
CNN based Finger Region Segmentation
for Finger Vein Recognition
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Abstract—Finger region segmentation is an important step
in a biometric finger vein recognition toolchain. Its aim is to
separate the finger region from background and all other objects
of the image. So far, finger region extraction for finger vein
recognition systems has mainly used classical image processing
based systems. In this work three state-of-the art convolutional
neural network (CNN) based architectures for segmentation,
namely Mask R-CNN, CCNet and HRNet, are evaluated. A major
advantage of the presented CNN-based approach compared to
classic image processing approaches is that the images neither
have to be preprocessed nor any parameters have to be optimized.
All that is required is a sufficient number of already segmented
finger vein images for training.

I. INTRODUCTION

Finger region segmentation is the task of generating a binary
mask that separates finger region pixels from non-finger region
pixels. In general, segmentation tasks are nowadays almost
exclusively approached with CNNs (e.g. [1], [2], [3]). This
is not quite the case in biometrics. Although CNN based
approaches are already used for some modalities (e.g. [1] for
face, [4] for iris or [5] for fingerprints), others still rely mainly
on classical image processing systems. For example in finger
vein biometrics, state-of-the-art finger segmentation systems
still utilize classical image processing systems, e.g. [6], [7],
[8].

In a CNN based segmentation approach, the segmentation
network is trained and evaluated on ground truth data. Since
such a ground truth is not available for many segmentation
tasks, it has to be created by manual segmentation and
annotation. This is a time consuming task. In the course of
this work, such a ground truth was created.

The main contributions of this paper are:
1) The analysis of three state-of-the-art segmentation net-

works on five publicly available data sets in three
different training scenarios. The training scenarios differ
in the data used for training.

2) The creation of a finger segmentation ground truth for
all five sets which will be made publicly available.

The rest of the paper is structured as follows: While the
CNN architectures used are presented in section II, section III
briefly describes the data sets used. The experimental setup and

the results are described in section IV. Section V summarizes
the findings and gives a brief outlook on the planned future
work.

II. CNN MODELS

This work evaluates three state-of-the art semantic segmen-
tation networks, namely Mask R-CNN [1], CCNet [2] and
HRNet [3], for finger region segmentation. Except of resizing
and normalization (which are standard pre-processing steps for
CNNs and require hardly any computation time or adaption
to different datasets) no pre-processing is needed. For Mask
R-CNN and CCNet the images are resized to 256x192 pixels,
for HRNet to 1024x768 pixels (HRNet rescales by 1⁄4 in its
stem, which will again result in a 256x192 pixel output).

A. Mask R-CNN

Mask R-CNN is a two stage network for object instance
segmentation. It is based on Faster R-CNN [9] which already
returns a bounding box and a class label for every candidate
object. Mask R-CNN now adds a third branch that additionally
returns the mask of the object. If more than one candidate is
returned, always the one with the largest area (bounding box)
is selected.

The model in use is the one provided by Torchvision using
a ResNet-50 backbone pre-trained on COCO1. The network is
trained for 30 epochs with a batch size of 8 and a stochastic
gradient descent (SGD) optimizer with an initial learning rate
of 0.005, a momentum of 0.9 and a weight decay of 0.0005.
The learning rate is decreased by factor 10 every fifth epoch.

B. CCNet

CCNet increases the segmentation results by considering the
semantic relation of the pixels with an image. It uses vertical
and horizontal criss-cross attention modules to collect the
context information. Then a further cycle operation is taken,
and each pixel can finally capture the full image correlation.

For the experiments the implementation provided by the
authors2 is used. The network is trained for 30 epochs with a
batch size of 16 and a SGD optimizer with an initial learning
rate of 0.005, a momentum of 0.9 and a weight decay of
0.0005. The model is trained from scratch.

1https://cocodataset.org
2https://github.com/speedinghzl/CCNet978-1-6654-6962-3/22/$31.00 ©2022 IEEE



Fig. 1. Sample images from HKPU: From top to bottom: original image,
provided mask, manually segmented mask. Left: good quality image, middle:
overexposed image, right: image where parts of the finger region is covered
by adjacent fingers.

C. HRNet

HRNet is a network that was originally developed for human
pose estimation, and later extended to also support semantic
segmentation. In contrast to other semantic segmentation net-
works, it attempts to preserve the high resolution throughout
the whole process. This is achieved by maintaining multiple
resolutions in parallel with repeated information exchange,
the so called multi-resolution fusion, across the different
resolutions. As representation head we used the HRNetV2.

In this article a re-implementation of the code provided by
the authors3 is used. The model uses the exact same structure
as described in section 3 of [3]. The network is trained for 30
epochs with a batch size of 12. The used Adam optimizer was
initialized with a learning rate of 0.0001 and never adopted.
As loss function the cross entropy loss is used. The model is
trained from scratch.

III. DATA SETS

The data used in the experiments was taken from several
finger vein data sets: The Hong Kong Polytechnic University
Finger Image Database (HKPU) [10], PLUSVein-Contactless
Finger and Hand Vein Database (PLUSVein-CL) [11], PRO-
TECT MultiModal Dataset v2 (PMMDB) [12] and University
of Twente Finger Vascular Pattern Dataset (UTFVP) [13]. The
corresponding ground truth was created from a single person
and is available on our website4.

A. HKPU
The HKPU contains finger vein and finger texture images

of 156 subjects from two fingers acquired in two separate
sessions. It also provides masks for the finger region. The
quality of some of the acquired finger vein images is rather
poor. Many images are overexposed. Sometimes, however,
other objects (e.g. neighbouring fingers) occlude the finger that
is actually to be acquired. As a result of this, finger regions
segmentation becomes difficult. This is also reflected in the
provided masks. Figure 1 shows some representative samples
from the data set. The images in the top row are the finger
vein images provided by HKPU, in the middle row there are
the provided finger masks and in the bottom row the manually
segmented finger regions, respectively.

3https://github.com/HRNet
4http://wavlab.at/sources/Prommegger22a

TABLE I
OVERVIEW OF FINGER VEIN IMAGES USED TO MANUALLY SEGMENT THE

FINGER REGION (GROUND TRUTH) PER DATA SET

Dataset Subjects Fingers Images Comment

HKPU 20 2 480 subjects 1-20

PLUSVein-CL 60 6 612 not published

PMMDB-FR 31 4 613 palmar view (0°)
session 1

PMMDB-FV3 16 6 480
LED version
palmar view
session 2

UTFVP 20 6 480 subjects 1-20

The images in the left column are from an image of good
quality. The extracted mask corresponds quite well to the
actual finger region, even if it is a bit ragged on its outline.
The images in the middle column come from an overexposed
image. Some of the overexposed areas are not recognized
as finger regions in the supplied mask. In the last image,
some parts of the finger region are covered by neighbouring
fingers. In the mask provided by the HKPU both, the actual
finger as well as the areas from the neighbouring fingers
are considered as finger region. It is worth mentioning that
the HKPU does not treat such cases consistently throughout
the data set: sometimes the covering objects are included in
the provides masks (as in this example), sometimes they are
excluded. The question now is how to best deal with such
areas: Exclude the covered areas from the finger region or
define the finger region as if the whole finger is visible? In
this work, the authors decided to segment the finger region as
if the whole finger would be visible. The mask for sample 3
(bottom row) shows an example how partially covered fingers
are handled during manual segmentations.

For the experiments, the finger regions where manually
segmented for the first 20 subjects in the data set. This sums
up to a total of 480 finger region masks. Table I summarizes
the information of the manually segmented images for all five
data sets in use.

B. PLUSVein-CL
The data set provides hand and finger vein images together

with corresponding ROI images acquired in a contactless
acquisition scenario. It is important to mention that the ROIs
of the finger vein images do not reflect the finger regions, but
a rectangular region that has been cut out with a defined size
at a defined position. Therefore, they cannot be used to train a
CNN for finger region segmentation. In general, the images in
this data set are of uniform quality. The main difference to the
other data sets is that they contain also parts of neighbouring
fingers. The left column in figure 2 shows an image and the
corresponding finger mask. Above and below the middle finger
(intended for acquisition) one can also see parts of the index
and ring finger.

The published data set contains finger vein images of six
fingers from 42 subjects. In addition to the published data,
there exist finger vein images of further 60 subjects for which
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Fig. 2. Sample images (top row) and manually segmented finger mask (bottom
row) for PLUSVein-CL, PMMDB-FR, PMMDB-FV3 and UTFVP.

only one or max two samples of each finger were acquired.
As this additional data provides more variety (more subjects),
the authors decided to use this data to create the ground truth.

C. PMMDB

This data set contains biometric data for several modalities
including face, periocular, iris, anthropometrics and hand-
and finger veins acquired in two sessions (session 1 indoors,
session 2 outdoors). The finger vein images have been ac-
quired using two different sensors: the PLUS OpenVein finger
vein scanner [14] (the data acquired with this sensor will
be called as PMMDB-FV3 in this paper) and the PLUS
multi-perspective finger vein scanner [15] (data is called
PMMDB-FR). For PMMDB-FV3 we use only the palmar
images acquired in the indoor session as the outdoor data is of
low quality. For PMMDB-FR both sessions have been acquired
indoors. Therefore, the authors decided to use data of session
1 as this session contains more samples.

The images acquired for both data sets are of uni-
form quality. The second (PMMDB-FR) and third column
(PMMDB-FV3) of figure 2 shows sample images of this data
set. The data set itself does not provide finger masks or ROI
images.

D. UTFVP

The UTFVP provides finger vein images from 60 volunteers
acquired in two sessions. At each session two samples per
finger were captured. The acquired images are of high quality.
One sample and its corresponding finger region is visualized
in the right columns of figure 2. The data set does not provide
any finger region or ROI information. For the ground truth,
all images of the first 20 of the 60 subjects where used.

IV. EXPERIMENTS

In the experiments, the applicability of three state-of-the-
art segmentation networks (Mask R-CNN, CCNet and HRNet)
for the segmentation of finger regions is evaluated. The ex-
periments are carried out on five different data sets (HKPU,
PLUSVein-CL, PMMDB-FR, PMMDB-FV3 and UTFVP).
There are three different scenarios how the data for training
the CNNs is put together:

1) Training on a single data set (DS only): Training
and evaluation data are taken from the same data set.
This means that if HKPU is to be analysed, the CNN
will only be trained on data from HKPU.

2) Training on all data sets (All DS): Regardless of the
evaluation data set, the CNN model is trained with data
from all five data sets.

Fig. 3. Representative segmentation images for HKPU. Left: manual gener-
ated mask, right: mask generated by CCNet using DS only scenario, left:
difference image.

3) Excluding evaluation data set from training (All
but DS): In the last scenario, no data from the dataset
to be evaluated is used during training. This means
that if HKPU is to be analysed, the CNN is trained
on data from the other four datasets (PLUSVein-CL,
PMMDB-FR, PMMDB-FV3 and UTFVP).

To ensure the separation of training and evaluation data,
the datasets are divided into four folds. Three folds are used
for training and one for evaluation. The experiments are
repeated four times such that each fold is used exactly once
for evaluation and three times for training. This way, results
for the whole data set were generated without any overlap in
training and evaluation data. The assignment of the images to
the fold is based on subject. This means that all images of the
same subject are always in the same fold. The assignment of
the subjects to the folds is done random.

The results of our experiments along with sample images
are shown in the following sections. To assess the quality
of the segmentation, the number of misclassified pixels over
the entire image (finger region and background) and again
individually for the finger region, i.e. number finger region
pixels classified as background, and vice versa are used as
performance indicators. Due to the different properties of the
data sets, e.g. the size of the image and the size of the fingers
within the images, providing the differences in absolute pixel
values would lead to values that are not comparable between
the different data sets. Therefore, all values are given in %,
where 100% corresponds to the number of pixels in the finger
region of the manually created masks. So that the quality of the
segmentation can be correctly assessed, two standard metrics
for segmentation, namely the intersection over union (IoU) and
the DICE score, are also included in the evaluation. The results
are evaluated by training scenario, CNN model and evaluation
data set and can be found in table II. For a better overview,
the results are discussed per data set.

A. HKPU

The results for the HKPU in table II shows excellent
segmentation results for DS only and All DS. The average
number of incorrectly classified pixels is around 2%. The
misclassified pixels are shared equally between finger region
and background pixels. When looking at the difference image
between a generated masks of an representative image (total
misclassified pixels = 2.2%) and the corresponding mask of
the ground truth in Fig. 3 for these scenarios, one can see that
these pixels essentially form a stripe at the border between the
finger region and the background. Such errors at the border
between finger region and background cannot be prevented
and one can therefore speak of an almost perfect segmentation
result. The same effect could also be observed for all other data



TABLE II
NUMBER OF MISCLASSIFIED PIXELS IN THE WHOLE IMAGE, FINGER REGION PIXELS CLASSIFIED AS BACKGROUND AND BACKGROUND PIXELS

CLASSIFIED AS FINGER REGION. ALL NUMBERS ARE GIVEN IN % RELATIVE TO THE NUMBER OF FINGER REGION PIXEL IN THE MANUALLY SEGMENTED
MASK.

Evaluation Training CNN IoU DICE Misclassified Pixels Finger Region as Background Background as Finger Region
Data Set Mode Model Mean Mean Min Mean Max Min Mean Max Min Mean Max

HKPU DS only M R-CNN 0.95 0.97 1.01% 5.25% 35.00% 0.02% 3.77% 34.58% 0.24% 1.48% 4.95%
CCNet 0.97 0.99 0.91% 2.76% 20.19% 0.13% 1.54% 18.73% 0.21% 1.23% 6.55%
HRNet 0.98 0.99 0.58% 1.71% 31.22% 0.08% 1.05% 31.19% 0.00% 0.66% 5.16%

All DS M R-CNN 0.97 0.99 0.93% 2.98% 17.08% 0.03% 1.62% 16.26% 0.24% 1.36% 5.77%
CCNet 0.98 0.99 0.81% 1.99% 15.69% 0.07% 1.01% 15.19% 0.06% 0.97% 3.22%
HRNet 0.98 0.99 0.57% 2.38% 34.22% 0.04% 1.45% 34.12% 0.03% 0.93% 11.55%

All but DS M R-CNN 0.92 0.95 1.68% 9.04% 144.32% 0.00% 3.94% 99.97% 0.10% 5.11% 80.30%
CCNet 0.67 0.80 19.13% 47.22% 143.36% 0.00% 5.19% 97.12% 0.00% 42.03% 90.11%
HRNet 0.73 0.84 4.80% 37.37% 94.70% 0.00% 3.94% 93.29% 1.41% 33.43% 74.94%

PLUSVein-CL DS only M R-CNN 0.96 0.98 1.75% 3.86% 12.86% 0.07% 1.46% 7.42% 0.50% 2.39% 12.09%
CCNet 0.94 0.97 2.28% 6.27% 53.32% 0.14% 2.58% 26.42% 0.27% 3.69% 52.72%
HRNet 0.95 0.98 0.83% 4.81% 48.13% 0.11% 2.75% 31.62% 0.05% 2.07% 48.02%

All DS M R-CNN 0.97 0.98 1.43% 3.53% 13.79% 0.01% 1.16% 8.73% 0.45% 2.36% 12.94%
CCNet 0.96 0.98 1.55% 3.84% 19.12% 0.22% 2.00% 14.33% 0.20% 1.84% 17.58%
HRNet 0.95 0.97 0.87% 5.17% 65.88% 0.00% 2.42% 25.53% 0.10% 2.75% 65.88%

All but DS M R-CNN 0.59 0.72 2.78% 88.23% 379.01% 0.01% 3.26% 51.45% 1.04% 84.97% 364.87%
CCNet 0.57 0.72 9.06% 79.09% 304.21% 0.35% 4.16% 100.00% 1.51% 74.93% 288.98%
HRNet 0.75 0.85 3.74% 39.96% 274.20% 0.21% 5.52% 55.43% 0.00% 34.43% 249.02%

PROTECT-FR DS only M R-CNN 0.97 0.98 1.26% 3.26% 21.17% 0.07% 1.50% 20.31% 0.40% 1.75% 3.46%
CCNet 0.97 0.99 1.03% 2.92% 23.08% 0.18% 1.72% 22.73% 0.14% 1.20% 8.67%
HRNet 0.99 0.99 0.44% 1.30% 23.30% 0.10% 0.90% 22.97% 0.02% 0.40% 3.15%

All DS M R-CNN 0.97 0.99 1.33% 2.99% 17.36% 0.04% 1.26% 15.15% 0.28% 1.73% 3.88%
CCNet 0.98 0.99 0.79% 1.95% 26.30% 0.12% 1.11% 20.25% 0.15% 0.84% 7.89%
HRNet 0.99 0.99 0.45% 1.36% 19.55% 0.04% 0.70% 19.07% 0.09% 0.66% 4.49%

All but DS M R-CNN 0.95 0.98 1.47% 4.72% 29.91% 0.03% 1.67% 26.93% 0.36% 3.05% 8.45%
CCNet 0.86 0.92 2.11% 14.16% 42.13% 0.18% 12.64% 41.03% 0.00% 1.51% 13.41%
HRNet 0.87 0.93 0.87% 16.84% 127.19% 0.01% 1.66% 25.70% 0.00% 15.19% 127.14%

PROTECT-FV3 DS only M R-CNN 0.96 0.98 1.96% 4.46% 15.81% 0.02% 2.43% 11.47% 0.38% 2.03% 13.63%
CCNet 0.95 0.98 1.76% 4.77% 21.65% 0.04% 2.26% 10.27% 0.13% 2.51% 19.84%
HRNet 0.97 0.99 0.92% 2.90% 15.45% 0.19% 1.76% 13.61% 0.10% 1.14% 7.29%

All DS M R-CNN 0.96 0.98 1.75% 4.15% 18.28% 0.06% 2.11% 8.29% 0.34% 2.04% 16.94%
CCNet 0.97 0.98 1.27% 3.25% 13.55% 0.08% 1.62% 8.30% 0.17% 1.63% 6.33%
HRNet 0.97 0.98 0.78% 3.25% 24.33% 0.02% 1.62% 24.02% 0.14% 1.63% 16.28%

All but DS M R-CNN 0.92 0.96 2.91% 8.31% 21.53% 0.18% 5.13% 18.34% 0.59% 3.18% 10.78%
CCNet 0.91 0.95 2.64% 9.89% 81.18% 0.03% 2.26% 17.23% 1.07% 7.63% 78.72%
HRNet 0.84 0.91 1.39% 16.30% 116.37% 0.28% 14.73% 77.92% 0.04% 1.57% 104.25%

UTFVP DS only M R-CNN 0.95 0.97 0.86% 5.53% 67.43% 0.06% 4.44% 66.01% 0.11% 1.09% 4.17%
CCNet 0.99 1.00 0.27% 0.71% 3.20% 0.04% 0.32% 2.16% 0.11% 0.39% 2.99%
HRNet 1.00 1.00 0.19% 0.39% 6.24% 0.01% 0.17% 2.14% 0.01% 0.22% 6.13%

All DS M R-CNN 0.98 0.99 0.67% 2.32% 6.51% 0.08% 1.49% 5.86% 0.18% 0.83% 2.05%
CCNet 0.99 1.00 0.25% 0.57% 8.98% 0.03% 0.29% 8.82% 0.03% 0.28% 0.75%
HRNet 1.00 1.00 0.16% 0.38% 6.13% 0.02% 0.15% 1.59% 0.02% 0.22% 6.04%

All but DS M R-CNN 0.96 0.98 0.82% 3.85% 100.00% 0.23% 3.43% 100.00% 0.00% 0.42% 1.41%
CCNet 0.96 0.98 1.24% 3.80% 26.55% 0.97% 3.65% 26.55% 0.00% 0.15% 1.00%
HRNet 0.98 0.99 0.23% 2.17% 17.04% 0.10% 1.76% 16.52% 0.00% 0.40% 8.39%

All Data Sets DS only M R-CNN 0.96 0.98 0.86% 4.38% 67.43% 0.02% 2.60% 66.01% 0.11% 1.78% 13.63%
CCNet 0.97 0.98 0.27% 3.60% 53.32% 0.04% 1.73% 26.42% 0.11% 1.87% 52.72%
HRNet 0.98 0.99 0.19% 2.30% 48.13% 0.01% 1.37% 31.62% 0.00% 0.93% 48.02%

All DS M R-CNN 0.97 0.98 0.67% 3.20% 18.28% 0.01% 1.50% 16.26% 0.18% 1.70% 16.94%
CCNet 0.98 0.99 0.25% 2.38% 26.30% 0.03% 1.24% 20.25% 0.03% 1.14% 17.58%
HRNet 0.98 0.99 0.16% 2.58% 65.88% 0.00% 1.30% 34.12% 0.02% 1.28% 65.88%

All but DS M R-CNN 0.86 0.91 0.82% 25.16% 379.01% 0.00% 3.38% 100.00% 0.00% 21.78% 364.87%
CCNet 0.79 0.87 1.24% 32.39% 304.21% 0.00% 5.86% 100.00% 0.00% 26.53% 288.98%
HRNet 0.83 0.90 0.23% 23.11% 274.20% 0.00% 5.33% 93.29% 0.00% 17.78% 249.02%

sets. The results for the All but DS scenario are different.
As the HKPU images differ vastly from those of the other
data sets (overexposure, occlusions), the CNNs did not learn
these properties, and therefore, are not capable to correctly
segment the finger region. The best results are obtained for
Mask R-CNN with an average pixel difference of 9%. For
HRNet, this value is at 37%, for CCNet even at 47%. The
difference can be explained by the way the CNNs work. Mask
R-CNN provides bounding boxes for each candidate while the

other two returns probabilities for each pixel. For Mask R-CNN
we select only the candidate with the largest area, which often
corresponds to the region of the desired finger.

Fig. 4 shows the masks generated for all three CNNs
and training scenarios for a difficult sample image, where
parts of the finger are covered by its neighbouring fingers.
In the DS only scenario, the CNN was able to segment
the occluded part of the finger region correctly. In the All
DS scenario, only HRNet managed to somehow segment the
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Fig. 4. Segmentation masks generated for HKPU
PLUSVein-CL DS only All DS All but DS

Finger Vein Image Mask R-CNN

Ground Truth CCNet

HRNet

Fig. 5. Segmentation masks generated for PLUSVein-CL

occluded region. The HRNet image also shows a typical, easily
fixable error: holes. These can be closed with the help of
morphological operations. The second typical error can be seen
in the CCNet image. The segmentation provides two separate
components. This can be addressed by using only the largest
object in the image. For the All but DS scenario only Mask
R-CNN provides an acceptable result. The mask of the other
two CNNs are not usable.

B. PLUSVein-CL

The PLUSVein-CL data set differs from the other data sets
by the fact, that the vein images contain also parts of the
neighbouring fingers. For the DS only and All DS, the
performance is just slightly inferior to the one of HKPU.
The interesting scenario is All but DS: Fig. 5 shows the
generated masks for a typical image. One can see, that all three
CNNs classify not only the region of the intended finger as
foreground, but also the region of the neighbouring finger. This
behaviour was to be expected since the finger vein images of
all other datasets do not contain adjacent fingers. As such,
the CNN has not learned to distinguish between intended
and adjacent fingers and classifies both as foreground (finger
regions). This can be seen by the high error rates of the wrong
classified background pixels.

C. PMMDB-FR

As with the previous data sets, very good results are
achieved for the DS only and All DS scenarios. However,
the segmentation results in the All but DS scenario are
notably better than for HKPU and PMMDB-FR. This is mainly
due to the fact that the data set does not show any particular

PMMDB-FR DS only All DS All but DS

Finger Vein Image Mask R-CNN

Ground Truth CCNet

HRNet

Fig. 6. Segmentation masks generated for PMMDB-FR

difficulties: the finger regions have a relatively even grey value
and the background is also uniformly dark. There are no
particularly overexposed images, occlusions or other objects
(e.g. adjacent fingers) in the images. Since PMMDB-FR shares
these properties with PMMDB-FV3 and UTFVP, there are
similar images in the training data set and the segmentation of
the evaluation data works better. The segmentation with Mask
R-CNN works particularly well. Error rates similar to the ones
of the other scenarios are achieved.

For the example image in Fig. 6 we chose one with a
rather bad result for the All but DS scenario. For Mask
R-CNN you can see the very well segmented mask. CCNet
had problems with the slightly darker root of the finger. In
HRNet, some background regions were incorrectly classified.
These problems are reflected in the error rates of the table II:
On average, CCNet classifies more finger region pixels as
background than background pixels as finger region. With
HRNet it is exactly the opposite.

D. PMMDB-FV3

The results for PMMDB-FV3 are basically the same as for
PMMDB-FR. Only the error rates are 1-2% worse than for
PMMDB-FR. Interestingly, the errors for CCNet and HRNet
are exactly the opposite of PMMDB-FR: CCNet classifies the
finger regions better, HRNet the background. Since the results
are essentially the same as with PMMDB-FR, we have omitted
example images of this database for reasons of space.

E. UTFVP

The overall best results are obtained for UTFVP. Especially
HRNet with an average of <0.4% of misclassified pixels
and CCNet <0.7%, respectively, show an exceptionally good
performance. But also the segmentation results for the All
but DS scenario are surprisingly good. With <3.9% of
misclassified pixels for all three scenarios, the results are
better than on PLUSVein-CL in the DS only and All DS
scenarios. These results are reasoned by the high quality of
the images within this data set. For Mask R-CNN, however, it
turned out that the proposed candidates are not always ideal.
The proposed bounding boxes are sometimes a bit too small.
This leads to slightly higher rates of misclassified foreground
pixels and hence higher error rates. As with PMMDB-FV3,
we do not present sample masks due to reasons of space.



V. CONCLUSION AND FUTURE WORK

In the experiments we evaluated how well different CNN
architectures can segment the finger regions of various finger
vein data sets. All together, three state-of-the-art CNNs archi-
tectures (Mask R-CNN, CCNet and HRNet) were examined on
five different databases, (HKPU, PLUSVein-CL, PMMDB-FR,
PMMDB-FV3 and UTFVP), in three different scenarios: (1)
Training and evaluation on the same data set (DS only),
(2) training with data from all 5 data sets (All DS) and (3)
training on 4 data sets and evaluation on the fifth dataset (All
but DS). The set-up is relatively simple: the CNNs were
trained without pre-processing or augmentation of the vein
images using manually segmented masks as ground truth. For
DS only and All DS all three CNN architectures delivered
excellent results on all data sets. With All but DS, good
results were also achieved for the three data sets (PMMDB-FR,
PMMDB-FV3 and UTFVP). For UTFVP, the results of the
All but DS scenario were even comparable to the other
scenarios. Since HKPU and PLUSVein-CL differed remark-
able from the other data sets, no satisfactory segmentation
results could be achieved for the All but DS scenario.

The results show that a CNN can be trained to segment
finger regions from finger vein images acquired with different
sensors (All DS scenario), even if the data from a sensor is
not present in the training data (All but DS). Unsurpris-
ingly the latter scenario only works if at least one data set in
the training data has similar properties to the excluded data
set. If not, the segmentation results are unsatisfactory.

In order to see whether one CNN works in general better
than the others, we also evaluated the results of all data sets
together. Since our error rates are always calculated with
respect to the size of the finger region of the individual image,
this is a straight forward task. The results can be seen in
table II. For all three scenarios, the results for all three CNN
architectures are very similar. With DS only and All DS,
all three CNN architectures provide excellent results, although
Mask R-CNN performs slightly worse than CCNet and HRNet.
Between the latter two the difference is very small. In the third
scenario, All but DS, HRNet performs best and CCNet
worst. HRNet and CCNet seem to work slightly better than
Mask R-CNN. To really select an architecture as the best, the
results are too close together.

In our further work we will try to further improve the re-
sults. We will incorporate data augmentation into our training
strategy, increase the number of training data, and add more
data sets. The focus will be on the All but DS scenario.
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