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Abstract
The discriminative power of the iris enables reliable biometric
recognition on large-scale databases where a rapid comparison
of biometric reference data is essential to limit response times.
In case of national-sized databases a one-to-many comparison
might still represent a bottleneck of a biometric identification
system, in particular if numerous relative tilt angles have to be
considered in the comparisons stage. While a compensation of
head tilts improves the robustness of an iris recognition system,
extensive feature alignment increases the probability of a false
match as well as comparison time.

In this paper we present a novel method to accelerate iris
biometric comparators in an accuracy-preserving way. Em-
phasis is put on the alignment of iris biometric reference data,
i.e. iris-codes. Based on an analysis of the nature of iris-
codes and comparison scores between them we propose an
efficient two-step alignment process referred to as TripleA.
This scheme, which can be operated in various modes, signif-
icantly reduces the amount of relative tilt angles to be consid-
ered during iris-code comparisons. Hence, comparison time as
well as the probability of a false match are reduced at the same
time. In an experimental evaluation on the Casia v4-Interval
iris database we achieve a more than fourfold speed-up in the
comparison stage maintaining biometric performance using
different feature extraction techniques.
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1 Introduction
Due to its rich random structure, and hence its resistance to
false matches, the iris represents one of the most powerful
biometric characteristics [1–3]. Deployments of iris recogni-
tion technologies in numerous large-scale nation-wide projects
mark its tremendous inroads [4]. Following Daugman’s ap-
proach [1], which is the core of most public operational deploy-
ments, four major modules constitute an iris recognition sys-
tem: (1) image acquisition, where most current deployments
require subjects to fully cooperate with the system in order to
capture images of sufficient quality; (2) pre-processing, which
includes the detection of the pupil and the outer iris bound-
ary. Subsequently, the iris (approximated in the form of a
ring) is normalized to a rectangular texture on which image
enhancement methods, e.g. histogram stretching, are applied.
To complete the preprocessing, parts of the iris texture which
are occluded by eye-lids, eye-lashes or reflections are detected
and stored in an according noise-mask; (3) feature extraction,
in which a binary feature vector, i.e. iris-code, is generated by
applying adequate filters to the pre-processed iris texture. This
binary data representation enables compact storage and rapid
(4) comparison, which is based on the estimation of Ham-
ming distance (HD) scores between pairs of iris-codes and
corresponding masks, achieving millions of comparisons per
second per CPU core [1].

In the comparison stage circular bit shifts are applied to
iris-codes and HD scores are estimated at 𝐾 different shifting
positions, i.e. relative tilt angles. The minimal obtained HD,
which corresponds to an optimal alignment, represents the fi-
nal score. Hence, score distributions are skewed towards lower
HD scores, which (for a given threshold) increases the proba-
bility of a false match by the factor 𝐾 [5]. It is important to
note, that the number of shifting positions employed to deter-
mine an appropriate alignment between pair of iris-codes may
vary depending on the application scenario. Some public de-
ployments of iris recognition go as far as 𝐾 = 21 shifting posi-
tions when handheld cameras are used for which it is obviously
more difficult to ensure an upright capture orientation [5], in-
creasing the computational effort of a single pair-wise compar-
ison of iris-codes by the factor 𝐾. In biometric identification
systems exhaustive 1 ∶ 𝑁 comparisons are required in order to
identify a biometric probe, where 𝑁 represent the number of
subjects registered with the system. In case large values of 𝐾
are unavoidable, the time required for a single identification
will significantly increase, since comparison time dominates
the overall computational workload in any large-scale biomet-
ric identification system [6].

In past years, different concepts have been proposed in
order to accelerate iris biometric (identification) systems (see
Sect. 2). However, apart from hardware-based parallelization
[7, 8], presented schemes either fail to provide a significant
acceleration or they suffer from a significant decrease in recog-
nition accuracy. Hence, existing approaches often obtain a
trade-off between biometric performance (recognition accu-
racy) and speed-up compared to a traditional iris recognition
system. Furthermore, in practise most concepts do not allow

for a seamless integration into a conventional identification
system.

In this work, we propose a novel technique for comparing
pairs of iris-codes, which we refer to as Accelerated Accuracy-
preserving Alignment – TripleA. In contrast to related works
which also aim at a software-based acceleration of iris recogni-
tion systems, e.g. [6, 9], focus is put on the alignment process.
Based on an analysis of HD scores obtained at different shift-
ing positions during genuine iris-code comparisons we intro-
duce an adjustable two-step search-procedure in order to effi-
ciently determine alignments between iris-codes. Within the
proposed procedure only a fraction of 𝐾 shifting positions has
to be considered during a single pair-wise comparison, while
covering the same range of possible tilt angles. Experiments
confirm that the proposed scheme is capable of obtaining a
more than four-fold speed-up for different feature extraction
algorithms. At the same time biometric performance is main-
tained even though in a few cases the obtained alignments
might only turn out near-optimal, since the probability of a
false match (just by chance) is significantly lowered by the
number of considered shifting positions.

This paper is organized as follows: Sect. 2 briefly summa-
rizes key concepts for acceleration of iris biometric (identifica-
tion) systems. In Sect. 3 the proposed system is described in
detail. Experimental evaluations are presented in Sect. 4. Fi-
nally, conclusions are drawn in Sect. 5.

2 Related Work
With respect to workload reduction in biometric (identifica-
tion) systems, we might differentiate between four key con-
cepts: (1) hardware-based acceleration, (2) indexing, (3) coarse
classification or “binning”, and (4) a serial combination of a
computationally efficient and an accurate (but more complex)
algorithm. Let 𝜔 be the workload for a single iris-code com-
parison and 𝒲 = 𝜔𝑁 that of a 1 ∶ 𝑁 comparison, which fre-
quently dominates the overall computational workload of an
iris biometric identification system.

Adapting comparison procedures to adequate hardware,
e.g. multiple cores within a CPU or a GPU, allows for par-
allelization [7]. By simultaneously executing a number of 𝑡
threads 𝒲 can be reduced to 𝜔𝑁/𝑡 since a 1 ∶ 𝑁 compari-
son can be performed in parallel on 𝑡 subsets of equal size
𝑁/𝑡. As pointed out by Vandal and Savvides [8], the number
of considered shifting positions 𝐾 represents a crucial factor
which might significantly decrease the throughput of the sys-
tem. However, the estimation of HD scores at various shifting
positions during alignment can be parallelized as well.

Biometric indexing aims at reducing the overall workload
of a biometric identification attempt in terms of 𝒪-notation,
where existing approaches focus on reducing the workload
to at least 𝒪(log 𝑁), yielding 𝒲 = 𝜔 log 𝑁. In the majority
of cases this is achieved by introducing hierarchical search
structures which tolerate a distinct amount of biometric vari-
ance. Most notably, Hao at al. [6] proposed a search algorithm
for iris-codes based on Beacon Guided Search combining a
multiple colliding segments principle and early termination
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(a) Iris image (b) Iris segmentation

(c) Pre-processed iris texture

(d) LG iris-code - real and imaginary filter response

(e) QSW iris-code - split by wavelet subband response

Figure 1: Iris biometric processing chain for image S1234R01 of
the Casia v4–Interval database.

strategy. The technique is evaluated using 632,500 iris-codes
enrolled in the United Arab Emirates (UAE) border control
system, showing a substantial improvement in search speed
with a negligible loss of accuracy. More recently, Proença
[10] presented an iris indexing scheme designed for uncon-
strained scenarios. In a comparative evaluation the scheme is
shown to outperform existing schemes, e.g. [6], on degraded
iris images of the UBIRISv2 database. Rathgeb at al. [11] pro-
posed an indexing scheme based on a hierarchical Bloom filter
structure into which iris-codes are mapped. On the IITDv1
iris database identification rates of a conventional identifica-
tion scheme were maintained providing a retrieval in 𝒪(log 𝑁)
steps. Further, approaches to iris indexing in the image do-
main have been proposed [12, 13]. While most works report
hit/penetration rates on distinct datasets, required computa-
tional efforts are frequently omitted. The application of com-
plex search structures on rather small datasets may cloud the
picture about actual gains in terms of speed and leaves scala-
bility of some approaches doubtful.

By binning an iris biometric database into 𝑐 classes, 𝒲 can
be reduced to 𝜔𝑁/𝑐, given that irises of registered subjects are
equally distributed among these classes. While other biomet-
ric characteristics suggest a natural pre-classification, e.g. stan-
dard types of fingerprints, for iris only eye color has been con-
sidered for visible wavelength iris images [14, 15]. However,
recent advances in the field of soft biometrics might enable a
binning of iris images with respect to age or ethnicity classes
(for further details on soft biometrics the reader is referred to
[16]).

Within serial combinations computationally efficient algo-
rithms are used to extract a short-list of ℒ𝑁 most likely can-
didates, with ℒ ≪ 1. Therefore, 𝒲 is reduced to �̂�𝑁 + 𝜔ℒ𝑁,
where �̂� is the workload of a pair-wise comparison of the com-
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Figure 2: Sample HD-scores obtained from three genuine pairs
of iris-codes at various shifting positions.

putationally efficient algorithm, with �̂� ≪ 𝜔. In other words,
identification is accelerated if 𝜔(1 − ℒ) > �̂� holds. For in-
stance, Gentile at al. [9] reduced ℒ to ∼10% employing com-
pressed versions of original iris-codes during pre-screening.
Thereby, the overall number of required bit-comparisons was
significantly reduced.

3 Proposed System
In the following subsections we summarize the baseline iris
recognition system and present some analysis of HD scores
estimated from genuine iris-code comparisons across various
shifting positions. Based on this analysis we propose the ad-
justable two-step search-procedure, TripleA, in order to align
pairs of iris-codes in an efficient and accuracy-preserving man-
ner.

3.1 Setup and Analysis
In the employed iris recognition system the iris of a given sam-
ple image is detected and transformed to a rectangular texture
of 512 × 64 pixel applying a contrast-adjusted Hough trans-
form. In the feature extraction stage two conventional algo-
rithms are employed where normalized enhanced iris textures
are divided into stripes to obtain 10 one-dimensional signals,
each one averaged from the pixels of 5 adjacent rows (the upper
512×50 rows are analysed). The first feature extraction method
follows the Daugman-like 1D-LogGabor feature extraction al-
gorithm of Masek [17] (LG) and the second follows the algo-
rithm proposed by Ma et al. [18] (QSW) based on a quadratic
spline wavelet transform. Both feature extraction techniques
generate iris-codes of 𝐵= 512×20 = 10,240 bit. Fig.1 illustrates
the described processing chain for a sample iris image result-
ing in different types of iris-codes. Custom implementations of
employed segmentation and feature extractors are freely avail-
able in the University of Salzburg Iris Toolkit (USIT) [19]. For
further details on the employed feature extraction algorithms
the reader is referred to [2].

For both feature extraction algorithms Fig. 2 depicts the HD
scores across various shifting positions for three genuine com-
parisons of iris-codes. For the described system a 1-bit shift
equals 0.7∘ of rotation. It can be observed that for each fea-
ture extractor the HD scores of the three genuine comparisons
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Figure 3: Example of the TripleA procedure in dynamic mode: In the first step comparisons between a probe and reference iris-code
are performed at 2𝑘/𝑠 + 1 = 7 positions according to the reference’s step size 𝑠 = 4. After detecting the near-optimal shifting
position 𝑝 = 4, the final score (marked bold) is detected in the interval [𝑝 − 𝑠 + 1 = 1; 𝑝 + 𝑠 − 1 = 7] at a shifting position of 3. HD
scores are estimated at a total number of 13 shifting positions compared to 𝐾 = 25 in a linear search.

seem almost identical. Within a certain range HD scores con-
stantly decrease towards the minimum (best) score. This range
is enclosed by local maxima yielding HD scores significantly
beyond 0.5. For the sample HD scores in Fig. 2 these local
maxima can be found at shifting positions of ±8 bits for LG
and ±6 bits for QSW. This phenomenon can be explained by
taking account of two key observations:

1. Daugman has shown that bits in iris-code are not mu-
tually independent [1], also see Fig. 1 (d)-(e). In order
to measure ‘iris-code entropy’ it is suggested to estimate
the degrees of freedom (DoF) provided by iris-codes. Us-
ing a Bernoulli model the number of mutual indepen-
dent bits is obtained from imposter score distribution as
DoF = (𝜇(1 − 𝜇))/𝜎2, where 𝜇 and 𝜎2 denote the mean
and variance. In other words, iris-codes can be modelled
as sticky oscillators [5].

2. Hollingsworth at al. [20] have shown, that for ideal imag-
ing (no eyelash/eyelid occlusions, corneal reflections,
etc. on iris textures) so-called “fragile” bits, i.e. bits
which exhibit a higher probability than others to flip
their value during a genuine comparison, most likely oc-
cur between consecutive 1-bit and 0-bit sequences. Since
filters employed in the feature extraction stage set iris-
code bits by their sign, fragile bits correspond to coeffi-
cients close to zero.

Given the first observation, rows of iris-codes can be ex-
pected to consist of consecutive 1-bit and 0-bit sequences rather
than of random sequential bits. Based on the second observa-
tion we conclude that the number of bit-sequence flanks, i.e.
changes from 1-bit to 0-bit sequences and vice versa, remains
rather constant for genuine iris-codes since bit-flips are ex-
pected to occur between sequences. Hence, the average length
of 1-bit and 0-bit sequences 𝜇𝑠 can be expected to remain stable
as well. Intuitively, the distance between the shifting position
resulting in a minimum HD score and those of surrounding lo-

cal HD score maxima might be approximated by 𝜇𝑠, as ±𝜇𝑠 bit
shifts are expected to cause the most drastic misalignment. The
sequence of HD scores between genuine iris-codes across dif-
ferent shifting positions might be interpreted as an oscillation
which decreases its amplitude with the distance to the min-
imum score. For such a signal it can be empirically verified
that distances between consecutive vertices are virtually the
same for a constant value of 𝜇𝑠 even in case of large standard
deviations.

3.2 Accelerated Accuracy-preserving Align-
ment

The proposed TripleA approach comprises the following two
key steps: (1) estimation of near-optimal alignment and (2) es-
timation of subset-minimum. An example of the approach is
illustrated in Fig. 3.

In the first step the range of 𝐾 = 2𝑘 + 1 shifting posi-
tions [−𝑘; 𝑘] is divided into 2𝑘/𝑠 intervals, where 𝑠 denotes the
employed step-size. Then HD scores are estimated at interval
boundaries, i.e. for a subset of 2𝑘/𝑠 + 1 shifting positions. In
other words, the sequence of scores, interpreted as signal, is
sampled every 𝑠 bits. Based on the above observations for
a genuine comparison a sampling with at most the average
length of 1-bit and 0-bit sequences, 𝑠 < 𝜇𝑠, is expected to detect
a minimum score which represents a near-optimal alignment.
We consider an alignment as near-optimal if the correspond-
ing shifting position is close enough to the optimal alignment
revealing a HD score which is significantly smaller compared
to remaining sampling positions. For the sample comparisons
of Fig. 2 near-optimal alignments would be found in the range
of approximately ±2 bit shifts.

After detecting a near-optimal alignment at shifting posi-
tion 𝑝 the interval [𝑝 − 𝑠 + 1; 𝑝 + 𝑠 − 1] is considered for the
second step. Note that the scores for positions 𝑝 ± 𝑠 have al-
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ready been estimated in the first step. Based on a linear search
the second step detects a minimum HD score for a subset of
2(𝑠 − 1) shifting positions.

The proposed TripleA scheme can be operated in two modes,
defined by the estimation of the step-size:

1. Static Mode: A static value of 𝑠 is used for each compari-
son performed by the system. In this case 𝜇𝑠 can be aver-
aged from a training set of extracted iris-codes. Another
way to estimate an upper bound for 𝑠 would be to anal-
yse the provided DoF. Therefore, DoF has to be averaged
from a line-wise analysis of 𝑅 iris code rows resulting in
DoFR = 1/𝑅 ∑𝑅

𝑖=1 DoF𝑖, where DoF𝑖 denotes the DoF pro-
vided by line 𝑖. Thereby, correlation between different
rows of iris-codes is suppressed so that 𝐵/DoFR serves as
an adequate upper bound for 𝑠, where 𝐵 is the number
of bits in the iris-code.

2. Dynamic Mode: The step-size 𝑠 is estimated dynamically
for a single reference iris-code during enrolment. Hence,
𝜇𝑠 is estimated from a single iris-code and the step size
is defined as 𝑐𝜇𝑠 with 0 < 𝑐 ≤ 1. At the time of authenti-
cation a probe iris-code is compared against a reference
iris-code applying the corresponding step size stored
with the latter. Even though, 𝜇𝑠 is expected to exhibit a
larger standard deviation when estimated from a single
iris-code, different values of 𝜇𝑠 might serve as further
feature of iris-codes.

In the general TripleA approach the number of shifting po-
sitions to be considered is reduced to 𝐶 = ⌈𝐾/𝑠⌉+1+2(𝑠−1) ≈
𝐾/𝑠 + 2𝑠. To obtain a maximum speed-up 𝐶 has to be mini-
mized. By setting the derivative 𝑑

𝑑𝑠 𝐶 = 2 − 𝐾/𝑠2 = 0 we get
𝑠 = √𝐾/√2 as optimal step-size in terms of speed-up. To fur-
ther accelerate the proposed alignment we suggest two deriva-
tions of TripleA:

• TripleA - Limited: In this setting the first step is only ap-
plied on a defined upper parts of two iris-codes. Thereby,
only a fraction of bit comparisons is required in the first
step while in the second step the minimum HD score is
estimated from all 2𝑠 + 1 shifting positions of the subset.

• TripleA - Single-sided: Building upon TripleA - Limited only
half of the subset detected in the first step is considered
during the second step. This bisected interval is defined
by 𝑝 and minimum of surrounding HD scores at 𝑝 ± 𝑠. In
the example of Fig. 3 the interval [𝑝 − 𝑠 + 1, 𝑝 − 1] would
be chosen for the linear search of the second step, since
the HD score at shifting position 𝑝−𝑠 is smaller than that
at 𝑝 + 𝑠.

It is important to note, that the proposed derivations build
upon observations made for genuine iris-code comparisons.
Obviously, HD scores across different shifting positions do
not show the same behaviour for impostor comparisons. This
means that the TripleA derivations are likely to reduce the
probability of false matches for impostor comparisons due to
finding suboptimal alignments for impostors.
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Figure 4: Progression of EERs in relation to rotation compensa-
tion: in a linear search HD scores are estimated for ±𝑘 shifting
positions.

Rot. comp. LG QSW
±𝑘 bits EER FNMR0.01 EER FNMR0.01

0 7.57 14.62 17.94 24.52
1 6.28 13.09 12.78 18.22
2 5.56 12.41 9.13 13.65
4 3.09 12.07 3.37 7.52
8 1.15 2.76 1.04 1.76

12 1.12 2.72 0.88 1.55
16 0.89 2.14 0.82 1.27
20 0.89 2.14 0.81 1.26
24 0.87 2.08 0.78 1.22

Table 1: Progression of EERs and FNMR0.01s in relation to ro-
tation compensation (results of baseline settings are marked
bold).

4 Experiments
Experimental evaluations are carried out on the Casia v4-
Interval iris database [21]. The database consists of 2,639
good-quality 320×280 pixel NIR iris images of 249 subjects.
In accordance with IS ISO/IEC 19795-1:2006 [22] biometric
performance is estimated in terms of false non-match rate
(FNMR) at a target false match rate (FMR) and equal error rate
(EER) obtained from performing all 3,480,841 iris-code cross-
comparisons. When averaging row-wise estimations of DoF,
DoF𝑅 values of 1,587.80 (LG) and 2,458.97 (QSW) are obtained,
neglecting correlation between iris-code rows. Hence, for the
LG and QSW algorithm 𝐵/DoF𝑅 would yield upper bounds of
approximately 6 and 4 for step-sizes, respectively.

The difference in step-size highlights the use of redun-
dancies within iris-codes. There is a substantial likelihood of
neighbouring iris-code bits being equal as these originated
from overlapping filter responses obtained from neighbouring
texture parts of an iris texture [5]. For LG these bits corre-
spond to the signs of a 1D-LogGabor wavelet response. QSW
on the other hand encodes extrema in the filter responses of a
quadratic spline wavelet, leading to a varying degree of overlap
which requires smaller step-sizes in the proposed approach.

In a first experiment we calculate EERs and FNMRs at a
FMR of 0.01%, FNMR0.01, considering ±𝑘 shifting positions
during alignment performing a linear search for the minimum
HD score. The progress in terms of EER with respect to ro-
tation compensation is plotted in Fig. 4. Table 1 summarizes
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Figure 5: EERs of the proposed approaches for different static
step-sizes for the LG (top) and QSW (bottom) feature extraction
(note different scales on 𝑦-axes).

obtained EERs and FNMR0.01s. As can be seen the majority of
misalignments is compensated by ±8 bit shifts (∼ 6∘) while bio-
metric performance converges at approximately ±16 bit shifts
(∼ 11∘). Focusing on recognition accuracy versus required bit-
shifting we choose 𝑘 = 16, i.e. 𝐾 = 33, as reasonable trade-off
for our baseline systems resulting in practical an EER of 0.89%
and a FNMR0.01 of 2.14% for LG and an EER of 0.82% and a
FNMR0.01 of 1.27% for QSW.

Iris-codes are internally represented as two-dimensional
arrays consisting of 𝐵/8 bytes (chars). HD scores are estimated
by successively XORing bytes and counting the bits set within
resulting bytes via a 8-bit look-up table. The implementation
can be considered lightweight and fully portable as it does
not make use of larger look-up tables which require a signifi-
cant amount of RAM nor of CPU-specific PopCnt (population
count) functions. Nevertheless, it is important to note that
achieved relative speed-ups directly apply to any more so-
phisticated comparison engine which might make large use of
intrinsic functions, parallelization, etc.

In the following subsection we evaluate the biometric per-
formance and provided speed-up of the proposed TripleA ap-
proaches.

4.1 Performance Evaluation
For different configurations of TripleA and step-sizes in static
and dynamic mode, comparisons of obtained EERs to the ac-
cording baseline systems are plotted in Fig. 5 and Fig. 6,
respectively. We observe that for the static mode the pre-
estimated assumption 𝑠 < 𝐵/DoFR is reasonable since EERs
turn out to significantly increase for static step-sizes of ap-
proximately 6 for LG and 4 for QSW (note the log-scale for the
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Figure 6: EERs of the proposed approaches for different dy-
namic step-sizes of 𝑠 = 𝑐𝜇𝑠 for the LG (top) and QSW (bottom)
feature extraction.

bottom plot of Fig. 5). Moreover, it can be seen that for some
configurations, in particular for the LG feature extraction, bio-
metric performance is slightly improved in both modes. These
improvements occur due to the previously mentioned fact that
impostor distributions are skewed towards larger HD scores.
For a sample configuration this effect is illustrated in Fig. 7. It
can be observed, that the vast majority of genuine scores re-
mains equal compared to the baseline system while imposter
distributions shifted towards larger HD scores. Focusing on
biometric performance this effect compensates potential align-
ment errors.

With respect to the dynamic mode the according relative
frequencies of average sequence lengths, 𝜇𝑠s, are plotted in
Fig. 8. For the LG feature extraction average sequence lengths
are longer than those obtained for the QSW feature extraction
which coincides with previous DoF estimations for both algo-
rithms. Table 2 summarizes obtained EERs and FNMR0.01s
for all configurations of the proposed TripleA approach. For
the general approach it can be observed that in both modes,
using static and dynamic step sizes, biometric performance is
maintained across most step-size settings.

For the LG feature extraction neither the limited nor the
single-sided setting causes a drastic decrease in accuracy while
these approaches provide substantial further speed-ups as will
be shown in the following subsection. In contrast, for the
QSW feature extraction biometric performance significantly
decreases for the limited and single-sided setting in the static
mode using step-sizes of 𝑠 ≥ 6. That is, for QSW the search for
a near-optimal alignment on the upper 512×8 bits of iris-codes
as well as a single-sided interval choice turn out to be more
error-prone compared to LG. For the dynamic mode step-size
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Step TripleA TripleA - limited TripleA - one-sided
Mode size LG QSW LG QSW LG QSW

EER FNMR0.01 EER FNMR0.01 EER FNMR0.01 EER FNMR0.01 EER FNMR0.01 EER FNMR0.01

2 0.89 2.14 0.82 1.27 0.88 2.18 0.85 1.40 0.88 2.18 0.86 1.40
3 0.88 2.13 0.82 1.28 0.89 2.22 0.85 1.41 0.89 2.20 0.85 1.41
4 0.89 2.17 0.85 1.37 0.89 2.19 0.85 1.56 0.89 2.19 0.87 1.57

Static 5 0.87 2.17 0.84 1.33 0.92 2.24 0.93 1.49 0.94 2.24 0.93 1.55
6 0.98 3.30 0.89 1.58 0.95 2.70 1.00 2.10 1.13 3.57 1.43 2.46
7 0.91 2.42 1.75 2.49 0.92 2.46 3.48 4.56 1.07 3.63 5.59 8.70
8 0.89 2.17 0.99 1.54 0.86 2.17 2.74 2.78 0.91 2.32 2.05 6.58

1/3 𝜇𝑠 0.89 2.14 0.82 1.27 0.88 2.18 0.85 1.38 0.88 2.18 0.86 1.39
1/2 𝜇𝑠 0.88 2.14 0.82 1.28 0.89 2.22 0.85 1.41 0.89 2.20 0.85 1.41

Dyn. 2/3 𝜇𝑠 0.89 2.17 0.85 1.36 0.91 2.20 0.85 1.53 0.92 2.19 0.87 1.53
3/4 𝜇𝑠 0.87 2.17 0.85 1.37 0.92 2.24 0.88 1.56 0.94 2.25 0.90 1.57

𝜇𝑠 0.92 2.57 0.89 1.53 0.93 2.45 0.98 1.89 1.07 3.60 1.21 2.75

Table 2: EERs and FNMR0.01 for different settings of TripleA for the static and dynamic modes for the LG and QSW feature extraction
(LG baseline: EER=0.89%, FNMR0.01=2.14%; QSW baseline: EER=0.82%, FNMR0.01=1.27%).
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Figure 7: Scatter plot for 1000 genuine (in green) and impos-
tor (in red) comparisons performed by the baseline comparator
and TripleA in dynamic mode with a step-size 𝑠 = 0.5𝜇𝑠 for LG
feature extraction.

of 𝑠 ≤ 2/3𝜇𝑠 appear most suitable for both feature extraction
methods.

4.2 Timing Tests
All experiments were performed on a single core of an Intel
Core i7-3610QM CPU with 3.2GHz on a standard work station
with sufficient RAM. A single comparison of iris-codes takes
∼100 micro seconds for the above described (non-optimized)
baseline comparator. Relative speed-ups provided by pro-
posed TripleA approaches are summarized in Table 3 (note that
speed-ups are equal for both feature extractors since iris-codes
are of same size and dimension). As previously mentioned,
a higher step-size is not necessarily optimal. For the search
space of 𝐾 = 2 ⋅ 16 + 1 = 33 an optimal speed-up is achieved
for 𝑠 = √33/√2 = 4. For the general TripleA approach this re-
sults in an almost two-fold speed-up compared to the baseline
system while larger step-sizes reveal lower speed-ups.
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Figure 8: Relative frequencies of average sequence lengths
used in dynamic mode for LG and QSW feature extraction.

Mode Step-size TripleA TripleA TripleA
limited one-sided

2 1.6 3.8 4.4
3 1.7 3.4 4.6
4 1.9 3.0 4.6

Static 5 1.7 2.6 4.1
6 1.7 2.3 3.9
7 1.5 2.0 3.5
8 1.5 1.8 3.3

1/3 𝜇𝑠 1.6 3.8 4.4
1/2 𝜇𝑠 1.7 3.4 4.6

Dyn. 2/3 𝜇𝑠 1.9 3.0 4.6
3/4 𝜇𝑠 1.9 3.0 4.6

𝜇𝑠 1.7 2.4 3.9

Table 3: Obtained speed-ups for proposed TripleA approaches
using LG/QSW feature extraction compared to the baseline
systems (speed-up calculation is based on the median time per
comparison).
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5 Conclusions

We have presented and evaluated a new method (TripleA) for
speeding up HD comparisons with rotation correction for iris-
codes. This proposed method uses a screening process for the
oscillating HD sequences under rotation which results in an
up to four-fold speed-up. For two different feature extraction
techniques operation points resulting in maximum speed-up,
i.e. step-sizes of 4 to 5 for the static mode and 3/4 𝜇𝑠 for the dy-
namic mode, coincide with the lowest impact in terms of loss
of EER and FNMR at FMR=0.01%. TripleA can be used with-
out further requirements and is compatible with binning and
parallelization techniques making it widely applicable. To fa-
cilitate reproducible research an implementation of TripleA will
be made available together with [19].

Further optimization of the first search step allows for fewer
accurate searches and would further speed up the compar-
isons. In future work we will analyse the possibility of opti-
mizing the first screening search by using multi-threading and
the GPU.
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