtained by the Intel
Architecture Code Analyzer [39] which suggests the PPAA
strategy instead of the PAPA strategy of previous settings

8

T0 L1 I-Cache

T1 L1 D-Cache

L2 Cache
and TLB

C
or
e
0

T0 L1 I-Cache

T1 L1 D-Cache

L2 Cache
and TLB

C
or
e
1

T0 L1 I-Cache

T1 L1 D-Cache

L2 Cache
and TLB

C
or
e
2

T0 L1 I-Cache

T1 L1 D-Cache

L2 Cache
and TLB

C
or
e
3

L3 Cache Main
Memory

Figure 7: Cache hierarchy of the Intel Core i7-6700 CPU in
the employed test system [37].

Step TripleA TripleA-SS

size LG QSW LG QSW
EER FNMR0.01 EER FNMR0.01 EER FNMR0.01 EER FNMR0.01

2 0.80 1.75 0.74 1.05 0.80 1.75 0.74 1.05
3 0.79 1.75 0.74 1.06 0.80 1.75 0.74 1.06
4 0.80 1.78 0.77 1.14 0.80 1.78 0.77 1.14
5 0.78 1.76 0.77 1.10 0.81 1.78 0.77 1.13
6 0.88 2.70 0.80 1.31 1.09 4.08 0.91 1.70
7 0.82 1.98 1.58 2.07 0.92 2.80 3.91 7.79
8 0.80 1.75 0.89 1.29 0.82 1.84 1.73 5.43

Table 3: EERs and FNMR0.01 for different settings of
TripleA for the LG and QSW feature extraction (LG baseline:
EER=0.80%, FNMR0.01=1.75%; QSW baseline: EER=0.74%,
FNMR0.01=1.06%).

(see Sect. 4), as shown in Fig. 6. As can be seen in Table 2
and Fig. 5(b), this results in minor speed-up which would
be more significant for larger databases. That is, optimising
the order of the instruction sequence for the used microar-
chitecture by static code analyser can still improve the over-
all performance even in case modern CPUs support out of
order execution, which should (in theory) do this automat-
ically.

The presented results are obtained using a Linux oper-
ating system. It is important to note that identical perfor-
mance rates are achieved on other types of operating sys-
tems (OSs), since basic memory operations, in particular
cache management, is independent of the used OS.

6.3 Accelerated Accuracy-preserving Align-
ment

For different configurations of TripleA using static step-sizes,
Table 3 summarizes obtained EERs and FNMR0.01s. For
the general approach it can be observed that biometric per-
formance is maintained across most step-size settings. For
both feature extractors the TripleA-SS approach causes no

±24

±20

±16

±12

±8

1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

k (bits)

Threads

M
io
.
co

m
p
./
se
c.

Figure 8: Throughput (in millions of iris-code comparisons
per second) in E-2 in relation to shift size and number of
threads.

Number of threads
Method 1 2 3 4 5 6 7 8 9 10
Baseline 84.10 42.24 28.21 21.17 25.52 22.24 22.49 20.89 21.13 21.13
TripleA 34.36 18.04 12.15 9.26 10.06 9.64 9.64 9.03 9.26 9.26

TripleA-SS 30.65 16.40 11.03 8.37 9.65 8.82 8.69 8.26 8.37 8.32

Table 4: Overview of time measurements (in seconds) for
different settings in experiments E-2 performing an identi-
fication with 𝑁 = 50, 000, 000 at 33 shifting positions using
𝑠 = 4.

drastic decrease in accuracy while providing further speed-
up as will be shown in the following subsection.

6.4 Simulation of Large Scale Identification
For E-2 a large scale identification scenario, the best setting
PPAA𝑄 resulting from E-1 is selected as baseline. Fig. 8
presents the absolute number of iris-code comparisons per
second. Again, emphasis should be placed on relative dif-
ference in throughput rates of different configurations. Due
to the efficient CPU caches the comparisons per second de-
pend on how well the shifted iris-codes fit into the caches
and the break even point from 4 to 5 threads, can similarly
be observed as in the 1 : 𝑁 identification scenario, due to
2 threads sharing one cache. Therefore, having 8 threads
reveals no significant speed-up over 4 threads. Both setups
roughly compare 4.6 million iris-codes per second using
±8 bit shifts (≃ 80 million comparisons per second without
shifting).

Based on the findings depicted in Table 1 and Table 3 fur-
ther scenarios in E-2 utilizing TripleA and TripleA-SS are per-
formed with the parameters 𝑘 = 16, 𝑠 = 4 as step-size and
PPAA𝑄 as core HD score comparator. These experiment re-
sults are summarized in Table 4 and depicted in Fig. 9.

From a theoretical standpoint the expected speed-up
can be approximated by comparing the number of shifted

9

1 2 3 4 5 6 7 8 9 10

10

20

30

40

50

60

70

80

90

Number of threads

T
im

e
(s
ec
)

Baseline

TripleA

TripleA-SS

Figure 9: Illustration of time measurements (in seconds) for
different settings in experiments E-2 performing an identi-
fication with 𝑁 = 50, 000, 000 at 33 shifting positions using
𝑠 = 4.

iris-code comparisons to the baseline algorithm PPAA𝑄.
The baseline algorithm has to process all 𝐾 shifting posi-
tions, resulting in 33 comparisons. TripleA with the selected
parameters does 9 comparisons in Step 1 and in general 6
more in Step 2. In the special case of Step 1 yielding −𝑘 or 𝑘
as result only 3 comparisons are performed in Step 2. This
is considered negligible for an approximation and TripleA is
considered performing 15 comparisons per iris-code. The
special case of TripleA is the regular case of TripleA-SS since
only a single side is considered during Step 2. Therefore,
the baseline does 33 comparisons, TripleA 15 comparisons
and TripleA-SS 12 comparisons, which results in an approx-
imation of TripleA taking 45% and TripleA-SS only 36% of
the time compared to the baseline. These theoretical con-
siderations match the observed results in Table 4 taking
measuring tolerance into account. It means in effect TripleA
and TripleA-SS scale linearly to the number of comparisons
relative to the baseline algorithm PPAA𝑄 and all further 𝑘
and 𝑠 combinations can be effectively approximated using
the results from E-2. Fig. 9 further depicts that TripleA and
TripleA-SS yield no further anomalies that were not present
in the PPAA𝑄 baseline algorithm.

7 Conclusions
In this work we analysed commodity hardware-based iris
recognition systems, which perform a CPU-based exhaus-
tive comparison on a large-scale database. We showed
that utilising the POPCNT hardware instruction can sig-
nificantly speed up biometric comparisons based on the
Hamming distance. We identified that taking the CPU
caches into consideration during the algorithm design is
the most efficient way to circumvent potential RAM bot-
tlenecks. Especially when making use of multithreading
ignoring these caches will lead to bottlenecks and even

make the actual comparison algorithm secondary since the
greatest share of time is claimed by the RAM to CPU data
transfer and not the actual execution of the algorithm. This
observation also impacts the reflection of iris-code compar-
isons based on GPGPU/CUDA since their speed-up is not
only explained due to the high number of cores (hardware
shaders), but also the higher memory bandwidth of Video
RAM (GDDR) compared to common RAM (DDR). There-
fore, GPGPU/CUDA implementations have to deal to a
lesser extend with memory bottlenecks. Awareness of cache
line sizes on the target system can also greatly improve the
data throughput since it maximises cache hits, particular
in hotspot loops. Taking into account the aforementioned
issues, it is shown that, an optimized conventional CPU-
based iris-biometric comparator can achieve a hundredfold
speed-up compared to a naïve baseline comparator. As our
1 : 𝑁 results with different shifts sizes show, the number
of comparisons alone is no sufficient statement, since the
fitting of all shifted iris-code versions into the CPU cache
is a high performance factor, independent of the actual al-
gorithm or achieved comparisons per second. Further, our
results show that by combining the TripleA algorithm with
a fast multithreaded POPCNT implementation response
times of large scale biometric systems can be further de-
creased, achieving a more than two-hundredfold overall
speed-up. Finally, it is important to point out that these
findings may also be exploited in other software-based ac-
celeration techniques, e.g. [17].

Acknowledgements
This work was partially supported by the German Federal
Ministry of Education and Research (BMBF) as well as by
the Hessen State Ministry for Higher Education, Research
and the Arts (HMWK) within the Center for Research in Se-
curity and Privacy (CRISP) and the Austrian Science Fund
(FWF) project no. P26630.

References
[1] J. Daugman, “How iris recognition works,” Trans. on Circuits

and Systems for Video Technology, vol. 14, no. 1, 2004. doi: 10.
1109/ICIP.2002.1037952 (cit. on pp. 2, 4).

[2] ——, “Information theory and the iriscode,” Trans. on Infor-
mation Forensics and Security, vol. 11, no. 2, 2016 (cit. on p. 2).

[3] Unique Identification Authority of India, Aadhaar:
Http://uidai.gov.in/, retrieved July, 2017. [Online]. Available:
http://uidai.gov.in/ (cit. on p. 2).

[4] C. Rathgeb, H. Hofbauer, A. Uhl, and C. Busch, “Triplea: ac-
celerated accuracy-preserving alignment for iris-codes,” in
Poc. of 9th IAPR/IEEE International Conference on Biometrics
(ICB’16), 2016, pp. 1–8 (cit. on pp. 2, 5, 6).

[5] T. Tan, X. Zhang, Z. Sun, and H. Zhang, “Noisy iris image
matching by using multiple cues,” Pattern Recognition Letters,
vol. 33, no. 8, pp. 970–977, 2012 (cit. on p. 3).

10

http://dx.doi.org/10.1109/ICIP.2002.1037952
http://dx.doi.org/10.1109/ICIP.2002.1037952
http://uidai.gov.in/

[6] N. B. Puhan and N. Sudha, “Coarse indexing of iris database
based on iris colour,” Int’l J. on Biometrics, vol. 3, no. 4, 2011
(cit. on p. 3).

[7] J. Fu, H. J. Caulfield, S.-M. Yooc, and V. Atluri, “Use of ar-
tificial color filtering to improve iris recognition and search-
ing,” Pattern Recognition Letters, vol. 26, no. 14, 2005 (cit. on
p. 3).

[8] J. E. Tapia and C. A. Perez, “Gender classification based on
fusion of different spatial scale features selected by mutual
information from histogram of lbp, intensity, and shape,”
IEEE Trans. on Information Forensics and Security, vol. 8, no. 3,
pp. 488–499, 2013 (cit. on p. 3).

[9] M. Erbilek, M. Fairhurst, and M. D. Costa-Abreu, “Improved
age prediction from biometric data using multimodal con-
figurations,” in Proc. of 13th Int’l Conf. on Biometrics Special
Interest Group (BIOSIG), 2014, pp. 1–7 (cit. on p. 3).

[10] X. Qiu, Z. Sun, and T. Tan, “Global texture analysis of iris
images for ethnic classification,” in Proc. 1st Int’l Conf. on Bio-
metrics (ICB), 2005, pp. 411–418 (cit. on p. 3).

[11] H. Zhang, Z. Sun, T. Tan, and J. Wang, “Iris image classifica-
tion based on hierarchical visual codebook,” IEEE Trans. on
Pattern Analysis and Machine Intelligence, vol. 36, no. 6, 2014
(cit. on p. 3).

[12] A. Dantcheva, P. Elia, and A. Ross, “What else does your
biometric data reveal? a survey on soft biometrics,” Trans.
on Information Forensics and Security, vol. 11, no. 3, 2016 (cit.
on p. 3).

[13] L. Yu, D. Zhang, K. Wang, and W. Yang, “Coarse iris classi-
fication using box-counting to estimate fractal dimensions,”
Pattern Recognition, vol. 38, pp. 1791–1798, 2005 (cit. on p. 3).

[14] A. Ross and M. S. Sunder, “Block based texture analysis for
iris classification and matching,” in Proc. IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recognition -
Workshops (CVPRW), 2010, pp. 30–37 (cit. on p. 3).

[15] P. R. Nalla and K. M. Chalavadi, “Iris classification based on
sparse representations using on-line dictionary learning for
large-scale de-duplication applications,” SpringerPlus, vol. 4,
pp. 1–10, 2015 (cit. on p. 3).

[16] J. Gentile, N. Ratha, and J. Connell, “Slic: Short-length iris
codes,” in Poc. of 3rd Int’l Conf. on Biometrics: Theory, Applica-
tions, and Systems (BTAS), 2009 (cit. on pp. 3, 4).

[17] J. Gentile, N. Ratha, and J. Connell, “An efficient, two-stage
iris recognition system,” in Proc. 3rd Int’l Conf. on Biometrics:
Theory, Applications, and Systems (BTAS), 2009 (cit. on pp. 3,
10).

[18] M. Konrad, H. Stögner, A. Uhl, and P. Wild, “Computa-
tionally efficient serial combination of rotation-invariant
and rotation compensating iris recognition algorithms,”
in Proc. Int’l Conf. on Computer Vision Theory and Appli-
cations (VISIGRAPP), 2010, isbn: 978-989-674-028-3. doi:
10.5220/0002821100850090 (cit. on p. 3).

[19] F. Hao, J. Daugman, and P. Zielinski, “A fast search algo-
rithm for a large fuzzy database,” Trans. on Information Foren-
sics and Security, vol. 3, no. 2, 2008 (cit. on p. 3).

[20] C. Rathgeb, F. Breitinger, H. Baier, and C. Busch, “Towards
bloom filter-based indexing of iris biometric data,” in Proc.
8th Int’l Conf. on Biometrics (ICB), 2015 (cit. on p. 3).

[21] R. Mukherjee and A. Ross, “Indexing iris images.,” in Proc.
Int’l Conf. on Pattern Recognition (ICPR), 2008 (cit. on p. 3).

[22] R. Gadde, D. Adjeroh, and A. Ross, “Indexing iris images
using the burrows-wheeler transform,” in Proc. Int’l Work-
shop on Information Forensics and Security (WIFS), 2010 (cit. on
p. 3).

[23] H. Proença, “Iris biometrics: Indexing and retrieving heavily
degraded data,” Trans. on Information Forensics and Security,
vol. 8, no. 12, 2013 (cit. on p. 3).

[24] R. Rakvic, B. Ulis, R. Broussard, R. Ives, and N. Steiner, “Par-
allelizing iris recognition,” Trans. on Information Forensics and
Security, vol. 4, no. 4, 2009 (cit. on p. 3).

[25] N. Vandal and M. Savvides, “CUDA accelerated iris
template matching on graphics processing units (GPUs),”
in Proc 4th Int’l Conf. on Biometrics: Theory Applications and
Systems (BTAS), 2010 (cit. on p. 3).

[26] M. López, J. Daugman, and E. Cantó, “Hardware-software
co-design of an iris recognition algorithm,” IET Information
Security, vol. 5, no. 1, pp. 60–68, 2011 (cit. on p. 3).

[27] R. N. Rakvic, H. Ngo, R. P. Broussard, and R. W. Ives, “Com-
paring an FPGA to a cell for an image processing applica-
tion,” EURASIP J. Adv. Signal Process, vol. 2010, 2010. doi:
10.1155/2010/764838 (cit. on p. 3).

[28] L. Masek, “Recognition of human iris patterns for biometric
identification,” Master’s thesis, Univ. of Western Australia,
2003 (cit. on p. 4).

[29] L. Ma, T. Tan, Y. Wang, and D. Zhang, “Efficient iris recog-
nition by characterizing key local variations,” Trans. on Im-
age Processing, vol. 13, no. 6, 2004. doi: 10.1109/TIP.2004.
827237 (cit. on p. 4).

[30] USIT – University of Salzburg iris toolkit, http :
/ / www . wavelab . at / sources / Rathgeb16a, Version 2.0.x
(cit. on p. 4).

[31] C. Rathgeb, A. Uhl, and P. Wild, Iris Recognition: From Seg-
mentation to Template Security, ser. Advances in Information
Security. Springer Verlag, 2013, vol. 59 (cit. on p. 4).

[32] Chinese Academy of Sciences’ Institute of Automation, Ca-
sia iris image database v4.0 — interval, http://biometrics.
idealtest.org, 2012 (cit. on p. 6).

[33] V. Sklyarov, I. Skliarova, and J. Silva, “On-chip reconfig-
urable hardware accelerators for popcount computations,”
International Journal of Reconfigurable Computing, vol. 2016,
p. 11, 2016 (cit. on p. 6).

[34] W. Mula, Ssse3: fast popcount, http://wm.ite.pl/articles/
sse - popcount . html, accessed March 2016, 2008 (cit. on
p. 8).

[35] JC-42.3, Ddr4 sdram standard - jesd79-4a, 2013. [Online]. Avail-
able: https://www.jedec.org/standards- documents/
docs/jesd79-4a (cit. on p. 8).

[36] I. S. Haque, V. S. Pande, and W. P. Walters, “Anatomy of
high-performance 2d similarity calculations,” J. of Chemical
Information and Modeling, vol. 51, no. 9, 2011 (cit. on p. 8).

[37] Intel Corporation, Intel 64 and ia-32 architectures optimization
reference manual, 2016 (cit. on pp. 8, 9).

[38] D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty,
J. A. Miller, and M. Upton, “Hyper-threading technology ar-
chitecture and microarchitecture,” Intel Technology J., no. Q1,
2002 (cit. on p. 8).

[39] I. Hirsh and Intel, Intel architecture code analyzer,
https://software.intel.com/en-us/articles/intel-
architecture-code-analyzer, 2012 (cit. on p. 8).

11

http://dx.doi.org/10.5220/0002821100850090
http://dx.doi.org/10.1155/2010/764838
http://dx.doi.org/10.1109/TIP.2004.827237
http://dx.doi.org/10.1109/TIP.2004.827237
http://www.wavelab.at/sources/Rathgeb16a
http://www.wavelab.at/sources/Rathgeb16a
http://biometrics.idealtest.org
http://biometrics.idealtest.org
http://wm.ite.pl/articles/sse-popcount.html
http://wm.ite.pl/articles/sse-popcount.html
https://www.jedec.org/standards-documents/docs/jesd79-4a
https://www.jedec.org/standards-documents/docs/jesd79-4a
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer

	Introduction
	Contribution of Work
	Organisation of Article

	Related Work
	Iris Recognition System
	Preprocessing and Feature Extraction
	Iris-Code Comparison

	Software-based Optimizations
	Look-up Tables, Intrinsics and Loop-Unrolling
	Multithreading and Statistical Micro-Ops Optimisation

	Accelerated Accuracy-preserving Alignment
	Iris-Code Analysis
	TripleA

	Experiments
	Experimental Setup and Methodology
	Software-based Optimizations
	Accelerated Accuracy-preserving Alignment
	Simulation of Large Scale Identification

	Conclusions

