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Abstract

The fuzzy commitment scheme has been leveraged as a
means of biometric template protection. Binary templates
are replaced by helper data which assist the retrieval of
cryptographic keys. Biometric variance is overcome by
means of error correction while authentication is performed
indirectly by verifying key validities.

A statistical attack against the fuzzy commitment scheme
is presented. Comparisons of different pairs of binary bio-
metric feature vectors yield binomial distributions, with
standard deviations bounded by the entropy of biometric
templates. In case error correction consists of a series
of chunks helper data becomes vulnerable to statistical
attacks. Error correction codewords are bound to sepa-
rate parts of a binary template among which biometric en-
tropy is dispersed. As a consequence, chunks of the helper
data are prone to statistical significant false acceptance.
In experiments the proposed attack is applied to different
iris-biometric fuzzy commitment schemes retrieving crypto-
graphic keys at alarming low effort.

1. Introduction

Biometric recognition represents the strongest form of
personal identification. However, physiological biometric
characteristics are not secret and cannot be revoked or reis-
sued causing several vulnerabilities that violate individuals
privacy (e.g. tracking subjects without consent). In contrast
to password-based authentication, biometric systems are re-
quired to perform fuzzy comparisons to overcome biometric
variance. Conventional encryption algorithms (e.g. AES)
do not support a comparison of biometric templates in en-
crypted domain leaving biometric templates exposed during
every authentication attempt [6]. Biometric template pro-
tection schemes which are categorized as biometric cryp-
tosystems [15] and cancellable biometrics [11] offer solu-
tions to privacy preserving biometric authentication. The
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very essence of both technologies is that a comparison of
biometric templates is performed in encrypted domain. In
addition, different versions of obscured biometric templates
are generated to prevent impostors from cross-matching.

Biometric cryptosystems based on the fuzzy commit-
ment scheme (FCS) [8] bind cryptographic keys prepared
with error correction information to binary biometric tem-
plates. In case biometric templates exhibit high similar-
ity according to some metric, successful key retrieval is
achieved by applying error correction decoding. Several
different biometric modalities (e.g. iris [4], fingerprints
[10]) have been applied in FCSs achieving practical perfor-
mance rates. Recently, it has been theoretically shown that
FCSs leak information in bound keys as well as biometric
templates [5], and other possible vulnerabilities have been
discussed [14], however, optimal error correction codes for
a desired code length have remained elusive.

The contribution of this work is the proposal of a sta-
tistical attack against FCSs. In order to bind and retrieve
keys, long enough to be applied in generic cryptosystems,
conventional implementations of biometric FCSs sequen-
tially substitute parts of chosen cryptographic keys by cor-
responding error correction codewords. The resulting se-
quences of codewords are then bound to biometric tem-
plates to generate commitments. Due to the fact that bino-
mial distributions of dissimilarity scores yield higher vari-
ance within binary chunks of biometric templates (com-
pared to entire templates) the probability of successful error
correction decoding increases for impostor attempts. As a
consequence, statistical attacking of FCSs becomes feasi-
ble in case biometric feature vectors do not exhibit enough
entropy. The idea of applying statistical attacks based on
error correction codes against biometric cryptosytems has
first been proposed in [14]. Since experimental studies were
omitted a comprehensive analysis of the proposed attack is
demanded. Based on theoretical investigations the proposed
attack is applied to different iris-biometric FCSs. By con-
ducting statistics about decoded codewords, small sets of
impostor templates achieve successful key retrieval expos-
ing committed templates.
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Figure 1. The FCS: keys prepared with error correction are XORed with biometric feature vectors in the key-binding process. biometric
features are XORed with the commitment and error correction decoding is applied at key-retrieval. Keys are verified applying hashes.

This paper is organized as follows: a brief review of bio-
metric cryptosystems and iris-based FCSs is given (Sect.
2). Subsequently, the statistical attack against the FCS is
proposed (Sect. 3). Experimental studies based on iris bio-
metrics are presented (Sect. 4). Finally, a summary and
conclusion is given (Sect. 5).

2. Biometric Cryptosystems
Biometric cryptosystems are designed to securely bind

a digital key to a biometric or generate a digital key from
a biometric [2] offering solutions to biometric-dependent
key-release and biometric template protection [6]. In con-
trast to conventional biometric systems, biometric cryp-
tosystems are designed to output stable keys which are re-
quired to match a hundred percent at authentication. Orig-
inal biometric templates are replaced through biometric-
dependent public information (helper data) which assist the
key-release process. Based on how helper data are derived,
biometric cryptosystems are classified as key-generation or
key-binding systems [15].

Within key-generation schemes helper data are derived
only from the biometric template. Keys are directly gener-
ated from the helper data and a given biometric sample [6].
While the storage of helper data is not obligatory, the ma-
jority of proposed key-generation schemes does store helper
data. Key-binding schemes obtain helper data by binding a
chosen key to a biometric template. As a result of the bind-
ing process a fusion of the secret key and the biometric tem-
plate is stored as helper data. Applying an appropriate key
retrieval algorithm, keys are obtained from the helper data
at authentication [15]. Since keys are independent of bio-
metric features these are revocable while an update of the
key usually requires re-enrollment. An overview of biomet-
ric cryptosystem technologies can be found in [2].

2.1. Iris-Biometric Fuzzy Commitment Schemes

Juels and Wattenberg proposed a bit commitment
scheme resilient to noise in 1999, the FCS [8], which repre-
sents an instance of key-binding. A FCS is formally defined

Authors FRR/ FAR (%) Key Size Test Set
Hao et al. [4] 0.47/ 0 140 bit 70 subjects

Bringer et al. [1] 5.62/ 0 42 bit ICE 2005

Table 1. Experimental results of proposed FCSs.

as a function F , applied to commit a codeword c ∈ C with
a witness x ∈ {0, 1}n where C is a set of error correcting
codewords of length n. The witness x represents a binary
biometric feature vector which can be uniquely expressed in
terms of the codeword c along with an offset δ ∈ {0, 1}n,
where δ = x − c. Given a biometric feature vector x ex-
pressed in this way, c is concealed applying a conventional
hash function (e.g. SHA-1), while leaving δ in the clear. The
stored helper data is defined as,

F (c, x) =
(
h(x), x− c

)
. (1)

In order to achieve resilience to small corruptions in x,
any x′ sufficiently “close” to x according to an appropriate
metric (e.g. Hamming distance), should be able to recon-
struct c using the difference vector δ to translate x′ in the
direction of x. In case ‖x − x′‖ ≤ t, where t is a defined
threshold lower bounded by the according error correction
capacity, x′ yields a successful decommitment of F (c, x)
for any c. Otherwise, h(c) 6= h(c′) for the decoded code-
word c′ and a failure message is returned. In Fig. 1 the basic
operation mode of the FCS is illustrated.

Key approaches to iris-based FCSs with respect to per-
formance rates in terms of false rejection rate (FRR) and
false acceptance rate (FAR), extracted key sizes, and ap-
plied data sets are summarized in Table 1. The FCS was
applied to iris-codes by Hao et al. [4]. In their scheme 2048-
bit iris-codes are applied to bind and retrieve 140-bit cryp-
tographic keys prepared with Hadamard and Reed-Solomon
error correction codes. Hadamard codes are applied to elim-
inate bit errors originating from the natural biometric vari-
ance and Reed-Solomon codes are applied to correct burst
errors resulting from distortions. The system was evaluated
on a small test set of ideal iris images. In order to provide an
error correction decoding in an iris-based FCS, which gets
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close to a theoretical bound, two-dimensional iterative min-
sum decoding is introduced in [1]. Within this approach a
matrix is created where lines as well as columns are formed
by two different binary Reed-Muller codes. Thereby a more
efficient decoding is available. The proposed scheme was
adapted to the standard iris recognition algorithm of Daug-
man [3] to bind and retrieve 42-bit keys. The scheme was
tested on non-ideal iris images providing a more significant
performance evaluation. In [12], a systematic approach to
the construction of iris-based FCSs is presented. After an-
alyzing error distributions between iris-codes of different
iris recognition algorithms, Reed-Solomon and Hadamard
codes are applied (similar to [4]). Different techniques to
improve the performance of iris-based FCSs have been pro-
posed [17, 13]. Binary iris-code were found to provide
practical performance rates in a FCS, in addition, template
alignment is feasible performing one-dimensional circular
shifts of iris-codes during key retrieval.

2.2. Binary Biometrics and Error Correction Codes

A binary representation of biometric features offers sev-
eral advantages: on the one hand a more compact storage
of biometric templates and on the other hand a rapid com-
parison of biometric templates (on large-scale databases).
While some biometric cryptosystems process real-valued
feature vectors (e.g. fuzzy vault schemes [7]), FCSs require
binary feature vectors as input. Recently, several algorithms
which aim at generating binary biometric feature vectors
suitable for biometric cryptosystems have been proposed
(e.g. for fingerprints in [16]).

Typically, comparisons between binary biometric feature
vectors are implemented by the simple Boolean exclusive-
OR operator (XOR) applied to a pair of binary biometric
feature vectors, masked (AND’ed) by both of their corre-
sponding mask templates to prevent occlusions caused by
eyelids or eyelashes from influencing comparisons. The
XOR operator ⊕ detects disagreement between any corre-
sponding pair of bits, while the AND operator ∩ ensures
that the compared bits are both deemed to have been uncor-
rupted by noise. The norm (‖ · ‖) of the resulting bit vector
and of the AND’ed mask template are then measured in or-
der to compute a fractional Hamming distance (HD) as a
measure of the dissimilarity between pairs of binary bio-
metric feature vectors {codeA, codeB} and the according
mask bit vectors {maskA, maskB} [3]:

HD =
‖(codeA⊕ codeB) ∩maskA ∩maskB‖

‖maskA ∩maskB‖ . (2)

A common way to estimate the average entropy of bio-
metric feature vectors is to measure the provided “degrees-
of-freedom” which are defined by d = p(1− p)/σ2, where
p is the mean HD and σ2 the corresponding variance be-
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Figure 2. Binomial distribution of Hamming distances between
different pairs of binary biometric feature vectors.

tween comparisons of different pairs of binary feature vec-
tors, shown in Fig. 2. In case all bits of each binary feature
vector of length n would be mutually independent, com-
parisons of pairs of different feature vectors would yield a
binomial distribution,

B(n, k) =
(
n

k

)
pk(1− p)n−k =

(
n

k

)
0.5n (3)

and the expectation of the Hamming distance would be
E(HD(codeA, codeB)) = 1/n · E(X ⊕ Y ) = np · 1/n =
p = 0.5, where X and Y are two independent random
variables in {0, 1}. In reality, reasonable parts of fea-
ture vectors correlate. As a consequence p decreases to
0.5 − ε while Hamming distances remain binomially dis-
tributed with a reduction in n. It is expected that compar-
isons of binary biometric feature vectors of length n with
an average number of d degrees of freedom reveal a bino-
mial distribution B(d, 0.5), with the corresponding variance
dp(1 − d) = 0.25d. By analogy, the variance of the ac-
cording Hamming distance between different pairs of fea-
ture vectors is 1/d2 · 0.25d = 0.25/d. In the limit (i.e.
d → ∞) the variance gets zero, 0.25/d d→∞

= 0, in other
words, the higher the entropy (degrees of freedom) within
feature vectors the sharper the binomial distribution result-
ing from comparisons of different pairs of binary templates.
On the contrary, small chunks of binary biometric feature
vectors are expected to exhibit a higher average variance
compared to the entire feature vector, even if entropy is not
equally distributed, which is the case for the vast majority
of biometric feature extraction methods.

Common implementations of biometric FCSs apply a
successive error correction encoding of different chunks of
a chosen key. Parts of the key are either mapped to an ac-
cording error correction codeword (e.g. applying Hadamard
codes) or error correction information is appended (e.g. ap-
plying Reed Solomon codes). A sequential application of
error correction is necessary to bind sufficiently long keys
(which may not appear obvious at first glance). For in-
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stance, a linear code of the type [2k, k + 1, 2k+1] (which
is often applied in FCSs) maps a binary vector of length
k to a codeword of length 2k−1 where the error correction
alphabet consists of 2k + 1 codewords. In case a single
codeword would be applied prior to committing a key to a
binary feature vector of length 2n the maximum key size l
would be defined as l = log2(2

n) − 1 = n − 1 (i.e. 10
bits in [4] or in 12 bits [12]). If the key is divided into
2m parts of equal length the maximum key size increases
to l = 2m log2(2

n/2m) − 2m = 2m(n − m − 1). Since
short keys are vulnerable to brute force attacks and biomet-
ric feature extraction methods do not provide arbitrary long
feature vectors the construction of FCSs usually involves
a fragmentation of keys during error correction encoding.
Consequentially, chunks in the commitment reveal higher
variance with respect to the Hamming distance.

3. Error Correction Code Histogram Attack

FCSs compensate for biometric variance applying error
correction codes to correct differing bits between pairs of
binary feature vectors of a single subject. A predefined
threshold of error correction capacity is assigned to chunks
of the commitment. The false rejection rate of a fuzzy com-
mitment is lower bounded by error correction capacities, es-
pecially if biometric signals are captured under unfavorable
conditions. Depending on the chosen length of error cor-
rection codewords, which substitute parts of keys, standard
deviations of Hamming distances between pairs of different
feature vectors vary within according chunks of the com-
mitment, shown in Fig. 4. If codewords are committed
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to rather short chunks binomial distributions of Hamming
distance comparisons are flattened and error correction suc-
ceeds more likely, and vice versa.

The prior idea to apply statistical attacks based on er-
ror correction code histograms was introduced in [14]. It
is suggested to run error correction in soft decoding mode,
i.e. the error correction decoding procedure always returns
the nearest codeword or a list of nearest codewords. It is as-
sumed that potential attackers are in knowledge of applied
error correction and its configuration – a common assump-
tion in a cryptographic sense. Soft decoding forms the basis
of the proposed attack. In this mode the decoder is capable
of correcting more errors (on average), decreasing the false
rejection rate while increasing the probability of obtaining
a false accept. The operation mode of the attack is illus-
trated in Fig 3. Binary biometric feature vectors generated
by the applied feature extraction are randomly chosen from
an impostor database and successive decommitment is per-
formed for each chunk in soft decoding mode. The number
of appearances of each possible codeword is counted, i.e.
for each chunk a histogram is stored. After running an ad-
equate amount of impostor templates against the commit-
ment, histograms are analyzed. A bin which corresponds to
the histogram maximum is identified for each chunk, yield-
ing the most likely error correction codeword of the accord-
ing chunk. In [14] it is claimed that the attack succeeds if
the average mean between pairs of binary feature vectors is
reasonable smaller than 0.5 (e.g. 0.45), since then correct
codewords are more likely decoded than others. However,
this is not necessarily true even if smaller means imply in-
creased standard deviations. In case codewords, which sub-
stitute parts of a key, are long enough to yield sharper bino-
mial distributions error correction may still fail for compar-
isons of different subjects.

The attack only works in case the probability of decod-
ing a correct codeword is significantly higher than the aver-
age probability of decoding an other codeword. Otherwise,
histograms are not expected to reveal peaks of correct code-
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words. It is expected that incorrect codewords do not occur
with the same probability (e.g. incorrect codewords which
exhibit a small Hamming distance to the correct codeword
are more likely to appear). Given two arbitrary chunks of
feature vectors, codeAi and codeBi of length n exhibiting d
degrees of freedom, the probability of decommiting the cor-
rect codeword where the according codewords correct up to
k bit errors can be formally written as,

P
(
HD(codeAi, codeBi) ≤ k/n

)
=

k∑
i=0

B(d, i). (4)

If the probability of successful decommitment is signifi-
cantly higher than that of retrieving any other codeword,

P
(
HD(codeAi, codeBi) ≤ k/n

)
�

max
(
P (HD(codeAi, codeBi)) = x

)
,

x ∈ [b · k/n+ 1, b]

(5)

where b defines a range of distances mapped to one distinct
codeword, a larger number of decommitment attempts is ex-
pected to create a peak at the correct codeword of the chunk.
For instance, binary feature vectors in [4] exhibit 249 de-
grees of freedom where chunks of a key are substituted
by 64-bit codewords of an Hadamard code. On average
about 8 degrees of freedom would be achieved in each of
the 32 64-bit blocks. If the error correction code is config-
ured to correct up to 25% of occurring bit errors, the prob-
ability of an attacker to guess one correct codeword would
be P (HD(codeAi, codeBi) < 0.25) =

∑1
i=0 B(8, i) '

3.52% (in hard-decoding mode). The remaining 127 pos-
sible but incorrect codewords are expected to appear with
lower probability. The attack is simple to implement and
very effective. It only fails if Eq. (5) is not true or any secret
bit scrambling is applied prior to the key-binding process.
However, introducing secret parameters based on which the
commitment is further obscured yields two-factor authenti-
cation in which additional tokens must be considered com-
promised during security evaluations, so that the attack re-
tains its effectiveness.

4. Experiments on Biometric Data
4.1. Experimental Setup

Experiments are carried out on the CASIAv3-Interval iris
database1 and on the IIT Delhi Iris Database v12, two public
available iris datasets. Both databases consist of good qual-
ity NIR illuminated indoor images. These datasets are fused

1The Center of Biometrics and Security Research, CASIA Iris Image
Database, URL: http://www.sinobiometrics.com

2The IIT Delhi Iris Database version 1.0, URL:
http://web.iitd.ac.in/˜biometrics/Database Iris.htm

(c)

(d)

(e)

(a) (b)

Figure 5. (a) image of eye (b) detection of pupil and iris (c) un-
rolled iris texture (d) preprocessed iris texture (e) sample iris-code.

in order to obtain one comprehensive test set. The resulting
test set consists of over 800 classes allowing a comprehen-
sive evaluation of the proposed systems.

In the preprocessing step the pupil and the iris of a given
sample image are located applying Canny edge detection
and Hough circle detection. More advanced iris detection
techniques are not considered, however, since the same de-
tection is applied for all experimental evaluations obtained
results retain their significance. Once the pupil and iris cir-
cles are localized, the area between them is transformed to
a normalized rectangular texture of 512× 64 pixel, accord-
ing to the rubbersheet approach [3]. Finally, lighting across
the texture is normalized using block-wise brightness esti-
mation. Preprocessing is shown in Fig. 5 (a)-(d).

At feature extraction stage we employ a custom imple-
mentation of the algorithm of Ma et al. [9]. Within this
approach the texture is divided into 10 stripes to obtain 5
one-dimensional signals, each one averaged from the pix-
els of 5 adjacent rows, hence, the upper 512 × 50 pixel of
preprocessed iris textures are analyzed. A dyadic wavelet
transform is performed on 10 signals obtained from the ac-
cording texture stripes, and two fixed subbands are selected
from each transform resulting in a total number of 20 sub-
bands. In each subband all local minima and maxima above
a adequate threshold are located, and a bit-code alternating
between 0 and 1 at each extreme point is extracted. Using
512 bits per signal, the final code is again 512×20 = 10240
bit. A sample iris-code is shown in Fig. 5 (e). The accord-
ing mean and standard deviations of binomial distribution
of Hamming distances between different pairs of iris-codes
are p =0.4965 and σ =0.0143, resulting in 1232 degrees of
freedom. At a FAR of 0.01% a FRR of 1.02% is obtained
and of EER of 0.415%.

29



 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90  95  100

Pr
ob

ab
ili

ty
 D

en
si

ty
 (

%
)

Dissimilarity Scores (%)

 

64-Bit
128-Bit
256-Bit

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  4  8  12  16  20  24  28  32  36  40  44  48  52  56  60  64  68  72  76  80

Pr
ob

ab
ili

ty
 D

en
si

ty
 (

%
)

Number of Block Errors

 

False Rejection Rate
False Acceptance Rate

Threshold: FAR<0.01 (MAX=32)

(b)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 4  8  12  16  20  24  28  32  36  40  44  48  52  56  60  64

Pr
ob

ab
ili

ty
 D

en
si

ty
 (

%
)

Number of Decoding Iterations

 

False Rejection Rate
False Acceptance Rate
Threshold: FAR<0.01

(c)

Figure 6. Illustration of (a) binomial distributions of Hamming distances for different vector lengths, (b) performance rates for the FCS of
Hao et al. and (c) performance rates for the FCS of Bringer et al.

4.2. Iris-based Fuzzy Commitment Schemes

The proposed attack is performed against custom imple-
mentations of iris-biometric FCSs. The first scheme follows
the approach of Hao et al. [4]. In the original proposal a
140-bit cryptographic key is encoded with Hadamard and
Reed-Solomon codes. For the applied feature extraction
the application of Hadamard codewords of 128-bit and a
Reed-Solomon code RS(16, 80) reveals the best experi-
mental results for committing 128-bit keys. At key-binding,
a 16·8 = 128 bit key is first prepared with a RS(16, 80)
Reed-Solomon code. The Reed-Solomon error correction
code operates on block level and is capable of correcting
(80 − 16)/2 = 32 block errors. Then the 80 8-bit blocks
are Hadamard encoded. In a Hadamard code codewords of
length n are mapped to codewords of length 2n−1 in which
up to 25% of bit errors can be corrected. Hence, 80 8-bit
codewords are mapped to 80 128-bit codewords resulting
in a 10240-bit bit stream which is bound with the iris-code
by XORing both. Additionally, a hash of the original key
is stored. At authentication key retrieval is performed by
XORing a given iris-code with the commitment. The re-
sulting bit stream is decoded applying Hadamard decoding
and Reed-Solomon decoding afterwards. The resulting key
is hashed and compared to the stored one yielding success-
ful key retrieval or rejection.

The second scheme was proposed by Bringer et al. [1].
Motivated by their observation that the system in [4] does
not hold the reported performance rates on data sets cap-
tured under unfavorable conditions a more effective error
correction decoding is suggested. In the proposed technique
which is referred to as min-sum decoding iris-codes of 2048
bits are arranged in a two-dimensional manner. In the orig-
inal system a 42-bit key is encoded with a two-dimensional
Reed-Muller code such that each 64-bit line represents a
codeword and each 32-bit column represents a codeword,
too. To obtain the helper data the iris-code is XORed with
the two-dimensional Reed-Muller code. It is shown that by
applying a row-wise and column-wise min-sum decoding
the recognition performance comes near practical bound-

Length of Chunks P (HD < 0.25) (%) DoF per Chunk
64-bit 3.61 7.7
128-bit 1.13 15.4
256-bit 0.13 30.8∑1

i=0 B(8, i) ' 3.52%,
∑3

i=0 B(16, i) ' 1.06%,∑7
i=0 B(32, i) ' 0.11%

Table 2. Probabilities of Hamming distances smaller than error
correction capacities within chunks of feature vectors.

Scheme FRR (%) FAR (%) Threshold
Hao et al. 3.65 0.0095 32 Corr. Blocks

Bringer et al. 3.01 0.0099 20 Dec. It.

Table 3. Summarized experimental results for the applied FCSs.

aries. In order to adopt the system to the applied feature ex-
traction methods 8192 bits of iris-codes are arranged in 64
lines of 128 bits (best experimental results are achieved for
this configuration). To generate the commitment a 56-bit
key is used to generate the error correction matrix. Since
Reed-Muller codes are generated using Hadamard matri-
ces and each line and each column of the resulting two-
dimensional code represents a codeword, 2n+1 codewords
define a total number of 2n+1 codewords. Due to the struc-
ture of the error correction code 27·8 = 256 possible config-
urations of the 128 × 64 = 8192-bit error correction code
exist. At authentication a given iris-code is XORed with
the commitment and iterative min-sum decoding is applied
until the correct key is retrieved or a threshold is reached.

With respect to iris biometrics these variations of the
FCS represent the best performing biometric cryptosystems
in literature [2]. For both feature extraction methods bi-
nomial distributions of Hamming distances between differ-
ent pairs of iris-codes according to different feature vec-
tor sizes are plotted in Fig. 6 (a). Obviously, smaller
parts of iris-codes exhibit higher variations in Hamming
distances. The according probabilities of obtaining Ham-
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Figure 7. Performance of the proposed attack (a) without performing any shifting and circular shifts of 8 bit in each direction, (b) applying
one shift of 256 bits and 3 shifts of 128 bit, and (c) applying 7 shifts of 64 bit and 15 shift of 32 bits.

ming distances smaller than error correction capacities at
bit-level, up to 25% for a single codeword, with respect to
different lengths of chunks are summarized in Table 2. As
expected, obtained probabilities are quite similar to cumu-
lative probabilities of successes in Bernoulli trials of suc-
cessive coin tosses derive from the according number of de-
grees of freedom. The performance rates of the custom im-
plementations of the FCSs of Hao et al. and Bringer et al.
are plotted in Fig. 6 (b)-(c). False rejection rates and false
acceptance rates are summarized in Table 3 with respect to
the number of corrected block errors or decoding iterations
for a target false acceptance rate below 0.01%, respectively.
For both feature extraction methods obtained performance
rates are comparable to those reported in literature.

4.3. Attack on Fuzzy Iris Commitments

For the FCS of Hao et al. the target threshold is set
to 80−32=48 codewords, where remaining errors are cor-
rected by the Reed-Solomon code. In the FCS of Bringer
et al. the two-dimensional arrangement of error correction
codewords leads to a target threshold of 32 codewords. As
previously mentioned, 2n+1 codewords define a total num-
ber of 2n+1 codewords, i.e. 33 lines or 65 columns define
the entire code. Different settings of the attack are consid-
ered in order to reduce the number of impostor templates
necessary to retrieve secret keys. In [14] it is suggested
to apply several circular shifts to binary feature vectors to
construct diverse templates. In the applied feature extrac-
tion algorithm chunks of 512 bits originate from horizontal
texture stripes, i.e. a circular shift of 256 bits corresponds
to a rotation of the iris by 180◦. Several shifting levels of
impostor templates are considered during decommitments.
For both types of FCSs histograms are constructed for 128
bit chunks, generated by XORing Hadamard codewords of
same length with according parts of iris-codes (in the imple-
mentation of the FCS of Bringer et al. 128 bit correspond
to one line of the commitment). In hard-decoding mode
(128/4)−1=31 bit errors are corrected within each code-
word.

Commitments are created for both types of schemes for
100 randomly chosen iris-codes of the applied database.
From the remaining classes iris-codes are randomly chosen
for each attack iteration. The number of correctly identified
codewords according to the average amount of required im-
postor templates applying the attack without any shifting is
plotted in Fig. 7 (a). Iris recognition algorithms compen-
sate against head tilts applying circular shifts of iris-codes
where the minimal Hamming distance obtained corresponds
to an optimal alignment [3]. Similar procedures have been
proposed for binary representations of fingerprints (e.g. in
[16]). However, as shown in Fig. 7 (a), applying a circular
shift of 8 bits in each direction slightly decreases the perfor-
mance of the attack. Since the optimal alignment is not seen
decommitment is performed at various miss-aligned shift-
ing positions. Consequentially, even more impostor tem-
plates are required to reach specified thresholds. Perfor-
mance rates of the applied attack according to several varia-
tions of shifting are plotted in Fig. 7 (b)-(c) (note the scaling
of x-axis). By applying several shifts to iris-codes prior to
decommitment, significantly less impostor templates are re-
quired to retrieve keys. For more than 16 different shiftings
of single iris-codes no significant reduction in the number
of required impostor templates has been observed. Since
entropy is not uniformly distributed across entire iris-codes
a reasonable amount of codewords is identified relatively
fast while the detection of remaining codewords may re-
quire significant more impostor attempts.

The average number of required impostor templates and
the according number of decommitment attempts in order
to reach the target thresholds of correctly identified code-
words are summarized in Table 4. For the FCS of Hao et al.
on average 251.19 impostor template are required in order
to retrieve the correct key without performing any shifting.
For the scheme of Bringer et al. on average 3.01 impostor
templates are required to correctly identify 33 correct code-
words in case soft decoding is applied to each line of the
commitment (in contrast to a restricted number of min-sum
decoding iterations). In case different sensible shiftings of
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Shifts (Bit)
Threshold of correctly identified Codewords
33→ Bringer et. al 48→ Hao et. al
Impostors Attempts Impostors Attempts

No 3.01 3.01 251.19 251.19
±8 3.78 17×3.78 255.87 17×255.87

1×256 2.48 2×2.48 219.68 2×219.68
3×128 1.0 4×1.0 132.45 4×132.45
7×64 1.0 8×1.0 81.62 8×81.62
15×32 1.0 16×1.0 78.64 16×78.64

Table 4. Experimental results for the proposed attack.

iris-codes are considered the required amount of impostor
templates is reduced while the number of according decom-
mitment attempts increases. For both types of FCSs the er-
ror correction code histogram attack outperforms a conven-
tional false acceptance attack, since both schemes are run
at a false acceptance rate of less than 0.01%. Even though
the applied feature extraction method might exhibit enough
entropy to bind and retrieve long cryptographic keys, struc-
tures of stored helper data of considered FCSs expose se-
curity vulnerabilities. The presented error correction code
histogram attacks utilizes the structure of stored helper data
which allows to retrieve secret keys at very low effort.

In order to prevent from the proposed attack chunks of
binary biometric need to exhibit higher entropy or the sizes
of chunks needs to be increased, i.e. longer codewords sub-
stitute less parts of the key (introducing additional tokens
to salt the commitment are not considered a means of im-
proving security [6]). In the considered scenarios 128-
bit chunks of biometric templates would have to exhibit
at least 24 degrees of freedom under the assumption that
all incorrect codewords occur with the same probability,∑5

i=0 B(24, i) < 1/(255− 1). In case longer error correc-
tion codewords are applied sizes of bound keys decrease.
For the algorithm of Ma et al. 512-bit codewords would
provide about 60 bits of freedom where

∑14
i=0 B(60, i) �

1/(2048−1) binding and retrieving reasonable shorter keys
(<128 bit) at probable worse performance rates.

5. Conclusion

A statistical attack based on error correction code his-
tograms is proposed and applied to re-implementations of
the best performing iris-based FCSs on a comprehensive
dataset. As opposed to the view that binary feature vec-
tors, which exhibit sufficient entropy, bind cryptographic
keys in a secure commitment, it is shown that FCSs can
still be cracked applying the proposed attack. The structure
of stored helper data is essential to the security of bound
keys and biometric templates. As a consequence more so-
phisticated security analysis with respect to the structure of
stored helper data and applied feature extraction within ap-
proaches to FCSs is demanded.
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