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ABSTRACT

Biometric cryptosystems is a group of emerging technologies
that securely bind a digital key to a biometric so that no bio-
metric image or template is stored. Focusing on iris biomet-
rics several approaches have been proposed to bind keys to
binary iris-codes where the majority of these approaches are
based on the so-called fuzzy commitment scheme.

In this work we present a new approach to constructing
iris-based fuzzy commitment schemes. Based on intra-class
error analysis iris-codes are rearranged in a way that error
correction capacities are exploited more effectively. Experi-
mental results demonstrate the worthiness of our approach.

Index Terms— Biometrics, iris recognition, cryptogra-
phy, key management, template protection

1. INTRODUCTION

The growing demand of high security applications has led to
a high popularity of biometrics, where iris has been found
to be one of the most reliable biometric traits [1]. In order to
abolish (insecure) password and PIN-based key release mech-
anisms in generic cryptosystems biometrics have been intro-
duced, resulting in so-called biometric cryptosystems [2]. Fo-
cusing on iris biometrics, throughout literature best exper-
imental results were achieved applying the so-called Fuzzy
Commitment Scheme [3] (FCS) in which a cryptographic key
prepared with bit- and block-level error correction codes is
bound to binary iris-codes. During authentication error cor-
rection decoding is applied to overcome biometric variance
and retrieve the key.

In this work a new method of rearranging binary iris-
codes based on intra-class error analysis is presented in order
to exploit error correction capacities of FCSs more efficiently.
Applying our technique the performance of iris-based FCSs
is increased noticeably. To our knowledge the potential of
adopting iris-codes to error correction capacities has not been
investigated until now.

The remainder of this paper is organized as follows: first
existing approaches to iris-based biometric cryptosystems are
summarized in Section 2. In Section 3 our proposed approach
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Fig. 1. The basic operation mode of a FCS - enrollment and
authentication.

is described in detail. Experimental results are presented in
Section 4. Section 5 concludes.

2. IRIS-BIOMETRIC CRYPTOSYSTEMS

In the past years several approaches to iris-biometric key
binding schemes [4, 5] as well as key generation schemes
[6, 7] have been proposed. Here we will merely focus on ap-
proaches to biometric key binding. Juels and Wattenberg [3]
combined techniques from the area of error correcting codes
and cryptography to achieve a type of cryptographic primitive
referred to as FCS, which consists of a function F , used to
commit a codeword c ∈ C and a witness x ∈ {0, 1}n. The set
C is a set of error correcting codewords c of length n and x
represents a bitstream of length n, termed witness (biometric
data). The difference vector of c and x, δ ∈ {0, 1}n where
x = c+δ, and a hash value h(c) are stored as the commitment
termed F (c, x) (secure biometric template). Each x′, which
is sufficiently “close” to x, according to an appropriate met-
ric, should be able to reconstruct c using the difference vector
δ to translate x′ in the direction of x. During enrollment
the system acquires a witness x, selects a codeword c ∈ C,
calculates the commitment F (c, x) (δ and h(c)) and stores
it as template. At the time of authentication, a witness x′ is
acquired and the system checks whether x′ yields a success-
ful decommitment. If the hash h(c′) of a decoded codeword
c′ is equal to the stored hash h(c) the secret codeword c is
released. Figure 1 shows the basic operation mode of a FCS
involving biometric data.

Hao et al. [4] applied the FCS to iris-codes. By preparing
a 140-bit key with Hadamard and Reed-Solomon error cor-
rection codes and binding it to 2048-bit iris-codes a FRR of
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Fig. 2. Example of a normalized iris texture after the de-
scribed preprocessing procedure.

0.47% and a zero FAR was reported for 700 iris images of
70 probands. In previous work we [5] provide a systematic
approach to the construction of FCSs based on iris biometrics
applying Reed-Solomon and Hadamard codes, similar to Hao
et al. [4]. Experimental results provide a FRR of 4.64% and
6.57% for adopting the fuzzy commitment approach to two
different iris recognition algorithms extracting 128-bit keys
applying three enrollment samples for each person. Bringer
et al. [8] suggest to applying two-dimensional iterative min-
sum decoding in which a matrix is created where lines as well
as columns are formed by two different binary Reed-Muller
codes. By applying the proposed scheme to the standard iris
recognition algorithm of Daugman a FRR of 9.1% is achieved
for the binding and retrieving of 128-bit cryptographic keys.
Wu et al. [9] proposed an iris-based fuzzy vault to generate
256-bit keys. Applying Reed Solomon codes the authors re-
port a FAR of 0.0% and a FRR of approximately 5.55% for a
total number of over 100 persons.

3. PROPOSED FUZZY COMMITMENT SCHEME

3.1. Preprocessing and Feature Extraction

Preprocessing is implemented according to the approach de-
scribed in [5]. After approximating the inner and outer bound-
ary of the iris, the resulting iris ring is unwrapped in order to
generate a normalized rectangular texture. To obtain a well-
distributed image global histogram stretching is applied. Fig-
ure 2 shows a sample of a preprocessed iris texture.

For the purpose of feature extraction we employ our own
implementation of the algorithm of Ma et al. (see [5]). In the
algorithm of Ma et al. the upper 512×50 pixel of the prepro-
cessed iris textures are examined and mean values of blocks
of 1 × 5 pixel are processed. Then a 1-D wavelet transform
is applied to ten 1-D intensity signals of length 512. Detected
minima and maxima serve as features where sequences of 1s
and 0s are assigned to the iris-code until new maxima or min-
ima are found. This whole process is applied to two subbands
extracting a total number of 2× 512× 10 = 10240 bits. For
the entire CASIAv3-Interval iris database1 our implementa-
tion of the iris recognition algorithm of Ma et al. reveals a
FRR of 2.52 % at zero FAR for a circular bit shift of 4 pixels.

3.2. Key Binding and Retrieval

Key binding and retrieval is performed according to the ap-
proach of Hao et al. [4]. The authors suggest to employ a bit

1The Center of Biometrics and Security Research, CASIA Iris Image
Database, http://www.sinobiometrics.com

level error correction code in order to correct single bit errors
and a block level error correction code to correct burst errors
(resulting from distortions such as eyelids or eyelashes), re-
spectively. For the applied feature extraction of Ma et al. we
found that the application of Hadamard codewords of 128-bit
and a Reed-Solomon code RS(16, 80) reveals the best exper-
imental results for the binding of 128-bit cryptographic keys
[5]. This means at key binding a 16·8 = 128 bit cryptographic
key k is first prepared with aRS(16, 80) Reed-Solomon code.
The Reed-Solomon error correction code operates on block
level and are capable of correcting (80 − 16)/2 = 32 block
errors. Then the 80 8-bit blocks are Hadamard encoded. In a
Hadamard code codewords of length n are mapped to code-
words of length 2n−1 in which up to 25% of bit errors can
be corrected. Hence, 80 8-bit codewords are mapped to 80
128-bit codewords resulting in a 10240-bit bitstream which
is bound with the iris-code by XOR-ing both. Additionally, a
hash of the original key h(k) is stored as second part of the
commitment.

At authentication key retrieval is performed by XOR-ing
an extracted iris-code with the first part of the commitment.
The resulting bitstream is decoded applying Hadamard de-
coding and Reed-Solomon decoding afterwards. The result-
ing key k′ is then hashed and if h(k′) = h(k) the correct key
k is released. Otherwise an error message is returned.

3.3. Iris-Code Error Analysis and Bit Rearranging

The key idea which is pursued in iris-based FCS is to apply
bit-level error correction codes to eliminate bit errors between
iris-code which originate from the natural variance of biomet-
ric measurements while block-level error correction codes are
applied to correct burst errors resulting from any sort of dis-
tortions. However, natural variance must not be expected to
be distributed uniformly random. While burst errors may not
be avoided, it is desired to achieve a uniform distribution of
natural variance between genuine iris-codes. Recent work of
Hollingsworth et al. [10] has shown that distinct parts of iris
textures reveal more constant features (bits in the iris-code)
than others. This means distinct parts of iris-codes turn out
to be more consistent than others. This is because some areas
within iris textures are more likely to be occluded by eye lids
or eye lashes. We exploit this fact in order to perform a more
efficient error correction decoding at the time of key retrieval.
Our approach comprises two stages: iris-code error analysis
and bit rearranging. The whole system is shown in Figure 4.

In the first stage intra-class comparisons of a training set
of iris-codes from 20 different persons, generated by the ap-
plied feature extraction, are performed. In order to detect the
most reliable bits in the iris-codes the number of errors occur-
ring at each bit position are stored. The first graph of Figure
3 shows an example of the error distribution resulting from
all intra-class comparisons of a training set. From this error
distribution a global distribution for intra-class errors is ap-
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Fig. 3. Error occurrences for intra-class comparisons of 10240 bit iris-codes for a 20 person training set, approximated intra-
class error distribution and ordered error distribution of the approximated global error distribution for the algorithm of Ma.
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Fig. 4. Stage 1: Intra-class error distributions are analyzed to calculate an approximation of the global error distribution.
Stage 2: According to the approximated global error distribution bits of iris codes are ordered and rearranged.

proximated, which is shown in the second graph of Figure 3.
This is done by simply examining the absolute differences of
all pairs of error counts of subsequent bit positions. If the
absolute difference is above an adjusted threshold the global
threshold is increased or decreased by a fixed value. Thereby
outliers are discarded. Notice that the first two graphs in Fig-
ure 3 appear periodic after each 1024 bits. This is because
1024 bits correspond to one horizontal texture strip of prepro-
cessed iris textures (ten 512×5 stripes are processed).

In the second stage of our proposed system the bits of
each iris-code are rearranged based on the previously approx-
imated intra-class error distribution to perform a more effi-
cient error correction decoding. The rearrangement of iris-
code bits is motivated by the following fact: Error correction
codewords, which are bound with parts of iris-codes which
are expected to contain a very small amount or errors (e.g.
bits at position 3328 to 3584), are not used efficiently since
during decoding only a very small number of bit errors is
corrected. By analogy, error correction codewords which are
bound with parts of iris-codes which are expected to contain a
very large amount of errors (e.g. bits at position 512 to 1024)
are not used efficiently either, since decoding will not succeed
in case a large number of errors occur. In order to rearrange
bits in iris-codes in a sensible manner these are first ordered
with respect to the bit error probability at the according bit
position. For the training set of 20 persons the ordered intra-
class error distribution based on the approximated intra-class
error distribution is shown in the third graph of Figure 3. Once
iris-codes are ordered with respect to the bit error probability

derived from the training set these are rearranged, as follows.
To achieve a uniform distribution of errors bits at bit positions
with high error probabilities have to be arranged in bit-blocks
together with bits originating from bit positions which exhibit
low error probabilities and vice versa. Let (b0, b1, ..., bN ) be
a N -bit iris-code (N = 10239) which was ordered accord-
ing to the approximated ordered error distribution. Then this
iris-code is rearranged such that,

bi 7→ b2·i ∀i : 0 ≤ i < N
2 (1)

bi → b2·(N−1−i)+1 ∀i : N
2 ≤ i < N (2)

In other words, the first 8-bit block of each iris-code con-
sists of 4 bits which are expected to be the most consistent
and 4 bits which are expected to be the least consistent. On
the contrary the last 8-bit block of each iris code consists of
bits which are expected to reveal equal consistency. The pro-
cedure of bit rearranging is illustrated in Figure 4, too. Since
all iris-codes are rearranged according to the estimated error
distribution of a given test set the system only has to store
a single mask, which contains the according bit positions to
rearrange a given iris-code.

4. EXPERIMENTAL RESULTS

The performance of the system is measured in terms of false
rejection rates and false acceptance rates. The FRR of a
biometric cryptosystem defines the rate of incorrect keys
untruly generated by the system, that is, the percentage of
incorrect keys returned to genuine users. By analogy the
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Fig. 5. Distribution of block errors after Hadamard decoding
without bit rearranging.
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Fig. 6. Distribution of block errors after Hadamard decoding
with bit rearranging.

FAR defines the rate of correct keys untruly generated by
the system, that is, the percentage of correct keys returned
to non-genuine users. Experiments are carried out using the
CASIAv3-Interval iris database, a widely used test set of iris
images of over two hundred persons. During preprocessing
normalized iris textures of 512×64 pixels are extracted in the
preprocessing step. All users of the database are registered
applying the described feature extraction where for each user
a randomly generated 128-bit cryptographic key is prepared
with a RS(16, 80) Reed-Solomon code and the resulting
codewords are Hadamard encoded using 128-bit codewords.
The commitment is generated from the first iris texture of
a user and key retrieval is processed for all remaining pre-
processed iris textures for all stored commitments (only one
iris-code is applied to generate the commitment).

The intra-class and inter-class block error distributions af-
ter Hadamard decoding of the original FCS are shown in Fig-
ure 5 where the RS(16, 80) code corrects 32 block errors,
which defines the decision threshold of the system. If no bit
rearranging is applied a FRR of 8.12% is achieved for a zero
FAR performing a bitshift of 4 pixels to the left and to the
right to compensate small head tilts. If bits of iris-codes are
rearranged according to our proposed technique performance
is significantly increased. For our proposed approach intra-
class and inter-class block error distributions after Hadamard
decoding are illustrated in Figure 6 resulting in a FRR of
4.92%. The idea of rearranging bits in iris-codes is simple and
easy to implement while the performance of the original FCS

is significantly increased (almost doubled). As can be seen in
Figure 6 more errors are corrected at bit-level since errors are
distributed more uniformly. On the other hand the number of
remaining inter-class block level errors increases as well since
large numbers of errors are now distributed over the whole
iris-codes so that bit-level error correction fails more often
for non-genuine users. Thus, accuracy as well as security is
increased applying our approach.

5. CONCLUSION

In this paper we presented a new method of rearranging bits
in iris-codes in order to perform a more efficient error cor-
rection decoding in FCSs. By analyzing error distributions in
intra-class comparisons of a training set iris-code bits are re-
arranged in a meaningful manner. Compared to a traditional
FCS a significant performance gain is achieved. Furthermore,
the presented approach is generic and can be applied to any
existing FCS, regardless of the employed feature extraction.
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