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Abstract

In our society, access to many activities or applications is restricted to authorized persons only,
or at least it is necessary to keep track of who performed or accessed them. For this it is nec-
essary to know or determine the identity of the persons involved. This can happen in different
ways. Classic methods for this are, e.g. a handwritten signature, the presentation of an identifi-
cation document or the query of passwords and PIN codes. Alternatively, biometric character-
istics can also be used for authentication.

Biometric systems make it possible to recognize a person based on their behavioural and
biological characteristics. The characteristics used for this must be differentiable, reproducible
and usable for automated processing. Biometric systems have already found their way into our
everyday life and are widely used, e.g. to unlock smartphones or for verifying the identity of
a person at borders or at other access systems. The most widespread modalities are probably
fingerprint and facial recognition. Other biometric recognition system utilize iris, voice, gait or
the vascular pattern inside the human body for authentication.

This dissertation deals with the recognition of people based on the structure of the blood
vessels inside the human finger, commonly referred to as finger vein biometrics. It is based
on the assumption that the structure of the blood vessels within the finger is unique for every
person and can thus be used for biometric recognition. Up to now, in finger vein biometrics
the palm side (or palmar view) of the finger has been used nearly exclusively. There is little
work that also use the opposite side of the finger (dorsal view), but all other perspectives are
ignored completely. This is exactly the topic to which this work is tailored. It evaluates whether
these additional views show similar or even better recognition rates than the commonly used
perspectives or if they at least provide enough information to increase the recognition rates
when they are used together with the currently used ones. Since there exists neither appropriate
data sets nor suitable capturing devices to acquire different perspectives, such devices needs
to get developed and built and data from a sufficient amount of subject needs to be acquired
to enable scientific evaluations. Another focus of the work is the evaluation of the effect of
longitudinal finger rotation (the finger is subject to rotation around the longitudinal axis of
the finger) on the recognition rates and how such a rotation can be compensated or corrected.
Finally, four different rotation invariant multi-camera systems are presented.
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Abstract (German)

In unserem Leben gibt es viele Tätigkeiten oder Anwendungen bei denen es wichtig ist zu
wissen wer diese ausführt bzw. dass diese nur von berechtigten Personen ausgeführt werden.
Dafür ist es notwendig die Identität der handelnden Personen zu kennen bzw. festzustellen.
Dies kann auf unterschiedliche Weise passieren. Klassische Methoden dafür sind z.B. die hand-
schriftliche Unterschrift, das Vorlegen eines Ausweisdokuments oder das Abfragen von Pass-
wörtern und PIN Codes. Alternativ dazu können auch biometrischen Merkmale für die Au-
thentifizierung verwendet werden.

Biometrische Systeme ermöglichen es eine Person anhand seines Verhaltens und seiner biol-
ogischen Charakteristika zu erkennen. Die dafür verwendeten Charakteristika müssen zur Un-
terscheidung geeignet, reproduzierbar und für die automatisierte Bearbeitung einsetzbar sein.
Biometrische Systeme haben längst den Einzug in unser Alltagsleben gefunden und werden
weit verbreitet z.B. für das Entsperren von Smartphones, an Grenzen oder bei Zutrittssystemen
eingesetzt. Die am weitesten verbreiteten Modalitäten sind wohl der Fingerabdruck und die
Gesichtserkennung. Man kann aber auch andere Merkmale wie z.B. Iris, Stimme und Gang
aber auch die Struktur der Blutgefäße für die Erkennung verwenden.

Diese Dissertation beschäftigt sich mit der Wiedererkennung von Personen anhand der Blut-
gefäße in den Fingern. Diese Modalität wird im allgemeinen als Fingervenenbiometrie beze-
ichnet und beruht auf der Annahme, dass die Struktur der Blutgefäße innerhalb des Körpers
eindeutig ist und so einer einzelnen Person zugewiesen werden kann. Bis jetzt werden für
die Fingervenebiometrie hauptsächlich die Innenseite des Fingers (palmare Sicht) verwendet.
Es gibt zwar einige Arbeiten die auch die Außenseite verwenden (dorsale Ansicht), alle an-
deren Perspektiven werden aber ignoriert. Genau hier setzt diese Arbeit an. Es wird evaluiert
ob diese Ansichten ähnlich gute oder sogar bessere Wiedererkennungsraten zulassen und ob
eine gemeinsame Auswertung mehrerer Perspektiven zu einer höheren Genauigkeit führt. Da
es für diese Auswertungen weder entsprechende Datensätze noch geeignete Aufnahmegeräte
gibt müssen die dazu benötigten Geräte entwickelt und gebaut, sowie Daten aufgenommen
und ausgewertet werden. Ein weiterer Schwerpunkt der Arbeit liegt in der Evaluierung der
Auswirkung von längsseitiger Fingerrotation (der Finger wird um die Längsachse des Fingers
gedreht) auf die Wiedererkennungsraten von Fingervenensystemen und wie man diese kom-
pensieren bzw. korrigieren kann. Weiters werden vier Mehrkamerasysteme vorgestellt die in-
variant gegen längsseitige Fingerrotation sind.
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1. Introduction

In our society it is normal that you have to authenticate yourself for many activities or applica-
tions. Common situations are e.g. signing a contract, unlocking a phone, boarding on an aircraft
or withdrawing money from a cash machine. Classical authentication techniques are handwrit-
ten signatures, identification documents, smart cards, passwords and pin codes. Besides these
classical methods, biometrics offers a vital alternative. Biometric systems try to recognize indi-
viduals based on their behavioural and biological characteristics in an automated manner [21].
Biometrics will not replace classical authentication methods, but is a valuable addition to them.

1.1. Biometrics and Biometric Systems

Biometrics, or biometric recognition, is the automated recognition of human subjects based on
their biological (physiological) characteristics and their behaviour utilizing biometric systems
[21]. Besides other properties, biometric traits must be unique (all persons need to differ in
terms of the characteristics), universal (everybody should have it), permanent (invariant over
time), collectable (it must be possible to acquire the characteristic in real world applications)
and accepted throughout the targeted user group (there should be no strong objections to the
biometric) [11]. In general, biometric systems work as two-step processes: First the users have
to be enrolled (registered) in the system so that they can be recognized in a second step. Fig-
ure 1.1 shows a generic model of biometric recognition system. It consists of four major building
blocks: the capturing device, a feature extractor, an enrolment database and a comparison mod-
ule. The capturing device is responsible for acquiring the biometric characteristics. It provides
the captured biometric samples to the feature extractor. In case of the enrolment of a user, the
extracted features are stored in the enrolment database for future use. Depending on the use-
case, the enrolment databases can be either centralized or distributed (e.g. on smartcards). With
recognition attempts, the biometric features are compared to those of the enrolment database.
Recognition can be operated in two different modes: (1) verification and (2) identification. For
verification the user of the system needs to lay claim of his identity. This reduces the enrolled
users to a single entity. The system compares the acquired probe sample to the enrolled one and
decides, e.g. based on a threshold, if the claim is correct (accept/reject decision). In contrast to
this, biometric identification is based only on the biometric characteristics itself. Therefore, the
probe sample needs to be compared to all subjects contained in the enrolment database. The
return of such a search can be a list of candidates which finally needs be reduced to size 1 [6].

Commonly used biometric characteristics are face, fingerprint or iris, but there are also sys-
tems that use other characteristics such as voice, gait, keystroke dynamics or vascular patterns
of different parts of the body. This thesis deals mainly with finger vein recognition, in particular
with the effects of longitudinal finger rotation.

1.2. Finger Vein Recognition

Vascular pattern based recognition, commonly denoted as vein recognition, deals with the au-
thentication of subjects based on the structure of the blood vessels inside the human body. There
are several vascular pattern based systems. The majority of them uses either the human eye or
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Chapter 1. Introduction

>Capturing
Device

Feature
Extraction

Comparison

Enrolment
Database

Decision
Recognition

Enrolment Recognition

Figure 1.1.: Exemplary generic biometric system

the human hand (including its finger) as source for data acquisition. However, recently, in par-
ticular hand and finger based system have been attracting a lot of attention. A major difference
to other biometric modalities like face or fingerprint is, that hand and finger veins are inside
the human body and are therefore not visible under normal conditions (visible light). But as
the haemoglobin in the blood absorbs more near-infraread (NIR) light than the surrounding
tissue, they become visible as dark structures under NIR illumination [54]. The first hand based
recognition system called ”Veincheck” has been patented by Joe Rice in 1985 [49], the first finger
based system was presented by Kono et al. in 2002 [30]. Currently finger vein authentication is
used in several commercial products, e.g. at cash machines in Japan [4], for online banking in
the UK [2] or for authentication of bank customers also in the UK [3].

1.3. Longitudinal Finger Rotation

Typical commercial and scientific finger vein sensors capture the vein pattern from a single
finger using a single camera where the finger is placed directly on the device (non-contactless
acquisition). Different types of finger misplacements, including in-planar shifts and rotations,
finger tilt and bending and rotations around the longitudinal axis of the finger, can easily occur
with such scanners. Some of these misplacements can be reduced or prevented with the help
of a suitable design in the first place, e.g. by adding support structures or guiding walls. Other
possible solutions for this problem are a supervised acquisition or software based solutions
during pre-processing, feature extraction or comparison. But in particular longitudinal finger
rotation has proven to be a difficult problem [39].

Figure 1.2.: Longitudinal finger rotation principle: A schematic finger cross section showing
five veins (blue dots) rotated from -30° (left) to +30° (right) in 10° steps. The pro-
jection (bottom row) of the vein pattern is different according to the rotation angle
following a non-linear transformation (originally published in [39]).
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1.3. Longitudinal Finger Rotation

When capturing finger vein images, the vein structure inside the finger (3D space) is pro-
jected onto a 2D plane. The resulting vein pattern differs depending on the relative positioning
of the veins to each other and the rotation angle at which the vein image has been captured. Fig-
ure 1.2 visualizes the influence of longitudinal rotation to the vein pattern. The top row shows
schematic cross sections of a finger rotated from -30° to 30°, the bottom row the corresponding
vein patterns. It can be clearly seen that some vein patterns differ considerably, particularly
those acquired at -30° (left), 0° (middle) and +30° (right). One can imagine that such defor-
mations, that follow a non-linear transformation, cause major problems for vein recognition
systems [39].
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2. Contribution

The work published in the scope of this thesis can be divided into three major areas: design
and creation of finger vein capturing devices together with the acquisition of publicly available
finger vein data sets, analysis of finger vein recognition for different perspectives and rotation
invariant (multi-perspective) finger vein recognition.

2.1. Finger Vein Capturing Devices and Data Set Creation

In biometrics the availability of appropriate data sets is a prerequisite for every research. Es-
pecially in finger vein biometrics there is a lack of large high quality data sets. The reason for
this is that almost all commercially available systems do not provide the original raw images,
but only already processed images (templates) in a proprietary format. As a result of this, such
devices cannot be used to collect scientifically useful data sets and research groups (including
our group) are forced to built their own capturing devices.

The quality of the input data is a crucial factor for any image based system. In finger vein bio-
metrics, the quality of the acquired images is influenced by the capturing device itself (design
of the device and quality of the used components [26]), environmental conditions (e.g. ambient
light, humidity, temperatures, etc.) [29] and the subject to be captured itself (biological factors
of the subject [32, 29] as well as the presentation of the finger during acquisition). The most
important components of the capturing device are the illumination and camera module as well
as the protection against unwanted exposure, e.g. from the NIR portion of daylight. When de-
signing our sensors, we pursued two goals: (1) Acquisition and evaluation of high-quality data
sets in a contact (which was standard when the work on this theses started) as well as in a con-
tactless manner, and (2) the acquisition of perspectives other than the commonly used palmar
(e.g. [58, 32, 53]) and dorsal (e.g. [48]) perspective, respectively. All together, we proposed three
capturing devices and acquired three data sets which are all available to the scientific public
free of charge.

The first device, the PLUS OpenVein Open Source Finger-Vein Scanner [23, 24, 26], is a multi-
purpose capturing device that supports the acquisition of finger veins from the two major per-
spectives (palmar and dorsal view) using different illumination types. The used illumination
types not only differ in their set-up (reflected light vs transillumination), but also in the used
technology. Reflected light and transillumination are distinguished based on the relative po-
sitioning of the light source, the finger and the used image sensor to each other. In case of
reflected light, camera and illumination module are both placed on the same side of the finger.
The camera captures only that portion of the emitted NIR light that was reflected by the finger.
In case of transillumination, also called light transmission, light source and camera are on op-
posite sides of the finger. The NIR light penetrates the skin and tissue of the finger. The camera
captures only that portion of the light that passes through the finger. Figure 2.1 visualizes both
illumination set-ups. In finger vein recognition, transillumination is used almost exclusively.
The modular designed scanner supports as light source the commonly used NIR LEDs as well
as NIR lasers. NIR lasers have first been proposed by Kim et al. [28] and have been hardly used
since. Their main advantage over LEDs is that they have a narrower radiation angle than NIR
LEDs. This property is beneficial for contactless acquisition [23]. Typical commercial and scien-
tific finger vein sensors acquire vein images from a single finger using a single camera ideally
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Chapter 2. Contribution

always from the same perspective. Contrary to this, the proposed PLUS OpenVein Finger vein
scanner acquires three fingers at the same time. In [26] all details such as technical drawings,
control board schematics or the necessary software of those sensors are published. All designed
components as well as the required software are open source, and can therefore be used by
other scientists. If many institutions acquire finger veins data with the same scanner, these data
sets could theoretically be merged into a larger data set. This happened e.g. in [14] with the
PLUSVein-FV3 Finger Vein Data Set [23] and PROTECT Multimodal Dataset [15] (both were ac-
quired with the PLUS OpenVein sensor). A prototype fo this sensor has been used in the land
boarder demonstrator of the PROTECT1 Project.

Near-Infrared
Illumination

Image
Sensor

Veins
Near-Infrared
Illumination

Image Sensor

Veins

Figure 2.1.: Light source and camera positioning, left: transillumination, right: reflected light
(originally published in [26])

The second device is a multi-perspective finger vein scanner [40]. It is capable of acquiring the
vascular pattern all around the finger. It’s working principle is, that the camera and illumination
module, which are placed on opposite sides of the finger (transillumination principle), rotate
around the finger. During this rotation a video of the vein pattern is acquired. The speed
of the rotation and the video frame rate are coordinated in such way that every frame of the
video corresponds to a rotation of 1°. The acquisition of the vein pattern all around the finger
allows not only the evaluation of the performance of the different perspectives, but also the
combination (fusion) of them. Due to the distance between the illumination module and the
acquired finger, NIR laser modules were used as light source [40].

Figure 2.2.: Principle of multi perspective acquisition using rotating camera and illumination
modules (originally published in [40], © 2018 IEEE)

The last device, the Combined Fully Contact-Less Finger and Hand Vein Acquisition Device [25],
is capable of acquiring hand and finger vein samples from the palmar view in a contactless

1Pervasive and UseR Focused BiomeTrics BordEr ProjeCT, http://projectprotect.eu/
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2.1. Finger Vein Capturing Devices and Data Set Creation

scenario. While finger vein images are captured in a light transmission mode utilizing LED
laser diodes, the hand veins are acquired using reflected light from NIR LED diodes with two
different wavelengths [25]. This is the first combined contactless hand and finger vein capturing
device.

The following datasets have been acquired and are also available for download:

• PLUSVein-FV3 Finger Vein Data Set2: The data set includes 4 subsets acquired from the
palmar and dorsal view using the LED and laser version of the PLUS OpenVein finger vein
sensor. It contains 6 fingers (left and right index, middle and ring finger) of 60 subjects.
Each of the 360 unique fingers have been acquired 5 times, which sums up to 7.200 unique
finger vein samples [23, 24].

• PLUSVein Finger Rotation Data Set3: It consists of 252 unique fingers from 63 subjects,
each presenting its left and right middle and index finger, acquired from 361 perspectives
all around the finger (0° and 360° have been acquired separately), each finger 5 times.
This results in a total number of 454.860 finger vein images [40]. For our analysis, several
subsets have been established. The first subset, ±45° around the palmar view [38], consist
of the perspectives of ±45° around the palmar view in steps of 1°. It can be used e.g. for
the analysis and development of rotation tolerant finger vein recognition systems. The
second subset, Longitudinal finger rotation validation data set [43], has been developed to
test the robustness of recognition schemes with respect to longitudinal finger rotation. It
provides data for two different scenarios: The PLUSVein-FR-ED contains vein images in
the range of ±45° where the rotation angles are equally distributed. This should corre-
spond to the unconstrained placement of the finger in a contactless acquisition scenario.
The rotation angles of the second set, PLUSVein-FR-ND, are normally distributed over the
same range. This data set models a realistic real world scenario of a classical unsupervised
single perspective acquisition system. The standard deviation of the distribution is based
on our analysis of publicly available data sets in [41] and corresponds to the one of the
challenging SDUMLA-HMT data set [58].

• PLUSVein-Contactless Finger and Hand Vein Data Set4: For this data set, palmar hand
and finger vein images were recorded from 42 people. The finger vein samples were
taken using transmitted light, whereas for palm veins reflected light utilizing two different
wavelengths was used. The acquisition for one subject consists of 5 samples from 6 fingers
(left and right index, middle and ring finger) and both palms (left and right). This results
in a total of 1.260 finger vein and 840 hand vein images [25].

Publications (sorted chronologically)

[23] C. Kauba, B. Prommegger, and A. Uhl. Focussing the beam - a new laser illumination
based data set providing insights to finger-vein recognition. In 2018 IEEE 9th International
Conference on Biometrics Theory, Applications and Systems (BTAS), pages 1–9, 2018

[40] B. Prommegger, C. Kauba, and A. Uhl. Multi-perspective finger-vein biometrics. In 2018
IEEE 9th International Conference on Biometrics Theory, Applications and Systems (BTAS), 2018

[24] C. Kauba, B. Prommegger, and A. Uhl. The two sides of the finger - an evaluation on
the recognition performance of dorsal vs. palmar finger-veins. In A. Brömme, C. Busch,

2http://wavelab.at/sources/PLUSVein-FR/
3http://wavelab.at/sources/PLUSVein-FV3/
4http://wavelab.at/sources/PLUSVein-Contactless/
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Chapter 2. Contribution

A. Dantcheva, C. Rathgeb, and A. Uhl, editors, BIOSIG 2018 - Proceedings of the 17th Inter-
national Conference of the Biometrics Special Interest Group, Bonn, 2018. Köllen Druck+Verlag
GmbH

[25] C. Kauba, B. Prommegger, and A. Uhl. Combined fully contactless finger and hand vein
capturing device with a corresponding dataset. Sensors, 19(22)(5014), 2019

[26] C. Kauba, B. Prommegger, and A. Uhl. OpenVein—An Open-Source Modular Multipurpose
Finger Vein Scanner Design, pages 77–111. Springer International Publishing, Cham, 2020

2.2. Finger Vein Recognition from different perspectives

When the work on this theses started, finger vein recognition focused mainly on the palmar
view of the finger (from the inside of the hand). There was only little to no work for other
perspectives. Raghavendra and Bush [48] proposed a system that utilizes dorsal finger vein
images. Lu et al. fused images from two different views [34]. Since then, other scientists have
also dealt with this topic, but always in connection with multi-perspective recognition systems
[7, 52, 22]. In our work we do not limit ourselves to systems acquiring certain (pre-defined)
perspectives, but examined the performance of the perspectives all around the finger in general.
The aim is to evaluate if perspectives other than the commonly used once (especially the palmar
view) achieve similar or even better recognition results or at least provide enough additional
information to improve the performance when fusing them. We also analyse the robustness of
various recognition schemes to longitudinal rotations and how the performance - with respect
to longitudinal finger rotation - can be improved.

The PLUSVein-FV3 can be split into four subsets with respect to the illumination type (LED
vs laser) and acquired perspective (palmar vs dorsal). In [24] the four subsets are evaluated
independently of each other using four well established recognition systems, namely three vein
pattern based once, Maximum Curvature (MC) [37], Principal Curvature (PC) [10] and Garbor Filter
(GF) [32], and a SIFT based approach [27]. The experimental results reveal, that vein pattern
based approaches, especially GF, not only extract the vein lines itself, but also parts of the finger
texture and wrinkles. Therefore there is actually an implicit fusion of finger veins with the
finger texture. It’s worth noting that the dorsal view has more wrinkles than the palmar view.
In particular, the dorsal finger knuckles should be mentioned as these are also used as a separate
biometric modality [31, 59]. For MC and PC, the palmar view achieves better recognition rates,
for GF and SIFT the dorsal one, respectively.

In [40] the PLUSVein-FR data set is utilized to analyse the performance of finger vein recogni-
tion systems all around the finger (360°). In this context, every perspective of the data set is con-
sidered as an independent data set. This means that in principle every perspective represents its
own, independent single camera recognition system. Just as in [24], these evaluations have been
executed using the same well established recognition systems, MC, PC, GF and SIFT. Again, for
MC and PC, the best recognition results are achieved for the widely used palmar view (0°) fol-
lowed by the dorsal region (180°). With SIFT, the dorsal region achieves better results than the
palmar one, while for GF both perspectives achieve approximately the same recognition rates.
All four recognition systems have in common that the perspectives inbetween the palmar and
dorsal view show inferior but still acceptable recognition rates. The worst results are achieved
around 90° and 270°.

Finger vein images from different perspectives do not necessarily have to be evaluated inde-
pendently from each other. Therefore, we also investigate different fusion strategies [40, 42].
Namely multi-perspective fusion, multi-algorithm fusion and combinations of both. In [40]
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up to 72 perspectives are combined together, [42] evaluates all possible pairs and triplets. The
results show, that already a fusion of two perspectives significantly improves the recognition
performance, especially if the palmar and/or dorsal perspective are included. Adding further
perspectives still improves the results, but not to the same extent. For multi-algorithm fusion it
turned out, that the best results are achieved when different types of feature extraction schemes
(vein pattern based vs key-point based systems) are used. The fusion experiments have been ex-
ecuted using three vein pattern systems (MC, PC and GF) and two key-point based recognition
systems (SIFT and Deformation Tolerant Feature-Point Matching (DTFPM) [35]).

Furthermore, we systematically analyse the effect of longitudinal finger rotation on the per-
formance of single camera recognition systems and how the negative impact can be reduced
[39, 38, 46]. As nearly all finger vein recognition systems acquire the vein pattern from the
palmar view, our experiments focus on the region around this view (±90° in [39] and ±45° in
[38, 46]). The experiments are carried out using the PLUSVein-FR data set, which provides fin-
ger vein samples all around the finger with a resolution of 1°. The evaluations in [39] show,
that key-point based recognition schemes (SIFT, DTFPM) are more robust to longitudinal ro-
tations than vein pattern based ones (MC, PC, GF) and that for rotational distances between
the enrolment and probe sample larger than ±30° biometric recognition is not possible at all.
In our further work these observations get confirmed for other recognition schemes, namely
the (Wide Line Detector (WLD) [20] and Finger Vein Recognition with Anatomy Structure Analysis
(ASAVE) [57] in [38] and Deformable Finger Vein Recognition (DFVR) [9] and a CNN based ap-
proach [55] in [46]). The overall best performing recognition system with respect to its tolerance
to longitudinal finger rotation is DFVR.

As longitudinal finger rotation obviously poses a severe problem to finger vein recognition
systems, we investigate how to counter this problem. In [38] we propose two rotation correction
and compensation schemes, evaluate their impact on the recognition performance and compare
the results to other rotation tolerant approaches, i.e. Elliptic Pattern Normalization (EPN) [20] and
Geometric Shape Analysis based Finger Vein Deformation Detection and Correction (GADC) [8]. The
first approach corrects the deformation by rotating the vein pattern back into its desired posi-
tion using the actual angle of rotation. It assumes a circular finger shape and that the acquired
veins are located close to the finger surface. This ”known angle” approach is only applicable if
the rotation angle is known or can be detected or estimated. In case of the used data set, the
PLUSVein-FR, the rotation angle is known. The second approach (”fixed angle”) does not correct
the rotation but tries to reduce the rotational distance of the probe and enrolment sample by in-
troducing two additional samples for comparisons. The new images are generated by rotating
the enrolment sample with a pre-defined angle in both directions. The probe sample is com-
pared to all three enrolment samples, the original and the two rotated ones. The final score is
calculated using a maximum rule score level fusion (MaxSLF). This way, the rotational distance
between the enrolment and recognition sample is reduced and the achieved biometric candi-
date score is improved. The analysis was executed for several vein pattern based methods (MC,
PC, WLD, GF, ASAVE) and two key-point based ones (SIFT, DTFPM). Both proposed methods
show better performance than the two existing methods (EPN and GADC). The overall best
results are achieved when the ”fixed angle” approach is combined with EPN. The experiments
reveal the general trend, that simple vein-pattern-based methods (MC, PC, WLD, GF) bene-
fit more from rotation compensation than approaches that are already tolerant to longitudinal
misalignments by design (ASAVE, SIFT, DTFPM). After applying rotation compensation, the
simple methods outperform the more sophisticated once.

Furthermore, we analyse four publicly available finger vein data sets, namely
SDUMLA-HMT [58], UTFVP [53], FV-USM [5] and the PLUSVein-FV3 [23], with respect to the
extent to which they contain longitudinal finger rotation [41, 47]. In [41] the rotation angle be-
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tween two samples of the same subject is estimated based on an empirical approach using the
correlation of the extracted vein patterns. This is done by pre-rotating all samples in steps of
1° between ±45°. After this, all versions of the images are compared to the first non rotated
sample of the same finger. The rotation angle is estimated as the angle of the image that shows
the highest similarity (correlation) to the not rotated reference image, i.e. where the comparison
score reaches its maximum. The results show that all data sets contain longitudinal rotation,
although to different extents. While the PLUSVein-FV3, due to the design of the device that
prevents the rotation in the first place, contains nearly no rotation, the other data sets contain
a good portion of longitudinal rotation. SDUMLA-HMT exhibits the highest amount with an
average of nearly 20° and a maximum of 77° (!) between two samples. By correcting the rotation
contained in the data set using the known angle approach as presented in [38], the performance
can be increased by up to 350%. As this empirical approach is computational expensive, it is not
applicable to real-time systems. Therefore, a second CNN based rotation detector is presented
in [47]. It is trained on data from the PROTECT Multimodal Dataset (PMMDB) [15] and evalu-
ated on the PLUSVein-FR. Due to the use of the CNN, the detection of rotation angles is very
fast and can be executed, followed by a rotation correction, prior to every biometric compari-
son. Due to the rotational pre-alignment the recognition performance can be increased. Further
experiments show, that the trained CNN is not limited to the PMMDB and PLUSVein-FR data
sets. We applied our rotation detector to other data sets (SDUMLA-HMT, UTFVP, FV-USM and
the PLUSVein-FV3) without any additional training achieving similar results as the empirical
approach of [41]. The only prerequisite for re-using the CNN is that the ROI is extracted as
described in [47]. Since the CNN based approach allows rotation detection in real-time, the
”known angle” approach presented by us in [38] can now be applied to real-world applications.
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2.3. Rotation Invariant Finger Vein Recognition

Classical finger vein recognition systems acquire the vein pattern of a single finger using a
single camera typically from the palmar view. As a result of this, such systems acquire only
a limited part of the vein pattern information. If fingers are not always placed in the same
(correct) way, this might lead to a degradation of the systems recognition performance. In
particular, misplacements due to longitudinal finger rotations poses a severe problem. As finger
vein recognition devices evolve towards contactless and on-the-move acquisition [36, 25, 33],
problems cause by longitudinal rotations will become more important. One way to solve this
problem is to acquire the vein pattern from different perspectives. This increases the range for
which the vein pattern is available. Ideally, finger vein recognition can thereby become even
invariant to such misplacements of the finger. Multi-perspective finger vein recognition has
only recently received more attention. E.g. Bunda [7] and Sonna Momo et al. [52] presented
systems that acquire the vein pattern from three different perspectives and Kang et al. [22]
applies finger vein recognition in the 3D space. In our work we propose four novel rotation
invariant multi-camera finger vein recognition systems:

1. Perspective Cumulative Finger Vein Templates (PCT) [44] requires the acquisition of the vein
pattern from multiple perspectives during enrolment and from a single perspective for
recognition. The rotation angles of the captured enrolment samples are spread linearly
over the desired acquisition range and are combined to a large single template. This is
done in the feature space after applying Circular Pattern Normalization (CPN) [38] using
MC features. The achieved recognition rates with EERs of 4-8% for the best performing
set-up are noticeably inferior to those of state-of-the-art single camera systems, but they
are stable over the whole rotational range under investigation. These results indicate that
this approach has potential but needs further development in order to be applicable in
real applications.

2. As for PCT, also Multi-Perspective Enrolment (MPE) [44] acquires multiple perspectives
during enrolment but still a single one for recognition. Again, the rotation angles of the
enrolment samples are spaced linearly of the desired acquisition range. In contrast to PCT,
for MPE the enrolment samples are not combined to a single template but evaluated sepa-
rately. For authentication, the probe sample is compared to every enrolment sample. The
final biometric comparison score is calculated with the help of a Maximum Rule Score Level
Fusion (MaxSLF) of the individual comparison results. The best setting (MPE 15°, rota-
tional distance of 15° between the enrolment samples) achieves EERs < 1.4% all around
the finger. These results are better than those achieved if every perspective is considered
as its own single camera recognition system (intra-perspective recognition performance,
IPP). In order to achieve similar recognition rates than those of IPP, the distance between
two enrolment samples can be increased to 45° (MPE 45°). If the vein pattern is acquired
all around the finger (360°) during enrolment, the method is invariant to longitudinal
finger rotation. A drawback of the system is, that the number of the needed enrolment
perspectives is relatively high. This leads to complex and expensive capturing devices.
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3. Perspective Multiplication for Multi-Perspective Enrolment (PM-MPE) [43] is an advanced
version of MPE. It’s aim is to reduce the number of involved perspectives while the recog-
nition rates are kept on a high level. The reduction is achieved by combining MPE with
the ”fixed angle” approach we presented in [38]: PM-MPE adds two so called pseudo per-
spectives inbetween two adjacent enrolment perspectives. This is done by rotating every
enrolment sample in both directions with a defined angle α, where α is a third of the rota-
tional distance between the enrolment cameras. This way, the actually acquired perspec-
tives and the generated pseudo perspectives are again spread linearly over the acquisition
range. Just as for MPE, the probe samples are compared to all enrolment samples (orig-
inal image as well as the generated pseudo perspectives). The final biometric candidate
score is again calculated using MaxSLF. To achieve similar recognition results as for MPE,
the rotational distance between the enrolment cameras of PM-MPE can be increased by at
least 15°. Rotational distances of more than 60° between the enrolment cameras are still
not useful.

4. In comparison to the three previous methods, Combinde Multi-Perspective Enrolment and
Recognition (MPER) [46] acquires multiple perspectives for both, enrolment and recogni-
tion. Contrary to other multi-camera recognition systems like [7, 52, 22], where the same
capturing devices are used for enrolment and recognition, the capturing devices for MPER
differ. While the MPER enrolment device covers the vein pattern all around the finger, the
one for recognition acquires only the range between two adjacent enrolment cameras. The
two devices are designed in such way that the rotational distance between the closest en-
rolment and recognition perspective as well as that the number of involved cameras is
kept to a minimum. Similar to MPR, all acquired probe samples are compared to all en-
rolment samples. The final biometric candidate score is calculated using MaxSLF. Just like
the systems presented above, MPER is also rotationally invariant.

In [45] MPE and PM-MPE are further investigated. While the original publications uses
MC features, this work analyses the applicability of other recognition schemes (i.e. WLD, SIFT,
ASAVE) to (PM-)MPE. Furthermore we investigate if changing the positions of the enrolment
cameras increases the performance of MPE, as well as if introducing even more pseudo per-
spectives is beneficial for PM-MPE. It turned out that simple vein pattern based methods such
as MC and WLD are more suited for (PM-)MPE than more sophisticated methods or methods
that are already tolerant to rotation by design. Changing the camera positions or introducing
more pseudo perspectives did not increase the recognition performance for MPE and PM-MPE,
respectively.
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Abstract

The vascular pattern inside human fingers has become
an emerging biometric trait during the last years, commonly
denoted as finger vein recognition. However, the number of
publicly available data sets is limited. In order to capture
a finger vein data set, a suitable scanner device is needed.
The design of such a scanner device is crucial if it comes to
image quality, robustness against external influences dur-
ing the capturing process and consequently to a good re-
cognition performance. In this paper we propose two novel,
modular designed, multi-purpose finger vein scanners, both
able to capture three fingers at once, together with a pub-
licly available finger-vein data set captured with these scan-
ners. One scanner uses common near-infrared LEDs as a
light source. The second one is based on a new concept
using near-infrared lasers. Near-infrared lasers are not
common in finger-vein recognition before despite their ad-
vantages especially in touchless operation. Our recognition
performance evaluation confirm the good recognition per-
formance that can be achieved using our proposed scanner
design and provides some new insights by conducting sex
and age-group specific analysis.

1. Introduction

Vascular pattern based recognition (commonly denoted
as vein recognition), as a promising new biometric, gains
more and more attention and can help to overcome some of
the problems existing biometric recognition systems have.
Vein based systems rely on the structure of the vascular pat-
tern formed by the blood vessels inside the human body
tissue. This pattern only becomes visible in near-infrared
(NIR) light. Thus, vein based biometrics provide a good
resistance to spoofing and are insensitive to abrasion and
skin surface conditions. They achieve good recognition per-
formance while the user convenience is at the same level as
for fingerprint systems as long as the scanner is designed in

an open manner. Moreover, a contactless operation is pos-
sible and liveness detection can be performed easily [6].

Although, especially hand- and finger-vein based sys-
tems are already equipped in commercial products, there
is still a lack of comprehensive, public available data sets,
which is one of the key factors in order to facilitate research
in vascular pattern based biometrics. A major reason for
this lack of available data sets is that almost all commercial
off-the-shelf finger- and hand-vein scanners do not provide
access to the raw vein images they capture. They only out-
put some kind of template in a proprietary format specified
by the manufacturer, which is of little use in research. Prior
to establishing such a data set, two important things are
needed. Most important are the volunteers, who are willing
to participate in the data collection, present their fingers to
the scanner and donate some of their time while their fingers
are scanned. The second most important thing is a scanner
device, which provides access to the raw vein images.

A deliberately designed scanner device is crucial for
the image quality of the vascular pattern images and con-
sequently, the recognition performance. The first contri-
bution of this paper is our proposed design of two novel
multi-purpose finger-vein scanners. Both of our proposed
scanners are equipped with transillumination as well as re-
flected light illumination and are able to capture dorsal and
palmar images. They are designed to capture three fingers
at a time to speed up the data acquisition process. The scan-
ners differ in the type of their NIR light source: the first
one is based on NIR LEDs, while the second one uses NIR
lasers. NIR lasers have hardly been used in finger-vein re-
cognition since they were first proposed by Kim et al. [5]
in 2009. The main advantage of lasers over LEDs is an in-
creased range of possible vertical finger movement without
impacting the image quality. This becomes important as
soon as the finger is desired not to touch the sensor’s sur-
face and thus especially if it comes to touchless operation.
This paper covers the main aspects of our scanner design.
The details of the scanner design, including all construc-
tion plans, schematics, parts lists and the software will be
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made publicly available as an open-hardware project. Other
researchers interested in finger-vein biometrics can bene-
fit from our open-source scanner design, build a scanner
on their own and capture finger-vein images. By providing
their captured data, they can help in establishing an extens-
ive, publicly available finger-vein data set and thus help in
stimulating research on vascular biometrics. Such an ex-
tensive data set is especially vital in order to develop ef-
ficient (in terms of runtime) finger-vein identification and
finger-vein indexing schemes.

The main contribution of this paper is the data set itself,
which was captured utilising our two finger-vein scanners.
This new, publicly available, dorsal finger-vein data set con-
sists of two sub sets: one for each of our proposed two scan-
ners. To the best of our knowledge there is neither a finger-
vein data set which was acquired using NIR laser illumina-
tion nor an extensive, publicly available, data set containing
dorsal images. Our data set provides high resolution dorsal
finger-vein images of 360 individual fingers together with
additional information about the 60 subjects. It is currently
being extended by capturing additional subjects and is ex-
pected to grow further due to our plans to make the scanner
hardware an open-source project.

The performance evaluation based on some well-
established finger-vein recognition algorithms confirms the
good recognition performance that can be achieved using
our data set, both the LED and the laser scanner one. Bey-
ond the baseline performance results, a subgroup specific
analysis of the recognition performance is carried out. The
whole data set is divided into 2 sex specific subgroups as
well as 3 age specific ones. We did not come across any
other finger-vein recognition paper that covers such a sub-
group specific performance evaluation so far. The subgroup
specific results indicate that there is no significant differ-
ence in the recognition performance for male and female
subjects as well as among the different age groups. Finally,
the cross-sensor (LED vs. laser) recognition performance
is evaluated and an image quality analysis using several no
reference image quality metrics is performed.

The rest of this paper is organised as follows: Section
2 explains the principle of a finger-vein scanner in general,
followed by the details about the two proposed finger-vein
scanning devices. In Section 3 at first an overview of avail-
able finger-vein data sets, including all important details, is
given. This is followed by a detailed description of our new
finger-vein data set. Section 4 outlines the experimental set-
up, including the recognition tool-chain as well as the evalu-
ation protocol and gives the performance evaluation results
together with a results discussion. Section 5 concludes this
paper along with an outlook on future work.

2. Finger-Vein Scanners

Finger-vein biometrics rely on the structure of the vas-
cular pattern inside the fingers of a human. To be able
to extract meaningful features of this vascular structure at
first the blood vessels inside the human body tissue have
to be made visible. The blood vessels can be rendered vis-
ible (as dark lines in the images) due to the fact that the
haemoglobin contained in the blood flowing through the
vessels absorbs NIR light while the surrounding tissue is
semi-permeable. Hence, the crucial components of a finger-
vein scanner are an NIR sensitive camera and some kind of
NIR light source, the latter typically consists of NIR LEDs
with wavelengths between 750 nm and 950 nm. Usually
either an NIR pass-through filter is added to the camera or
the scanner is enclosed in an optically opaque box in order
to reduce the influence of ambient light.

Based on the positioning of the illuminator relative to the
camera and the finger, there are two types of illumination:

1. Transillumination, where the camera and the illumin-
ator are positioned on opposite sides of the finger. The
light penetrates the skin and tissue of the finger and
gets captured by the camera as it emerges.

2. Reflected light, where the camera and the illuminator
are positioned on the same side of the finger. The light
originates from the light source, gets reflected at the
finger’s surface and tissue and is captured by the cam-
era.

A further distinction can be made based on the side of the
finger where the camera is positioned or the images is taken
from, respectively: palmar (also called ventral), where the
images are taken from the palm side of the hand and dorsal,
where the images are taken from the back side of the hand.

In finger-vein recognition usually palmar images are cap-
tured using transillumination. Our proposed scanners are
multi-purpose finger-vein scanners, i.e. they are able to
capture dorsal as well as palmar images and apply trans-
illumination as well as reflected light illumination. Thanks
to its modular design it is easy to change, replace, modify
or improve individual parts of the scanner while keeping its
basic structure.

2.1. PLUS OpenVein LED Based Scanner

The LED based version of the PLUS OpenVein finger-
vein scanner can be seen in Figure 1. The image sensor
is an NIR enhanced industrial camera (IDS Imaging UI-
ML1240-NIR) equipped with a Fujifilm HF9HA-1B 9 mm
lens in combination with a MIDOPT FIL LP830/27 NIR
pass-through filter. The transillumination light source con-
sists of 3 stripes (one underneath each finger) of 8 Osram
SFH-4253-Z LEDs each. An LED ring consisting of 8 850
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Figure 1. PLUS OpenVein three-finger vein scanner LED version

nm LEDs, 8 950 nm LEDs and 8 daylight LEDs for captur-
ing reflected light images is situated on top of the device. To
assist in positioning of the finger, the lower part contains a
custom 3D printed finger support which serves as a bracket
for the 3 LED stripes too. The control board is located on
the back plate of the scanner. This scanner is designed to
capture 3 fingers (index, middle and ring finger) at once. It
is able to capture both palmar and dorsal (by rotating the
hand) as well as transillumination and reflected light fin-
ger vein images. The whole scanner is built into a wooden
housing to improve stability. The outside dimensions of the
scanner are 146 × 175 × 258mm. All the housing parts,
the 3D printed parts and the control boards were designed
by ourselves. The acquisition time for one image is about
3 s (containing three fingers). Figure 6 bottom shows some
example images captured with this scanner.

The scanner has an integrated control board which en-
ables the individual brightness control of each of the trans-
illumination LEDs. The capturing software uses an auto-
matic brightness control algorithm to achieve an optimal
image contrast and quality. This is done iteratively by com-
paring the average grey level of the image area around each
LED centre (GLcurrent) with a pre-configured target value
(GLtarget). Initially all LEDs are set to half of the max-
imum intensity (Imax). The intensity correction is then
done according to: corr =

GLtarget−GLcurrent

GLmax
· Imax

2·n ,
where GLmax is the maximum grey value and n is the cur-
rent iteration. The LED centre positions are pre-configured
too. Each of the 3 reflected light illuminators can be
brightness controlled as a whole as well (not the individual
LEDs).

2.2. PLUS OpenVein Laser Based Scanner

This scanner is the first finger-vein scanner that uses NIR
laser diodes instead of NIR LEDs for transillumination. The

main parts (camera, reflected light source, finger support
and housing) of the laser based scanner are the same as
for the LED version except the illuminator and the control
board. The transillumination light source consists of 3x 5
DLC-180-500-9T5 808 nm 300 mW laser diodes including
a control PCB and a housing with an adjustable lens to fo-
cus the laser beam (subsequently called laser module). An
image of the scanner can be seen in Figure 1. The height
of laser based scanner is larger than the LED version (out-
side dimension are: 146×175×306mm) because the laser
modules are bigger than the LEDs.

An NIR illuminator based on laser modules instead of
LEDs exhibits several advantages in the transillumination
setting. First of all the laser modules have a very narrow ra-
diation angle. If LEDs are used, the finger has to be placed
close to the light source. As soon as the finger does not
directly touch the sensor surface most of the light emission
passes alongside and outside the finger, not through the fin-
ger. Thus, the finger boundaries appear too bright while the
interesting regions of the finger containing the blood vessels
exhibit little contrast leading to a lower vein image quality
in general, which can be seen in the bottom row of Fig-
ure 6 and in detail in Figure 3. Depending on the radiation
angle of the LED this gets worse the farther away the fin-
ger is from the illuminator, implying problems especially if
the distance between illuminator and finger cannot be easily
controlled. Figure 5 shows some example images captured
with our scanners. The distance between the finger and the
scanner surface varies from 0mm (directly on the scanner
surface), 20 mm and 40 mm. The images captured with
the LED based scanner (left part of the figure) clearly show
more bright areas around the finger boundaries and less im-
age contrast of the vein region the further away the finger
is from the scanner surface, while the laser based scanner
(images in right part of the figure) is still able to maintain a
good image contrast in the vein region. This is one of the
main problems if it comes to touchless finger-vein scanners.
The narrow radiation angle of the laser modules enables
an increased range of vertical finger movement (see Fig-
ure 4 for an illustration) without lowering the overall vein
image contrast and quality. This is a key requirement for
real touchless operation of a finger-vein scanner. Thus, the
design of a touchless finger-vein scanner becomes feasible
or at least less complex by utilising laser modules. Kim et
al. [5] were the first to propose the use of NIR lasers in-
stead of NIR LEDs in 2009. They exploited the increased
range of vertical finger movement and higher illuminous
flux compared to LEDs in their touchless finger-vein scan-
ner. In contrast to our design they used only one NIR laser
in combination with a laser line generator lens. They made a
real-time camera control software to achieve an optimal im-
age contrast instead of controlling the laser’s illumination
intensity. Their acquired data set consisting of 200 images
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Figure 2. PLUS OpenVein three-finger vein scanner laser version

Figure 3. Comparison of LED (left) and laser (right) illumination.
Note the bright spots along the left bottom part of the finger for the
LED scanner images which are reduced using the laser illumina-
tion.

captured from 10 different subjects has not been published.
Another advantage of NIR laser modules is that the emis-
sion spectrum of the laser modules is narrower compared to
LEDs. This enables the use of narrow band-pass filters in-
stead of NIR long-pass filters (filters all wavelengths below
the cut-off frequency but all frequencies above it will pass
unaffected) to further reduce the influence of ambient illu-
mination. The disadvantages of laser modules include the
higher current consumption (400 mA compared to 70 mA
for an LED), bigger size and the higher costs compared to
LEDs.

3. PLUSVein-FV3 Dorsal Finger-Vein Data Set

Table 1 lists some details of the the 8 publicly available
finger vein data sets we found so far, including the number
of subjects (subjs), the number of fingers per subject that
were captured (fings), the total number of images (imgs)
as well as if the images are captured from the palmar or
dorsal side (dors/palm). Furthermore, the number of ses-

Image
Sensor

NIR LED NIR Laser

Low
Position

High
Position

Half 
Angle:
0.5°

Half 
Angle:

15°

Finger

Illuminous
Flux

Figure 4. Illumination issues due to vertical finger movement: for
usual LEDs (depicted here is an LED with a radiation half angle of
15°) the further away the finger is from the illuminator, the higher
the amount of illuminous flux that is outside the finger. The more
illuminous flux outside the finger, the less image contrast and vein
visibility. Laser modules have a narrow radiation angle, thus the
illuminous flux outside the finger remains 0 if the finger is moved
in y-direction.

0 mm 20 mm 40 mm 0 mm 20 mm 40 mm
LED laser

Figure 5. Finger-vein images captured with our scanners show-
ing illumination issues due to vertical finger movement: note the
bright areas along the finger boundaries and the reduced contrast
of the vein region the further away the finger gets from the scan-
ner surface for the LED scanner images (left) compared to the laser
scannes ones (right) which still exhibit enough image contrast.

sions (sess), the image resolution and more important the
effective resolution of the visible finger area inside the im-
ages (finger w*h) as well as the type of camera and the il-
lumination type is given if this information was available.
The last row lists our new finger-vein data set.

This table clearly shows that all of these data sets except
the PROTECT Multimodal Database [16] are palmar finger-
vein data sets. Raghavendra and Busch [13] did some ex-
periments on dorsal finger veins but their data set has never
been published. Moreover, for all of these data sets, NIR
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name subjs fings imgs dors/palm sess resolution finger w*h camera illumination
UTFVP [15] 60 6 1440 palmar 2 672× 380 672× 240 C-Cam BCi5 850 nm LEDs

SDUMLA-HMT [19] 106 6 3816 palmar 1 320× 240 320× 130 NIR CCD 900nm 890 nm LEDs
FV-USM [1] 123 4 5940 palmar 2 640× 480 170× 450 Sony PSEye cam 850 nm LEDs

VERA FingerVein [14] 110 2 440 palmar 2 665× 250 650× 240 C-Cam BCi5 850 nm LEDs
MMCBNU_6000 [9] 100 6 6000 palmar 1 640× 480 640× 240 - 850 nm LEDs

THU-FVFDT [18] 610 2 6540 palmar 2 720× 576 200× 500 camera + NIR filter 890 nm LEDs
HKPU-FID [6] 156 2 3132 palmar 2 512× 256 512× 190 NIR camera 850 nm LEDs

PMMDB-FV [16] 20 4 240 dorsal 1 1280× 440 1120× 400 UI-ML1240-NIR 850 nm LEDs
PLUSVein-FV3 60 6 3600 dorsal 1 1280× 1024 200× 750 UI-ML1240-NIR LEDs/laser

Table 1. Available finger-vein data sets

LEDs were used as light source. The main contributions of
our data set are:

1. A comprehensive dorsal finger-vein data set. We
aimed at optimising the acquisition set-up to achieve
a high and consistent image quality in order to obtain
a good recognition performance.

2. Images captured using two scanners: one with NIR
LED based illumination and one with NIR laser mod-
ule based illumination.

3. Subjects’ metadata enabling sub-group specific ana-
lysis (e.g. sex and age group as we performed in this
paper).

3.1. Data Set Description

The PLUSVein-FV3 finger-vein data set consists of 2
subsets: one dorsal finger-vein subset captured with the
LED based scanner and one dorsal finger-vein subset cap-
tured with the laser module based scanner. There are the
same 60 subjects in each of the 2 subsets. 6 fingers (left
and right index, middle and ring finger) and 5 images per
finger in 1 session were captured. So each subset consists
of 360 individual fingers. Each scanner captures 3 fingers at
a time. Thus, each subset contains 600 raw finger-vein im-
ages. Some of these example images can be seen in Figure
6. The images are then separated into 3 parts, correspond-
ing to index, middle and ring finger, respectively. Hence,
there are effectively 1800 images in each subset and 3600
images in the data set in total. 25 of the subjects are female,
35 are male. The youngest subject was 18, the oldest one
79. The subjects are from 11 different countries.

The raw images have a resolution of 1280× 1024 pixels
and are stored in 8 bit greyscale png format. The separ-
ated images have a resolution of 420 × 1024 pixels and
the visible area of the finger inside the images is about
200×750 pixels per finger. The data set is publicly available
for research purposes and can be downloaded at: http:
//www.wavelab.at/sources/PLUSVein-FV3. It
is still being extended and is expected to contain more than
100 subjects until the end of 2018.

Figure 6. Scanner example images, laser (top) and LED (bottom)

4. Performance Evaluation
In the following the finger-vein processing tool-chain

and the evaluation protocol are described. Then the experi-
mental results are given and discussed.

4.1. Processing Tool-Chain

The finger-vein processing tool-chain consists of ROI
(region of interest) extraction, preprocessing, feature ex-
traction and comparison. We opted for simple binarisation
type feature extraction methods as well as one key-point
based method (SIFT based) to have a complimentary fea-
ture type too. If these simple recognition schemes perform
well on our data set, more recent and more sophisticated
recognition schemes will certainly perform even better. Im-
plementations of all of the methods we used are publicly
available.

ROI Extraction At first the input image is split into 3
parts, corresponding to index, middle and ring finger, re-
spectively. This can be done using fixed boundary lines.
Afterwards each image is processed individually. Prior to
the extraction of the ROI, the finger outline is detected by
the help of edge detection algorithms. Then a straight centre
line is fitted into the finger. Based on this centre line, the fin-
ger is aligned (rotated and shifted) such that it is in upright
position in the middle of the image. Then the area outside
the finger is masked out (pixels set to black). Then a rect-
angular ROI is fit inside the finger area. The ROI images
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Figure 7. ROI extraction process, from left to right: input image,
left finger separated, finger outline and centre line detection, finger
aligned and masked, ROI boundary

have a size of 192× 736 pixels. The single steps of the ROI
extraction are depicted in Figure 7.

Preprocessing To improve the image contrast and the vis-
ibility of the vein pattern CLAHE [22], which is the most
prevalent and simple technique, in combination with High
Frequency Emphasis Filtering (HFE) [21] and filtering
with a Circular Gabor Filter (CGF) as proposed by Zhang
and Yang [20] are applied. Furthermore, the images are res-
ized to half of its original size, which not only speeds up the
comparison process but further improves the results due to
intrinsic denoising. For more details on the preprocessing
methods the interested reader is referred to the authors’ ori-
ginal publications..

Feature Extraction and Comparison The first three of
the following techniques aim to extract the vein pattern from
the background resulting in a binary template image fol-
lowed by a comparison of these binary templates using a
correlation measure.

Maximum Curvature (MC [12]) aims to emphasise
only the centre lines of the veins, making it insensitive to
varying vein widths. The first step is the extraction of the
centre positions of the veins. Afterwards a score according
to the width and curvature of the vein region is assigned to
each centre position and recorded in a matrix called locus
space. Due to noise or other distortions some pixels may
not have been classified correctly at the first step, thus the
centre positions of the veins are connected using a filtering
operation. Finally binarisation is done by thresholding us-
ing the median of the locus space.

Principal Curvature (PC [2]): At first the gradient field
of the image is calculated. Hard thresholding is done to fil-
ter out small noise components and then the gradient at each
pixel is normalised to 1 to get a normalised gradient field.
This is smoothed by applying a Gaussian filter. The next
step is the actual principal curvature calculation, obtained
from the Eigenvalues of the Hessian matrix at each pixel.
Only the bigger Eigenvalue, corresponding to the maximum
curvature, is used. The last step is a binarisation of the prin-

cipal curvature values to get the binary vein output image.
Gabor Filter (GF [6]): The image is filtered using a fil-

ter bank consisting of several 2D even symmetric Gabor fil-
ters with different orientations, resulting in several feature
images. The final vein feature image is obtained by fusing
all these single images, which is then post-processed using
morphological operations to remove noise.

For comparing the binary feature images we adopted the
approach of Miura et al. [12]. As the input images are
neither registered to each other nor aligned vertically, the
correlation between the input image and x- and y-direction
shifted versions of the reference image is calculated. The
maximum of these correlation values is normalised and then
used as final comparison score.

In addition to the techniques described above, the fourth
technique is a key-point based one. Key-point based tech-
niques try to use information from the most discriminative
points as well as considering the neighbourhood and context
information of these points by extracting key-points and as-
signing a descriptor to each key-point. We used a SIFT [8]
based technique with additional key-point filtering along the
finger boundaries as proposed by Kauba et al. [4].

4.2. Evaluation Protocol

To quantify the performance, the EER as well as the
FMR1000 (the lowest FNMR for FMR <= 0.1%) and
the ZeroFMR (the lowest FNMR for FMR = 0%) are
used. We followed the test protocol of the FVC2004 [10].
For calculating the genuine scores, all possible genuine
comparisons are performed, which are 62 · 6 · 5·4

2 = 3600
comparisons. For calculating the impostor scores, only the
first image of a finger is compared against the first image
of all other fingers, resulting in 6 · 60·59

2 = 10620 compar-
isons, so 14220 comparisons in total. All result values are
given in percentage terms, e.g. 1.43 means 1.43%. A pub-
lic implementation of the complete processing tool-chain
as well as the score and detailed results are available at:
http://www.wavelab.at/sources/Kauba18c.

4.3. Baseline Performance Results

Table 2 shows the baseline recognition performance res-
ults for all 4 tested finger-vein recognition schemes and both
scanner types, laser and LED. All of the 4 quite simple
finger-vein recognition schemes achieve a competitive re-
cognition performance in terms of EER, FMR1000 as well
as ZeroFMR on both, the laser and the LED scanner data
set. The DET plots for the laser and the LED scanner can be
found in Figure 8 left and right, respectively. Regarding the
laser scanner data set, MC performs best achieving an EER
of 0.028%, followed by SIFT and PC while GF performs
worst. On the LED scanner data set, PC performs slightly
better than MC (in terms of ZeroFMR), both having an EER
of 0.028%. SIFT is ranked third while GF again performs
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MC PC SIFT GF
la

se
r EER 0.028 0.331 0.111 0.523

FMR1000 0.028 0.444 0.111 0.694
ZeroFMR 0.028 0.694 0.361 1.306

L
E

D EER 0.028 0.028 0.117 0.336
FMR1000 0.028 0.028 0.139 0.444
ZeroFMR 0.083 0.056 0.361 0.917

Table 2. Baseline performance results (the best results per illumin-
ation type are highlighted bold)

Figure 8. DET plot for laser scanner (left) and LED (right)

worst. Note that due to the limited number of comparison
scores (14220) the resolution of the DET curve is limited.
Thus, the DET curve of MC and the one of PC for the
LED scanner shows a straight line between 0.01% and 0.1%
(0.6% for MC on the LED scanner and 1.2% for PC on the
LED scanner, respectively). Consequently, the EER could
be any value in between 0.028% and 0.1%/0.6%/1.2%, re-
spectively. We decided to report the lowest possible FRR as
EER in those cases. In our scanner set-up, where the fin-
gers are placed directly above the illumination source, the
tested recognition schemes perform slightly better on the
LED scanner data set than on the laser one, especially PC
and GF. However, the laser based scanner has its main ad-
vantage in terms of recognition performance if the finger is
not placed directly on the scanner surface but located a few
centimetres away from it (touchless operation).

4.4. Cross-Sensor Comparison Performance

The cross-sensor recognition performance results are
given in Tab. 3. MC performs best if it comes to
cross-sensor comparison achieving a competitive EER of
0.288%. This time GF performs second best, followed
by PC while SIFT performs worst. In terms of relative
performance degradation (EERi,cross−EERi,single

EERi,single
· 100%,

where EERi,cross is the cross-sensor comparison EER for
the i-th recognition scheme and EERi,single is the lower
of the two single sensor performances for the corresponding
recognition scheme), MC’s performance dropped by about
930%. PC’s performance dropped by 740%, the one of
SIFT by 2340% and the one of GF only by 160% in terms
of relative EER increase. According to these relative per-

MC PC SIFT GF
EER 0.288 2.775 2.86 1.353

FMR1000 0.478 5.078 5.622 3.522
ZeroFMR 1.267 6.522 7.689 8.144

Table 3. Cross-sensor (LED vs. laser) comparison performance
results

male female
MC SIFT MC SIFT

nr. of subjects 35 25

la
se

r EER 0.0 0.038 0.061 0.122
FMR1000 0.0 0.286 0.067 0.2
ZeroFMR 0.0 0.429 0.067 0.4

L
E

D EER 0.089 0.052 0.0 0.211
FMR1000 0.048 0.048 0.0 0.267
ZeroFMR 0.95 0.048 0.0 0.533

Table 4. Sex subgroup specific results

formance drops GF can handle the cross-sensor comparison
best. However, MC still performs best in terms of absolute
performance values in the cross-sensor comparison. Sum-
ming up, the cross-sensor comparison lowers the recogni-
tion performance but is still usable in practical deployments
of finger-vein scanners, especially if it comes to MC.

4.5. Sex and Age Group Specific Analysis

In addition to the baseline performance evaluation we
also conducted a subset specific analysis. Therefore, we di-
vided the total data set into 2 sex (male/female) and 3 age
group (< 30 / ≥ 30 < 40 /≥ 40) specific subsets. To
keep the tables and plots clear, only the results of MC and
SIFT are depicted. PC and GF follow the same trend. The
sex subgroup specific results are given in table 4. While
the general performance (including male and female sub-
jects) in terms of EER for MC using the LED scanner data
is 0.028%, for the male subset it is 0.089%, whereas for the
female one it is 0%. For SIFT the situation is completely
opposite: the baseline EER for the LED scanner data is
0.117%, for the male subset it is 0.052% and for the fe-
male one it is 0.211%. Regarding the laser scanner, male
subjects achieve a slightly better recognition performance
than female ones for both, MC and SIFT. Overall, there is
no substantial difference between male and female subjects
regarding the recognition performance using our finger-vein
recognition system including the scanner hardware and the
recognition tool-chain.

The age-group specific results are listed in table 5. It can
be seen that for the LED scanner the EER as well as the
FMR1000 and the ZeroFMR are all 0%, i.e. the best re-
cognition performance that can be achieved. Consequently,
there is no difference between the three age subgroups, i.e.
the finger-vein recognition system’s performance is inde-
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< 30 ≥ 30 < 40 ≥ 40
MC SIFT MC SIFT MC SIFT

nr. of subjects 19 21 20

la
se

r EER 0.0 0.0 0.0 0.0 0.0 0.0
FMR1000 0.0 0.0 0.0 0.0 0.0 0.0
ZeroFMR 0.0 0.0 0.0 0.0 0.0 0.0

L
E

D EER 0.0 0.0 0.0 0.0 0.0 0.0
FMR1000 0.0 0.0 0.0 0.0 0.0 0.0
ZeroFMR 0.0 0.0 0.0 0.0 0.0 0.0

Table 5. Age subgroup specific results

metric BIQAA SSEQ GCF Wang17
laser 0.00461 28.5888 1.289 0.32679
LED 0.00423 36.4295 1.419 0.30035

Table 6. Image quality evaluation results, BIQAA values are in the
range of [0, 1], SSEQ in [0, 100], GCF in [0, 8] and Wang17 in [0,
1]. Higher values correspond to higher image quality, except for
SSEQ where 0 is the best quality.

pendent of the subject’s age. The results for the laser scan-
ner are in line with the LED ones. Note that this is only a
first indicator as the number of subjects/fingers in each of
the subgroups is low. In order to arrive at a more profound
statement, a larger data set is needed.

4.6. Image Quality Assessment

The finger-vein images were analysed using 2 general
image quality metrics (BIQAA [3] and SSEQ [7]). BIQAA
and SSEQ were selected as they have been proved to be well
suited for natural scene images. As they are based on im-
age entropies they should perform well using arbitrary, not
necessarily natural scene images, too. Moreover, GCF [11]
was selected as it is a general image contast metric and thus
independent of the image content. With the help of GCF the
image contrast can be quantified exclusively disregearding
the actual image content. As we aim to quantify the image
quality of finger-vein images, of course a vein specific NIR
image quality metric, Wang17 [17] was included as well.
The image quality assessment results, listed in Tab. 6 are
diverse. The recognition performance of the LED scanner
is superior compared to the laser one. However, only GCF
indicated that the LED images exhibit a higher image qual-
ity while BIQAA, SSEQ and Wang17 indicate the contrary.
Hence, a reliable prediction of the recognition performance
based on the assessed image quality is not possible.

5. Conclusion and Future Work
Two new, modular designed, multi-purpose finger-vein

scanners have been proposed. The first one is based on
widely used NIR LED illumination while the second one
uses NIR lasers. NIR lasers have hardly been used in finger-
vein recognition despite their advantages over LEDs, espe-

cially if it comes to touchless operation. Due to the narrow
radiation angle of the lasers they enable an increased range
of vertical finger movement without lowering the image
contrast and overall image quality. A new dorsal finger-vein
data set captured by utilising our two proposed scanners has
been established. This data set contains 360 individual fin-
gers (60 subjects and 6 fingers each), is publicly available
for research purposes and can be downloaded at: http:
//www.wavelab.at/sources/PLUSVein-FV3.

The performance evaluation on our new data set confirms
the decent recognition performance that can be achieved
using our proposed scanner design, both the LED and the
laser version and in the cross-sensor comparison scenario as
well. Even the selected simple but well-established finger-
vein recognition schemes arrived at quite a remarkable per-
formance. In our set-up, where the finger is placed directly
on top of the illumination source, the LED based scanner
is able to compete and even slightly outperform the laser
based version. However, this situation changes if the finger
is placed a few centimetres away from the illuminator, then
the laser scanner will outperform the LED one.

Moreover, a sex and age group specific subset analysis
has been carried out which indicates that there is no sub-
stantial difference in terms of recognition performance for
male and female subjects as well as among the different age
groups of the subjects. Such a subgroup specific analysis
has not been performed before. These results need further
investigation and confirmation based on a larger data set.

As mentioned in the introduction, all the details about the
scanner and its design will be made available as an open-
hardware documentation together with an open-source re-
pository where construction plans, schematics, parts lists,
firmware, etc. can be found. Researchers can benefit from
our open-source design, as it enables them to build a scan-
ner based on our design on their own. By capturing and
providing finger-vein images using a scanner based on our
design, i.e. having essentially the same structure as we pro-
posed, they can contribute to a large, open, publicly avail-
able finger-vein data set. The whole finger-vein research
community will benefit from such a data set.

Together with our partners as well as other researchers
building a scanner device based on our design, we are con-
fident that our data set will continue to grow in the future.
We are currently capturing further subjects in-house and our
finger-vein data set is expected to contain more than 100
subjects by the end of 2018. Furthermore, we are extending
our data set by capturing palmar finger-vein images as well,
which will be released soon.
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Abstract

Most finger vein recognition systems use palmar finger
images. There is some work on the dorsal view, but the re-
maining views have not been sufficiently investigated yet.
All major public available finger-vein databases contain
only images from the palmar view and only one smaller
database has images from the dorsal view. We aim to fill
this gap and evaluate the performance using other perspect-
ives than dorsal and palmar. Therefore, we established a
new finger vein data set that consists of videos showing the
vein structure all around the finger. We carried out sev-
eral experiments utilizing common finger-vein recognition
algorithms to quantify the recognition performance of each
single projection. We further analyzed if a fusion of differ-
ent views can improve the recognition performance of the
system.

1. Introduction
Biometric authentication systems are well established

today as they exhibit many advantages over traditional pass-
word and token based ones. The most prominent examples
are fingerprint and face recognition systems. In recent times
authentication based on finger- and hand-veins has gained
more attention as they provide several advantages over the
well established fingerprint ones. Finger-vein recognition
utilizes the pattern of the blood vessels inside the hand of
a human which is captured using near infrared (NIR) illu-
mination. Finger-vein recognition is more resistant against
forgery because the veins are underneath the skin and only
visible in infrared light. In addition the vein patterns are
neither susceptible to abrasion nor skin surface conditions.
The drawbacks of finger-vein based recognition systems in-
clude relatively big capturing devices compared to finger-
print sensors, images having low contrast and quality in
general and that the vein structure may be influenced by
temperature, physical activity and certain injuries and dis-
eases.

Currently there has only been little research on finger-
veins biometric recognition systems using images from dif-
ferent viewpoints. Most works focus on the analysis of
the palmar perspective [1, 7, 15, 16, 18, 19]. Raghavendra
and Busch [12] proposed a vein recognition system for the
dorsal perspective, Lu et al. [8] fused images from two
different views which are positioned quite close to each
other. Zhang et al. [22] applied point cloud matching on
hand-veins using two cameras. All major publicly available
finger-vein databases contain only images from the palmar
or dorsal perspective. Table 1 lists these available data sets.
The only dorsal database has just been released and was not
used in any publication so far. To the best of our knowledge,
there is no work analyzing finger-veins using perspectives
all around the finger. Hence, it is not clear if there are other
perspectives that provides better or enough additional in-
formation to improve the performance of the recognition
system. Another advantage of using several perspectives is
an increased robustness against spoofing attacks. It has been
shown that finger- as well as hand-vein recognition systems
are susceptible to spoofing [15, 14]. The proposed spoofing
technique is based on a simple paper printout of the vein
pattern. Capturing the vein images from different perspect-
ives will prevent such simple kinds of spoofing attacks.

Name Subjects Finger Images View
UTFVP [16] 60 6 1440 palmar
FV-USM [1] 123 4 5940 palmar
MMCBNU 6000 [7] 100 6 6000 palmar
SDUMLA HMT [19] 106 6 3816 palmar
VERA FV DB [15] 110 2 440 palmar
THU-FVFDT [18] 610 2 6540 palmar
PROTECT MM DB [17] 20 4 240 dorsal
HKPU-FID [5] 156 2 3132 palmar

Table 1. Publicly available finger-vein data sets

The main goal of this work is to evaluate the recogni-
tion performance of finger-vein images taken from different
perspectives. We evaluate the performance of these addi-
tional perspectives in order to find out if they exhibit a bet-
ter or similar performance compared to the palmar one or

978-1-5386-7180-1/18/$31.00 ©2018 IEEE
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at least provide enough information to improve the recogni-
tion performance when fusing them. The provided data set
can also be used to evaluate the robustness of finger recog-
nition systems against longitudinal finger rotation. Based
on this data set, the different projections’ individual recog-
nition performances are evaluated utilizing some well es-
tablished vein recognition schemes, compared and ranked.
In addition, we conducted experiments using score-level fu-
sion of selected projections in order to find out if the recog-
nition performance can be increased further.

The rest of the paper is organized as follows: Section 2
describes the used finger vein recognition system. At first
the image acquisition is explained, then the algorithms for
ROI extraction, preprocessing, feature extraction and com-
parison are briefly outlined. Section 3 contains informations
about the custom build multi-perspective finger-vein scan-
ner hardware used to acquire the new data set as well as
a description of the data set itself. Section 4 presents the
experimental protocol and discusses the results. Section 5
concludes this paper.

2. Finger-Vein Recognition System
2.1. Image Acquisition

A hand-vein scanner consists of 2 basic components:
a near-infrared (NIR) sensitive camera and a NIR light
source. Usually there is some automatic illumination in-
tensity control to achieve an optimal contrast of the vein
images. The wavelength of the NIR light source is typic-
ally between 730 and 950 nm. The near-infrared light is
absorbed by the haemoglobin in the blood flowing through
the veins and arteries. Thus, they appear as dark lines in
the captured images. The camera should be equipped with
an NIR pass-through filter to block the ambient light and
further enhance the image contrast.

2.2. Preprocessing, Feature Extraction and Com-
parison

ROI Extraction Prior to the extraction of the region of
interest (ROI), the finger is aligned and normalized. The
alignment should place the finger always in the same posi-
tion - independent of the relative position of the finger dur-
ing the acquisition. To achieve this, we detected the finger
lines (edge between finger and the background of the im-
age) and calculate the center line (in the middle of the two
finger lines). Next we rotate and translate the center line
of the finger in a way that it is placed in the middle of the
image and mask the image outside of the finger region. The
final step is to extract a rectangular ROI. In order to keep
the whole information of the vein structure, we first adjust
the finger region to fit into a rectangle of defined height and
just cut off some pixels on the border. The three steps are
visualized in Figure 1.

detect center line align and mask cut rectangular ROI

Figure 1. ROI Extraction

Preprocessing Preprocessing tries to enhance the low
contrast and improve the image quality. Simple CLAHE
[24] or other local histogram equalization techniques are
most prevalent according to the literature for this purpose.
We used High Frequency Emphasis Filtering (HFE)
which was originally proposed for hand vein image en-
hancement [23]. In addition, filtering using a Circular
Gabor Filter (CGF) as proposed by Zhang and Yang [20]
was applied. Furthermore, the images were resized to half
of their original size, which not only speed up the compar-
ison process but also improved the results. For more de-
tails on the preprocessing methods the interested reader is
referred to the authors’ original publication [3].

Feature Extraction and Comparison We used two dif-
ferent types of feature extraction and comparison methods.
The first three techniques discussed aim to extract the vein
pattern from the background resulting in a binary image fol-
lowed by a comparison of these binary images using a cor-
relation measure. All algorithms are well established and
therefore deliver reproducible results. We used the publicly
available implementations published in [4].

Maximum Curvature (MC [11]) aims to emphasize
only the center lines of the veins and is therefore insensitive
to varying vein widths. The first step is the extraction of the
center positions of the veins. Afterwards, a score accord-
ing to the width and curvature of the vein region is assigned
to each center position which is recorded in a matrix called
locus space. Due to noise or other distortions some pixels
may not have been classified correctly at the first step, thus
the center positions of the veins are connected using a filter-
ing operation. Finally binarization is done by thresholding
using the median of the locus space.

Principal Curvature (PC [2]): At first the gradient field
of the image is calculated. Hard thresholding is done to fil-
ter out small noise components and then the gradient at each
pixel is normalized to 1 to get a normalized gradient field.
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This is smoothed by applying a Gaussian filter. The next
step is the actual principal curvature calculation. It is ob-
tained from the Eigenvalues of the Hessian matrix at each
pixel. The two Eigenvectors of the Hessian matrix represent
the directions of the maximum and minimum curvature and
the corresponding Eigenvalues are the principal curvatures.
Only the bigger one which corresponds to the maximum
curvature is used. The last step is a binarization of the prin-
cipal curvature values to get the binary vein output image.

Gabor Filter (GF [5]): A filter bank consisting of sev-
eral 2D even symmetric Gabor filters with different orient-
ations (in π

k steps where k is the number of orientations) is
created. Several features images are extracted by filtering
the vein image using the different filter kernels of the Gabor
filter bank. The final feature image is obtained by fusing
all the single images from the previous step. This final vein
output image is then post-processing using morphological
operations to remove noise.

For comparison the binary feature images we extended
the approach in [10] and [11]. As the input images are
neither registered to each other nor aligned, the correlation
between the input image in x- and y-direction shifted ver-
sions of the reference image is calculated. The maximum of
these correlation values is normalized and then used as final
comparison score.

In contrast to the techniques described above, key-point
based techniques try to use information from the most dis-
criminative points as well as considering the neighborhood
and context information of these points by extracting key-
points and assigning a descriptor to each key-point. We
used a SIFT [6] based technique with additional key-point
filtering. Details are described in [3].

3. Multi-Perspective Finger-Vein Data Set
Due to the lack of an existing data set consisting of

finger-vein images from different perspectives, we estab-
lished a new data set which will be made publicly available.
The images have been acquired using a custom build scan-
ner. The different projection angles are achieved by rotat-
ing a NIR camera and the illumination unit around the fin-
ger. The principle is shown in Figure 2: The finger is posi-
tioned at the axis of rotation, whereas the camera and the il-
lumination module are placed on the opposite sides, rotating
around the finger, i.e. the scanner is based on the transillu-
mination principle. The rotation of camera and light source
enables the scanner to acquire images from different views.

3.1. Multi-Perspective Finger-Vein Scanner

Our custom build sensor is based on the above mentioned
principle. All non-commercially available parts were engin-
eered and manufactured by ourselves using a 3D printer and
a laser cutter for the wooden parts. Figure 3 shows the un-
wrapped scanner with all its components. In the middle of

Figure 2. Basic principle of our finger vein scanner

Height-Adjustable
Finger-Trunk
Stabilizer (Plate)

Axis of Rotation

NIR
Camera

Control ModuleStepper Motor

Gear

Illumination
Module

Finger-Tip
Stabilizer

Figure 3. Custom build multi-perspective finger-vein scanner

the image you can see the finger. In order to keep the move-
ment of the finger during the acquisition to a minimum, we
added two parts to help to stabilize the finger. For the finger-
tip, we constructed a part that has a finger-tip shaped hole.
Putting the finger into this hole keeps it in its position. For
the hand we added a height-adjustable wooden plate. Pla-
cing the hand on this plate stabilizes the trunk of the finger.
The height of the plate is adjusted according to the length of
the captured finger. The illumination module on the left side
consists of 5 NIR laser diodes (808 nm) placed on a strip.
The illumination intensity of each laser diode is controlled
separately. The plane of focus is set at the axis of rotation
where the center of the finger is located. This results in a
uniform illumination of the finger. During data acquisition,
the intensity of the different laser diodes is set automatic-
ally. This is achieved by individually setting the intensity
value (controlled by the operating current) for each laser.
The best value is selected by evaluating the image contrast
in the corresponding section of the image. The images are
captured by a NIR enhanced industrial camera (IDS Ima-
ging UI-1240ML-NIR, max. resolution 1280x1024 pixels)
with a 9 mm wide-angle-lens (Fujifilm, HF9HA-1b, 9mm,
2/3"). An additional NIR longpass filter (Midopt LP780,
useful range: 800-1100mm) mounted on the lens blocks
visible light up to a wavelength 780 nm. The rotation is ac-
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complished using a stepping motor (SY42STH47-1684A).
The stepper and the rotor are connected via self printed cog-
wheels having a gear ratio of 1:5/3 (motor to rotor). One
step corresponds to 0.0675°, thus it is possible to capture a
maximum of 5.333 different projections. The sensor has a
size of 25.8 x 32.5 x 45.5 cm (width x height x depth). The
rotor has a length of 38 cm.

The acquisition process is semi-automated. After the fin-
ger is put into the device and the capture process is initiated,
the illumination for the finger is set automatically in order
to achieve an optimal image contrast with the help of a con-
trast measure. After this, the video acquisition is started. To
achieve a defined resolution (in degrees) of images (video
frames), the speed of the rotation and the video frame rate
are coordinated with each other. All perspectives are cap-
tured in one run using the same illumination conditions to
ensure the comparability of the different projections.

The automated illumination algorithm evaluates the av-
erage gray level of the image around in the center of
each laser diode (GLi,current)) and tries to achieve a pre-
configured target gray value (GLi,target). The centers of
the diodes are arranged along the longitudinal axis of the
finger. The individual intensity values of all diodes are set
at once. Initially all diodes are set to half of its max intensity
(Imax). The intensity is corrected by:

correctioni =
GLi,target −GLi,current

GLmax
∗ Imax
2 ∗ n (1)

where GLmax is the maximum gray value and n is the num-
ber of the current iteration. The maximum number of itera-
tions is log2 (Imax).

3.2. Data Set

The data set currently contains of a total of 252 unique
fingers from 63 different subjects, 4 fingers per subject. We
acquired videos from the index and middle finger of both
hands where the target resolution is 1°. As acquiring of the
ring finger would be ergonomically uncomfortable for our
volunteers, we skipped capturing of this finger.

We extracted the video frames as images which leads to
361 different perspectives (361 as we captured one frame
for 0° and 360°). Due to some variations in the video frame
rate and the speed of the rotation during the capturing, we
got between 357 and 362 frames for a full rotation (ideal
would be 361 frames). To get 361 perspectives for every
finger, we mapped the frame with the minimum deviation
to the desired position for every perspective. This results in
a maximum deviation of 0.5042° to its desired position.

Every finger was acquired 5 times - each time removing
the finger from the scanner and putting it in again. This
results in 252 ∗ 361 ∗ 5 = 454.860 images in total. One
projections consists of 252 ∗ 5 = 1260 images. The extrac-
ted frames are 8-bit gray scale images with a resolution of

Figure 4. Data capturing

1024*1280 pixels. Due to the fact that the finger is always
positioned in the middle of the scanner, we cut of the bor-
ders. This results in to a final image resolution of 650x1280.
Figure 4 shows our sensor during data acquisition. Record-
ing a single person with 4 fingers and 5 iterations takes ap-
proximately 15 minutes.

Figure 5 shows 6 example images (0° - 300° in 60° steps,
0° corresponding to palmar view and 180° corresponding to
dorsal view, respectively). It is apparent, that the number of
visible veins in the images differ among the different pro-
jections. The black area at the top results from the hand
stabilization plate. Depending on the length of the finger,
the plate is pushed in further or less far.

The gender distribution of the volunteers is balanced.
Among the 63 subjects, 27 are female (43%) and 36 men
(57%). The dataset represents a good cross section among
all age groups with a slight overhang among the 20-40 year
olds. The youngest participant was 18, the oldest 79 years.
Due to national law, we were not allowed to acquire data
from people younger than 18. The actual distribution is
shown in Figure 6. Our subjects are from 11 different coun-
tries1 where the majority is white Europeans (73%).

4. Experiments

The experiments are split into two main parts: in the first
part we analyze the recognition performance of the different
projections. Every perspective is considered as a separate
data set. We did not perform cross-projection comparison.
We processed the images as described in section 2. As we
aim for analyzing the recognition performance from views
all around the finger, we used 73 perspectives extracted in 5°
steps. To quantify the performance we used the EER as well
as the FMR100 (the lowest FNMR for FMR ≤ 1%), the

1Austria, Brazil, China, Ethiopia, Germany, Hungary, Iran, Italy, Rus-
sia, Slovenia, USA
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0° (palmar) 60° 120° 180° (dorsal) 240° 300°

Figure 5. Example images of the data set acquired from 0° to 360° in 5° steps
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Figure 6. Age distribution among all subjects

FMR1000 (the lowest FNMR for FMR ≤ 0.1%) and the
ZeroFMR (the lowest FNMR for FMR = 0%). For their
calculation we followed the test protocol of the FVC2004
[9]: for calculating the genuine scores for each projection,
all possible genuine matches are done, which are 63 ∗ 4 ∗
5∗4
2 = 2520 matches. For calculating the impostor scores,

only the first image of a finger is matched against the first
image of all other fingers, resulting in 4 ∗ 63∗62

2 = 7812
matches, so together 10332 matches in total. All values are
given in percentage terms, e.g. 2.35 means 2.35%.

In the second part of our experiments, we apply score-
level fusion [13] to selected projections in order to improve
the recognition performance. We start with the fusion of
two views and increase the number to the maximum of 72
views. The perspectives used are evenly distributed over
the whole circle. The step width of 5° of the selected im-
ages allows us to fuse 2, 3, 4, 6, 8, 9, 12, 18, 24, 36 and 72
different projections. Figure 7 shows the principle for the
first 3 options. In addition, we fuse certain angles in a 2-
view-fusion against all other perspectives. Since all scores
are from the same modality using the same feature extrac-
tion method (we do not fuse results from different feature
extraction algorithms), a score normalization was not ne-
cessary. For the fusion we used the simple sum rule.

0◦ (palmar)

180◦ (dorsal)

2 perspectives
0◦ (palmar)

180◦ (dorsal)

240◦ 120◦

3 perspectives
0◦ (palmar)

180◦ (dorsal)

90◦270◦

4 perspectives

Figure 7. Selection of view angles for fusion with 2, 3 and 4 per-
spectives
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Figure 8. Recognition performance for different projections (EER)

4.1. Recognition Performance Results

Figure 8 visualizes the results for the evaluation of the re-
cognition performance using MC, PC, GF and SIFT based
on the EER. For every method there are two lines: the thin
line shows the actual EER values of the relevant view, the
thicker line is calculated from the EER values using a mov-
ing average filter of size 5 and should highlight the trend
of the recognition performance. As the step between two
projections is only 5°, the acquired images of neighboring
perspectives show similar vein structures. This results in
similar recognition performances. The best results are ob-
tained around the palmar (0°) and dorsal (180°) region. The
inferior results of the perspectives between those two view

Multi-Perspective Finger-Vein Biometrics

29



can be explained by the fact that they contain fewer vein
information, as it can be seen in Figure 9. It shows the ori-
ginal ROI, the ROI after preprocessing, and the extracted
veins (using MC) for the views at 0°, 90°, 180° and 270°.
It reveals, that the palmar and dorsal perspectives contain
more vein information than the other two views. Moreover,
it turns out that vein extraction - especially at 180° - com-
promises some features related with the knuckles of the fin-
ger. This features can be recognized as horizontal lines in
the feature image.

For SIFT, the best performance is achieved around the
dorsal region. The palmar region exhibits better perform-
ance than the remaining perspectives as well, but it is in-
ferior compared to the dorsal one. This is due to the applied
preprocessing: for SIFT we only apply algorithms that en-
hance the vein structure, but not a vein extraction algorithm
(binarization) ahead of the SIFT point calculation. This pre-
vails the texture of the finger. Especially the structure of
finger knuckles seem to contain a lot of information in it.
Finger knuckles have been introduced by Zhang et al. [21]
as its own biometric modality. This could explain the better
performance at the dorsal view. Yang [18] et al. experi-
enced similar behavior. They fused the finger vein structure
of the palmar view and the finger texture of the dorsal view
which improved the recognition performance.

The EERs for the best projections are in accordance with
the rates achieved in well-established implementations. For
projections other than palmar/dorsal no comparisons are
available. The best/worst rates are shown in Table 2.

Worst Result Best Result
View EER View EER

MC 270° 2.31 15° 0.28
PC 270° 3.59 15° 0.52
GF 300° 13.12 360° 4.16

SIFT 85° 6.67 170° 2.38

Table 2. Recognition performance (EER) for single views

The results for FMR100 (Figure 10), FMR1000 (Fig-
ure 11) and ZeroFMR (Figure 12) show the same trend as
the EER. Again, the best performance is achieved around 0°
and 180°.

To ensure that two opposing views do not contain the
same (just mirrored) information, we further investigated
the palmar and dorsal perspective. We mirrored the images
of the dorsal view along the longitudinal axis of the finger
and matched them against the palmar ones. If both per-
spectives show the same blood vessels, they should - due to
the mirroring - be registered to each other, and a comparison
against each other would show similar performance as com-
paring the single views itself. Our results show exactly the
opposite behavior: The EER of all four used algorithms is
close to 50% which means that the vein structure of the two
perspectives is not related to each other. Figure 9 shows the

original ROI, the ROI after preprocessing, and the extracted
veins (using MC) for both projections. It is obvious that the
vessel structure differs between the palmar and dorsal view.
Table 3 shows the results in detail.

EER for Perspective
0° 180° 0° vs 180°

MC 0.47 1.08 47.28
PC 0.55 1.31 49.41
GF 4.33 4.38 50.04
SIFT 4.68 2.48 46.74

Table 3. Recognition performance (EER) for palmar vs dorsal
view

4.2. Score-Level Fusion Results

In the second part of our experiments we analyze the
impact of fusing selected perspectives. In the first exper-
iment we fuse an increasing number of views which are,
as described in section 4, evenly distributed over the whole
circle. As starting angles we used 0° (palmar view), 45°,
90°, 180° (dorsal view) and 270°.

Figure 13 visualizes the results for start angle 0°. The
fusion results for MC, PC, GF and SIFT are similar: Fus-
ing the palmar with dorsal view improves the result. With
the fusion of 3 views (60°, 180° and 300°), the result is
slightly inferior to the one with two views. This can be ex-
plained by the fact that we removed the well performing
palmar view and replaced it with two less performing ones.
When adding additional views, the recognition performance
further increases and stabilizes at a high level.

As the remaining 4 start angles show - in principle -
the same general trend, we do not discuss them in detail.
Figure 14 shows the results of the other reference angles.
Table 4 holds detailed results for the multi-perspective fu-
sion. For every method/reference angle combination it
shows the EER for the reference view and the worst/best
fusion result. The number of views is always the minimum
number of needed perspectives to achieve the stated EER.
We achieved a clear performance increase for all combina-
tions.

In our second fusion experiment we applied a 2-view-
fusion of a certain perspective against all others. This was
done for every feature extraction and comparison algorithm.
As reference views we selected a good performing (0°) and
an inferior performing view (270°).

Figure 15 shows the results for MC: The solid red
line shows the recognition performance without fusion and
serves as reference for the other lines. The dotted green line
represents the fusion results for 270°. None of the fused
values has a worse performance than the single-view per-
formance of 270°. The dashed blue line for 0° shows the
same behavior, although not as distinctive.

PC, GF and SIFT (not visualized) show similar behavior.

Chapter 3. Publications

30



Projection: 0° Projection: 90° Projection: 180° Projection: 270°

Figure 9. ROI, enhanced image and extracted features (MC) for different projections
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Figure 10. Recognition performance for different projections
(FMR100)
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Figure 11. Recognition performance for different projections
(FMR1000)

Note that the fusion of two views can result in an inferior re-
cognition performance than the better of the two used views.
E.g. this occurs for PC and reference view 0° when fusing it
with the 305° perspective. Table 5 holds detailed results for
the 2-view-fusion. It shows the EER for the reference view
and the worst/best fusion result for every method/reference
angle combination.
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Figure 12. Recognition performance for different projections (Zer-
oFMR)
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Figure 13. Recognition performance for fusion of different number
of perspectives

4.3. Results Discussion

Our analysis of the recognition performance for differ-
ent projections showed, that the widely used perspectives,
palmar and dorsal, perform best. We also showed, that the
vein structure of palmar and dorsal view are not connected
to each other. The angles inbetween show a slightly worse
performance, but it is still acceptable. For further in-depth
analysis - e.g. on the individual performance of left/right
hand or single fingers - the data set has to be extended by
acquiring further subjects.
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Figure 14. Recognition performance for fusion of different number
of perspectives

Reference Worst Result Best Result
View EER # EER # EER

MC

0° 0.47 3 0.16 4 0.08
45° 1.39 2 0.59 18 0.04
90° 1.62 2 0.75 18 0.05
180° 1.08 3 0.32 4 0.08
270° 2.31 2 0.75 9 0.04

PC

0° 0.55 4 0.36 8 0.20
45° 1.11 2 0.62 36 0.16
90° 2.25 2 1.47 8 0.20
180° 1.31 3 0.55 8 0.20
270° 3.59 2 1.47 8 0.20

GF

0° 4.33 3 2.15 72 1.18
45° 9.04 2 4.17 72 1.18
90° 10.27 2 6.81 72 1.18
180° 4.38 3 2.69 72 1.18
270° 11.65 2 6.81 72 1.18

SIFT

0° 4.68 3 1.74 72 0.47
45° 5.27 2 3.22 72 0.47
90° 6.62 2 3.73 72 0.47
180° 2.48 2 1.42 72 0.47
270° 5.40 2 3.73 72 0.47

Table 4. Detailed performance results for multi-perspective fusion
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Figure 15. Recognition performance for fusion of two perspectives
(MC)

The results indicate that the presence of finger texture
has a positive influence on the recognition performance. As

Reference Worst Result Best Result
View EER View EER View EER

MC 0° 0.47 5° 0.47 110° 0.08
270° 2.31 275° 2.30 15° 0.19

PC 0° 0.55 305° 0.68 170° 0.15
270° 3.59 275° 3.58 360° 0.59

GF 0° 4.33 5° 4.33 170° 1.63
270° 11.65 275° 11.64 165° 3.25

SIFT 0° 4.68 5° 4.68 170° 1.27
270° 5.40 275° 5.39 175° 1.59

Table 5. Detailed performance results for reference view fusion

it can be seen in Figure 9, regularly used feature extrac-
tion algorithms also recognize the texture of the finger and
thereby implicitly fuse vein structure and texture. This hap-
pens especially in the dorsal region with finger knuckles.

Additionally we showed, that the fusion of multiple per-
spectives improves the recognition performance. The fu-
sion of two opposite views achieves is already sufficient to
achieve superior results compared to a single-view evalu-
ation.

5. Conclusion

We established a new finger vein data set containing
videos that capture the vein structure all around the finger.
The videos allow us to extract frames in steps of 1°. Based
on this data set, we evaluated the recognition performance
using several common finger-vein recognition algorithms
on each of the projections which enabled a direct compar-
ison in terms of their accuracy. According to our experi-
mental results, the best performance was achieved around
0° and 180° which corresponds to the palmar and dorsal
view. We further showed that a fusion of two or more per-
spectives can improve the recognition results.

Our future work includes further analysis of the data we
acquired using our custom made finger-vein scanner. We
will use the data acquired in 1° steps to verify the robust-
ness of existing algorithms with respect to the finger tilt.
We aim to further improve recognition performance by fus-
ing the information from different perspectives (further ex-
periments with vein structure only and vein fused with tex-
ture are planned). Our final goal is to achieve a complete
3D reconstruction of the finger-vein structure. Our work
will also include performance improvements in our scanner
hardware.
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Abstract

Finger vein recognition deals with the identification of a
subjects based on its venous pattern within the fingers. The
majority of the publicly available finger vein data sets has
been acquired with the help of scanner devices that capture
a single finger from the palmar side using light transmis-
sion. Some of them are equipped with a contact surface or
other structures to support in finger placement. However,
these means are not able to prevent all possible types of
finger misplacements, in particular longitudinal finger ro-
tation can not be averted. It has been shown that this type
of finger rotation results in a non-linear deformation of the
vein structure, causing severe problems to finger vein recog-
nition systems. So far it is not known if and to which extent
this longitudinal finger rotation is present in publicly avail-
able finger vein data sets. This paper evaluates the presence
of longitudinal finger rotation and its extent in four publicly
available finger vein data sets and provides the estimated
rotation angles to the scientific public. This additional in-
formation will increase the value of the evaluated data sets.
To verify the correctness of the estimated rotation angles,
we furthermore demonstrate that employing a simple rota-
tion correction, using those rotation angles, improves the
recognition performance.

1. Introduction

Biometric authentication systems have become well es-
tablished nowadays. The most prominent examples are iris,
face and fingerprint recognition systems. Recently, some
emerging, new biometrics gain more attraction, especially
hand and finger vein based systems as they provide several
advantages over e.g. fingerprint based ones. Vein based
systems utilize the patterns of the blood vessels inside the
human body which are only visible in near infrared (NIR)
light. This makes vein recognition systems more resistant

against forgery. Moreover, the vein patterns are insensible
to abrasion and skin surface conditions and a liveness de-
tection can be performed easily [6]. The drawbacks of such
systems compared to fingerprint based ones are the relat-
ively large capturing devices and the low contrast and qual-
ity of the captured images. Furthermore, it is not clear if the
blood vessel structure might be influenced by e.g. physical
activity, temperature changes, certain injuries or diseases.

The performance of finger vein recognition systems is
highly dependent on the quality of the acquired images.
The acquisition quality is influenced by different internal
and external factors, e.g. the quality of the illumination and
camera module, ambient light or the presentation of the fin-
ger during acquisition. The later includes unintended fin-
ger movement during acquisition and finger misplacement
in general. The influence of some kind of misplacements
can be reduced by adding components to the scanner device,
for example by adding a finger-shaped guiding surface to
prevent a shift of the finger. However, finger tilt and lon-
gitudinal rotation of the finger are hard to avoid and pose
severe problems for most finger vein recognition schemes.
As finger vein systems evolve towards contact-less oper-
ation, problems due to finger misplacements will receive
more attention in the future.

Performance degradations caused by various types of fin-
ger misplacement are not new and have been addressed in
several publications. Kumar and Zhou [6] addressed the
need for robust finger vein image normalization, including
rotational alignment, already in 2012. Chen et al. [2] stated
that deformations caused by a misplacement of the finger
can be corrected either during pre-processing, feature ex-
traction or comparison. Moreover, the design of the finger
vein sensor helps to avoid or reduce misplacements of the
finger as well. In [13] the authors showed, that longitud-
inal finger rotation has a severe influence on the recognition
performance of a finger vein recognition system. There are
several approaches that try to handle these issues during the
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processing of the vein patterns. Recognition schemes that
claim to be resistant against finger misplacements to a cer-
tain extent are e.g. [7, 10, 15]. Huang et al. [3] improved
the resistance against longitudinal rotation by applying an
elliptical normalization to the input images. Chen et al.
[2] tried to tackle the problem by detecting the deformation
based on an analysis of the shape of the finger, e.g. around
its longitudinal axis, and corrects the detected deformations
using linear and non-linear transformations. However, none
of theses approaches quantifies the extent (e.g. the rota-
tion angle or the tilt angle) of the misplacement on which
the deformation is based on. Besides these software based
solutions, there are some hardware-based ones which aim
to prevent finger misplacements during acquisition rather
than correcting them. For example, Kauba et al. [5] presen-
ted a finger vein scanner that captures three fingers at once
and requires the subject to place the fingers in an aligned
position on a finger shaped guiding surface. This reduces
longitudinal finger rotation, planar finger rotation as well as
finger shifts to a minimum.

The main contribution of this work is the analysis of four
public finger vein data sets on the presence of longitudinal
finger rotation. Our analysis does not only indicate if longit-
udinal finger rotation is present, but also estimates the lon-
gitudinal rotation angle. This increases the value of those
data sets for the scientific public as future evaluations on
longitudinal finger rotation detection and correction can use
the provided information as a reference. To verify our rota-
tion detection results, we apply a simple rotation correction
based on the estimated rotation angle and compare the re-
cognition results of the original data set. The four finger
vein data sets are UTFVP [14], SDUMLA-HMT [16], FV-
USM [1] and PLUSVein-FV3 [4]. In contrast to the first
three data sets, PLUSVein-FV3 should exhibit hardly any
longitudinal finger rotation due to the design of the scanner
device.

The rest of this paper is organized as follows: Section 2
describes longitudinal finger rotation and its impact on the
recognition performance. Section 3 presents our proposed
approach to detect and determine the longitudinal finger
rotation present in a data set. Section 4 explains the pro-
cessing tool-chain, the analysed data sets, the experimental
set-up and discusses the results. Section 5 concludes this
paper and gives an outlook on our future work.

2. Longitudinal Finger Rotation
Typically, finger vein scanners are designed to acquire

only a single finger at a time. Different types of finger mis-
placement can easily occur with these scanners and pose
a severe problem. Figure 1 shows the orientations of the
x, y and z axis with respect to the finger. The different
types of finger misplacement include planar shifts and ro-
tation (shifts and rotations in the xy-plane) , shifts of the

Z

Y

X

Figure 1. Definition of the axes of a finger in a three-dimensional
space

finger in z-direction (distance to the camera, scaling), fin-
ger bending, finger tilt (finger tip and root are not in the
same xy-plane) and longitudinal finger rotation around the
y-axis. As described in [13], the influence of some of these
problematic misplacements can be reduced or even preven-
ted completely during acquisition by adding simple support
structures for finger positioning (e.g. guiding walls to pre-
vent planar shifts) or corrected during pre-processing, fea-
ture extraction or comparison. Almost all currently avail-
able sensors are equipped with such support structures, but
most of them still do not prevent a rotation around the y-
axis (longitudinal finger rotation). Thus, longitudinal finger
rotation cannot be ruled out and poses a severe problem to
finger vein recognition systems.

The captured vein structure is a projection of the vessel
structure in the 3D space onto a 2D plane. If the finger is
rotated along its longitudinal axis, the vein pattern is de-
formed according to a non-linear transformation. Figure 2
shows the effect of longitudinal finger rotation on the vein
pattern. The finger cross section (top row) is rotated from
-30° to +30°. As a result of the rotation the projected pat-
tern of the veins (bottom row) changes as well. Depending
on the relative position of the veins to each other and the
rotation angle, some of the captured veins might merge into
a single one. The vein structures of -30° (left), 0° (middle)
and 30° (right) are completely different. Widely used vein
recognition schemes can handle such deformations only to
a certain extent [13]. If the deformations caused by the lon-
gitudinal rotation are corrected, the negative effect can be
reduced but not completely prevented.

3. Finger Rotation Detection
All publicly available finger vein data sets provide only

images captured from one perspective. But a single image
does not provide enough information to reliably calculate or
estimate the longitudinal rotation angle. Therefore, we pro-
pose an empirical approach to estimate the rotation angle:
All images in the data set are rotated in steps of 1° within
the range of ±45°. Then the rotated images of a finger are
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Figure 2. Longitudinal finger rotation principle: a schematic finger cross section showing five veins (blue dots) rotated from -30° (left)
to +30° (right) in 10° steps. The projection (bottom row) of the vein pattern is different depending on the rotation angle according to a
non-linear transformation (originally published in [13]).

Figure 3. Principle of rotation correction. Left: finger rotated with
25°. The blue points depict the veins inside the finger, the cyan
points the veins projected on the finger shape. The bar below is
the projected vein pattern. Middle: the cyan points represent the
rotation corrected vein pattern on the skin, the blue points repres-
ent the veins in the finger in its original position from the palmar
view. The bar below is the rotation corrected vein pattern. On the
right side the vein patterns are visualized below each other. From
top to bottom: rotated vein pattern, corrected vein pattern, correc-
ted pattern shifted for the highest correlation to the palmar pattern
(bottom row).

compared to the first non rotated sample of this finger. The
rotation angle is the angle, where the rotated an non rotated
image shows the highest similarity, i.e. where the compar-
ison score reaches its maximum. As more advanced vein re-
cognition schemes, e.g. deformation tolerant feature point
matching [10], try to compensate longitudinal rotation, they
are not suitable for our approach. Thus, we opted to utilise
Maxium Curvature (MC) [12], a simple vein pattern based
feature extraction method and the comparison method pro-
posed by Miura et al. in [11].

For an accurate correction of the vein pattern, in addition
to the position of the veins in the 2D image, the shape of the
finger and the depth of the veins within the finger must also
be known. As this information is not available, both need
to be estimated. We approximate the shape of the finger as
a circle like Matsuda et al. did in [10]. We further assume,
that the veins are located on the skin surface. Therefore, the
vein pattern is projected back on the outer circle of the fin-
ger. Figure 3 depicts this principle. The left image shows

a schematic cross section of a finger acquired under a lon-
gitudinal rotation of ϕrotate = 25°. The blue dots represent
the veins in their proper position, the red ones those that
are projected onto the skin. The bar below is a visualiza-
tion of the vein pattern where the black areas correspond to
the veins. In the middle image, the finger is rotated back
into the ideal palmar position (ϕrotate = 0°). It is clearly
visible, that the blue and red dots are not perfectly aligned
with each other. The right side shows from top to bottom
the vein patterns of the acquired image (same as on the left
side), the rotated pattern (same as in the middle), a shifted
version of the rotated pattern and the original pattern that
would have been acquired without the presence of longitud-
inal rotation. It is clearly visible that the rotation corrected
pattern is more similar to the original pattern than the ac-
quired one. The additional shift is applied to achieve the
highest possible correlation between the corrected and the
original pattern.

The rotation of the veins by an angle of ϕrotate is calcu-
lated by applying a rotation matrix given in (1).
[
xr
yr

]
=

[
cos(−ϕrotate) −sin(−ϕrotate)
sin(−ϕrotate) cos(−ϕrotate)

]
∗
[
x
y

]
(1)

x and y are the coordinates of the vein pixel in the acquired
image, xr and yr the ones in the rotated image. x is the
position of the pixel in the vein pattern, y is calculated by
(2)

y =
√
r2 − x2 (2)

where r is the approximated radius of the finger.
The rotation angle ϕi,j between two samples of the same

finger is calculated by (3). score(i, j, ϕrotate) is the score,
obtained by applying the Miura matcher [11] on the extrac-
ted MC features, of the ith sample rotated by ϕrotate and
the non rotated jth sample.

ϕi,j = arg max
-45°≤ϕrotate≤+45°

score(i, j, ϕrotate) (3)

To achieve a more robust result, the final rotation angle Φi,1

is calculated as the average of ϕi,1 (the calculated angle of
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the rotated ith sample against the non rotated 1st sample)
and ϕ1,i (the calculated angle of the rotated 1st sample
against the non rotated ith sample):

Φi,1 = avg (ϕi,1.ϕ1,i) (4)

4. Experiments
The rotation angle is estimated based on the approach

described in Section 3. We used Maximum Curvature as
feature extractor as it usually achieves accurate results in ex-
tracting the vein patterns. The rotation angle of the samples
is always calculated with respect to the first sample of the
respective finger. In order to confirm the obtained rotation
angles, we evaluate the recognition performance of the ori-
ginal data sets as well as on the rotation corrected ones and
compare the results. The rotation correction has been done
in two different ways: with respect to the first sample of
the respective finger and with respect to the mean of the
determined rotation angles of each finger.

4.1. Data Sets

We evaluate the longitudinal finger rotation of four dif-
ferent publicly available finger vein data sets:

• SDUMLA-HMT [16] is a multimodal biometric data-
base that contains samples for face, gait, iris, finger-
print and finger veins from 106 individuals. The finger
vein subset contains six fingers (ring, middle and in-
dex finger from both hands) per subject, captured in
one session taking six images of each finger.

• UTFVP [14] contains six fingers (ring, middle and in-
dex finger from both hands) from 60 volunteers in two
sessions. At each session two samples per finger were
captured.

• FV-USM [1] was acquired from 123 volunteers, four
fingers each (left and right index and middle finger).
The data was captured in two different sessions, cap-
turing six samples per finger in each session.

• PLUSVein-FV3 [4] contains palmar and dorsal im-
ages of 360 fingers from 60 different subjects (ring,
middle and index finger from both hands) captured in
one session with five samples per finger using two dif-
ferent variants of the same sensor: One utilizing NIR
laser modules for illumination, the other one using
NIR LEDs. The sensor was built in a way that requires
the subject to place the whole hand flat on the sensor.
Therefore, the data set is expected contain little to no
longitudinal rotation. We only evaluate the dorsal im-
ages acquired by the laser version of the sensor.

Table 1 contains an overview on the statistics of the data
sets.

Name Subjects Finger Samples Images View
SDUMLA-HMT 106 6 6 3816 palmar

UTFVP 60 6 4 1440 palmar
FV-USM 123 4 12 5904 palmar

PLUSVein-FV3 60 6 5 1800 dorsal
Table 1. Evaluated finger-vein data sets

Name Genuine Impostor Total
SDUMLA-HMT 9540 200340 209880

UTFVP 2160 63720 65880
FV-USM 32472 120048 152520

PLUSVein-FV3 3600 63720 67320
Table 2. Number of comparisons for each data set

4.2. Recognition Tool-Chain

The finger vein recognition tool-chain consists of the fol-
lowing components:

1. For finger region detection and finger alignment we
use an implementation that is based on [8].

2. The ROI extraction differs from [8]. We do not cut a
defined rectangle within the finger, but similar to [3],
normalize the finger to a fixed width.

3. To improve the visibility of the vein pattern we
use High Frequency Emphasis Filtering (HFE)
[18], Circular Gabor Filter (CGF) [17] and simple
CLAHE (local histogram equalisation) [19] as pre-
processing.

4. As feature extraction method we employ the well-
established vein-pattern based Maximum Curvature
method [12].

5. The comparison of the binary feature images is done
using a correlation measure, calculated between the in-
put images and in x- and y-direction shifted and rotated
versions of the reference image as described in [11].

An implementation of the recognition tool-chain is avail-
able for download on our website1.

4.3. Experimental Protocol

To quantify the performance, the EER, the FMR100 (the
lowest FNMR for FMR ≤ 1%), the FMR1000 (the lowest
FNMR for FMR ≤ 0,1%) as well as the ZeroFMR (the low-
est FNMR for FMR = 0%) are used. We follow the test
protocol of the FVC2004 [9]: For calculating the genuine
scores, all possible genuine comparisons are performed. For
calculating the impostor scores, only the first image of a fin-
ger is compared against the first image of all other fingers.
The resulting numbers of comparisons for all data sets are
listed in Table 2. To quantify the increase of the perform-
ance, the relative performance increase (RPI) is used, which

1http://wavelab.at/sources/Prommegger19c
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is calculated as stated in (5):

RPIx,ref =
EERref − EERx

EERx
, (5)

EERref is the EER of the reference data set and EERx

the EER of the evaluated data set.

4.4. Results

Table 3 shows the detected longitudinal rotation angles
with respect to the reference image (first sample of every
finger) as a histogram distribution with 5° bins. As expec-
ted, the PLUSVein-FV3 data set exhibits little to no rota-
tion. 98.4% of the fingers lay within 0-5° of rotation. There
is no sample that is rotated more than 10° from its refer-
ence. The detected rotation on the UTFVP is small as well.
85% of the samples are within 5°, 99.1% within 10° of ro-
tation. Only 0.9% of the images exceed a rotation of 10°.
FV-USM exhibits a slightly higher degree of longitudinal
rotation than UTFVP. 80% of the samples are within 5°,
95.3% are within 10° and 4.7% of the samples are rotated
more than 10°. SDUMLA-HMT shows the largest devi-
ations caused by longitudinal finger rotation. Only 56.4% of
the images are rotated less than 5°, whereas 5.6% exceeds
a rotation of more than 20°. The largest rotation detected is
44.5°.

Table 4 contains statistical data regarding the longitud-
inal rotation of the different data sets, i.e. the distance of
the rotation angles with respect to the mean rotation angle
of each finger and the maximum rotation distance between
two samples of the same finger. PLUSVein-FV3 shows the
smallest deviations. In average, there is a rotation of 1.37°
between two samples. The maximum distance to the mean
value is 8.6°, the maximum rotation between two samples
is 12.5°. For UTFVP, the average distance to the mean ro-
tation angle is 2.65°. The maximum rotation between two
samples is 29.5°. The results for FV-USM are slightly worse
than for UTFVP. Also Table 4 confirms that the level of lon-
gitudinal rotation present in the SDUMLA-HMT is high.
On average, two samples are rotated 6.43° against each
other. The maximum rotation angle between two samples
is 77°, which is astonishingly high.

In order to ensure that the determined 77° did not oc-
cur due to an calculation error, we examined the respective
sample images visually. The mentioned rotation was de-
termined between sample #4 and #6 of the left ring finger
of subject #96. Figure 4 shows the samples: on the left
#1 as reference image, #4 in the middle and #6 on the right.
The top row shows the original images as contained the data
set. It is clearly visible that the three samples are rotated
versions of the same finger. The second row shows the ex-
tracted ROIs and the third row shows the rotation correc-
ted version of the ROI using the determined rotation anlge
Φi,1. Sample #4 (middle column) is corrected by 44.5° and

Figure 4. Three samples from the same finger (left ring finger of
subject #96) of the SDUMLA-HTM data set. Top row: original
images from data set, row 2: extracted ROI not rotated, row 3: cor-
rected ROI. The left column shows sample #1 (reference image),
the middle sample #4 (rotation angle: 44°) and the right sample #6
(rotation angle: -32°). All images are enhanced using CLAHE.

sample #6 (left column) by -32.5°. One can easy see that
the rotation corrected ROIs are better aligned with respect
to longitudinal rotation.

To verify the estimated rotation angles, the recognition
performance for the original data sets (ORI) and the two
corrected versions of the data sets have been evaluated: In
the first version (ROT), all samples are corrected with re-
spect to the first sample of each finger, in the second one
(ROT Mean), all samples of a finger are corrected with re-
spect to the calculated mean rotation angle of this finger.
The rotation correction is done by applying the rotation mat-
rix of Equation (1). The recognition performance results are
given in Table 5. It also gives some statistics on the compar-
ison score values, including the mean, minimum and max-
imum values for the genuine as well as for the impostor
scores. The EER, FMR100, FMR1000 and ZeroFMR de-
creased for both correction scenarios. For SDUMLA-HMT,
FV-USM and PLUSVein-FV3, the correction with respect
to the first sample of a finger achieves the best result, for
UTFVP the correction with respect to the mean rotation
angle attains a superior performance. To point out the
performance increase that can be gained by applying this
simple rotation correction, the RPI as stated in Equation (5)
is calculated too. For SDUMLA-HMT and UTFVP we ar-
rive at a RPI of nearly 350%, for FV-USM of 120%. The
lowest RPI is achieved for PLUSVein-FV3, which directly
corresponds to the low level of longitudinal finger rotation
present in this data set.

The improvement in terms of recognition performance is
mainly due to a better separation of genuine and impostor
scores. In Figure 5 the score distribution for the original
SDUMLA-HMT data set (blue lines) and its corrected ver-
sion (version 1, rotated to the first sample of a finger, red
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Data Set Rotation to mean
0° - 5° 5° - 10° 10° - 15° 15° - 20° 20° - 25° 25° - 30° 30° - 35° 35° - 40° 40° - 45°

SDUMLA-HMT 56.4% 21.5% 10.4% 6.2% 2.7% 1.6% 0.8% 0.4% 0.1%
UTFVP 85.2% 13.9% 0.8% 0.1% - - - - -

FV-USM 80.0% 15.3% 3.7% 0.8% 0.2% - - - -
PLUSVein-FV3 98.4% 1.6% - - - - - - -

Table 3. Distribution of longitudinal finger rotation in classes of size 5°.

Data Set Absolute Distance to Mean Maximum Distance
Mean Max Std Mean Max Std

SDUMLA-HMT 6.43 44.83 6.90 19.40 77.00 15.73
UTFVP 2.65 16.50 2.29 7.95 29.50 4.41

FV-USM 3.04 23.83 3.23 11.32 41.00 7.75
PLUSVein-FV3 1.37 8.60 1.24 4.46 12.50 2.44

Table 4. Statistical data on the degree of rotation present in the data
sets.

Figure 5. Distribution of genuine and impostor scores for
SDUMLA-HMT: ORI = oiriginal data set, ROT = rotation cor-
rected to 1st image

lines) is visualized. The impostor scores of the rotated im-
ages are lower in general compared to the scores obtained
from the original data set. This is mainly due to the re-
duced extent of vertical shift that has to be applied during
comparison for the corrected data set. In our set up, the
shift range is reduced by a third compared to the value ne-
cessary to achieve the best results for the original data set.
The reduction of the vertical shift also leads to a slight de-
crease in the genuine score values. However, this decrease
is lower than for the impostor ones, which leads to a better
separation of the scores in general. Moreover, the genu-
ine scores of samples exhibiting a high degree of rotation
are increased too (the accumulation of the original genuine
scores around the score of 0.2 disappears after the correc-
tion). Figure 6 presents the shift in the score distributions

Figure 6. Changes in scores from the original data set to the rota-
tion corrected data set

in a different way by showing the change in their values.
The score values of the original data set are plotted on the
x axis while the ones of the corrected data set are plotted
on the y axis. Due to the reduction of the individual im-
postor score values, the cluster corresponding to the im-
postor scores (red) moves slightly downwards. The genuine
scores (green) move downwards too, but to a lower extent.
The interesting part of the plot are those genuine scores that
overlap with the impostor ones in the evaluation of the ori-
ginal data set. Most of these originally low genuine score
are increased above the level of the impostor scores after the
rotation correction. This becomes visible by the raise of the
green genuine scores above the red impostor ones around
the score of 0.2. Again, this visualises the better separation
of genuine and impostor scores. The statistical values of the
genuine and impostor scores in Table 5 confirm these visual
observation.
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Data Set Version Performance Indicators Genuine Scores Impostor Scores
EER FMR100 FMR1000 ZeroFMR RPI Min Mean Max Std Min Mean Max Std

SDUMLA-HMT
ORI 4.73 (±0.22) 6.12 8.09 63.25 - 0.17 0.31 0.44 0.05 0.14 0.19 0.33 0.01
ROT 1.07 (±0.11) 1.13 1.72 59.91 341.6 0.15 0.30 0.42 0.04 0.12 0.17 0.32 0.01

ROT Mean 1.14 (±0.11) 1.18 1.82 47.77 315.8 0.14 0.30 0.42 0.04 0.12 0.17 0.30 0.01

UTFVP
ORI 0.42 (±0.12) 0.23 0.65 3.11 - 0.12 0.26 0.38 0.04 0.07 0.12 0.18 0.01
ROT 0.19 (±0.09) 0.19 0.23 1.62 124.5 0.09 0.25 0.36 0.04 0.06 0.09 0.16 0.01

ROT Mean 0.09 (±0.06) 0.05 0.09 1.30 349.1 0.10 0.25 0.37 0.04 0.07 0.10 0.15 0.01

FV-USM
ORI 1.23 (±0.08) 1.30 2.34 5.27 - 0.13 0.25 0.36 0.03 0.11 0.15 0.19 0.01
ROT 0.56 (±0.05) 0.48 0.93 2.47 120.1 0.13 0.24 0.50 0.03 0.11 0.14 0.18 0.01

ROT Mean 0.77 (±0.06) 0.69 1.42 3.93 59.4 0.13 0.24 0.40 0.03 0.11 0.14 0.19 0.01

PLUSVein-FV3
ORI 0.08 (±0.05) 0.03 0.08 0.39 - 0.08 0.20 0.32 0.04 0.05 0.07 0.09 0.00
ROT 0.06 (±0.04) 0.00 0.06 0.25 50.0 0.08 0.20 0.31 0.04 0.05 0.07 0.09 0.00

ROT Mean 0.08 (±0.05) 0.00 0.08 0.22 0.9 0.08 0.20 0.32 0.04 0.05 0.07 0.09 0.00

Table 5. Recognition performance on the evaluated data sets and its corrected versions: ORI = original data set, ROT = rotation corrected
to 1st image, ROT Mean = rotation corrected to mean of finger. Best achieved EER and RPI values are highlighted in bold.

5. Conclusion

It has been shown previously that longitudinal finger ro-
tation poses a significant problem for many well-established
recognition schemes [13]. This paper investigated on the
presence and degree of longitudinal finger rotation in four
publicly available finger vein data sets. The rotation angle
between different samples of the same finger has been es-
timated based on an empirical approach using a correlation
based comparison of the extracted vein patterns.

PLUSVein-FV3 showed the lowest degree of longitud-
inal finger rotation, followed by UTFVP and FV-USM,
while SDUMLA-HMT exhibited the highest amount. The
degree of longitudinal finger rotation present in the data set
strongly depends on the design of the scanner device, the
acquisition protocol and its supervision. In the PLUSVein-
FV3 data set, the rotation is reduced to a minimum by re-
quiring the subject to place the whole hand flat on the scan-
ner device. The scanners used to acquire UTFVP, FV-USM,
and SDUMLA-HMT were not built to avoid longitudinal
finger rotation. Nevertheless, the small rotation present in
UTFVP and FV-USM suggests that the acquisition protocol
and supervision was very good.

Moreover, we applied a simple rotation correction and
verified the determined rotation angles by comparing the
recognition performance of the original data sets and their
rotation corrected versions. It turned out that the recogni-
tion performance could be improved for all four data sets.
The highest improvement could be achieved for SDUMLA-
HMT and UTFVP with a performance increase of 350%.
Even the correction of the low longitudinal rotation in
PLUSVein-FV3 lead to a performance increase of 50%.

We provide the determined rotation angles for all
four data sets in order to increase the value of
those data sets by augmenting them with this ad-
ditional information. These can be download at:
http://wavelab.at/sources/Prommegger19c.

In our future work we will evaluate the presence of lon-
gitudinal finger rotation and its extent for further data sets
as well as an inter-session analysis of data sets acquired in

multiple sessions.
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Abstract

Finger vein recognition deals with the identification of
subjects based on its venous pattern within the fingers. The
majority of the scanner devices capture a single finger from
the palmar side using light transmission. Some of them are
equipped with a contact surface or other structures to sup-
port in finger placement. However, these means are not
able to prevent all possible types of finger misplacements,
in particular longitudinal finger rotation can not be aver-
ted. It has been shown that this type of deformation causes
severe problems to finger vein recognition systems. This pa-
per proposes two new methods in which finger vein images
from different perspectives are captured during enrolment
and, but only one during authentication. In the first method,
the authentication image is compared to all enrolment im-
ages, whereas in the second method they are linked together
to form a perspective cumulative finger vein template. As
the enrolled finger vein images depict the vein structure of
a larger range of the finger, the longitudinal positioning of
the finger during the acquisition for the biometric recogni-
tion is less critical. The experimental results confirm the
applicability especially of the first approach.

1. Introduction
Vascular pattern based biometric systems, commonly de-

noted as vein biometrics, offer several advantages over other
well-established biometric recognition systems. In particu-
lar, hand and finger vein systems have become a serious al-
ternative to fingerprint based ones for several applications.
Vein based systems use the structure of the blood vessels
inside the human body, which becomes visible under near-
infrared (NIR) light. As the vein structure is located inside
the human body, it is resistant to abrasion and external in-
fluences on the skin. Furthermore, a lifeness detection to
detect presentation attacks can be performed easily [4].

The performance of finger vein recognition systems suf-
fers from different internal and external factors. Internal
factors include the design and configuration of the sensor

itself, especially the NIR light source and the camera mod-
ule. External factors include environmental conditions (e.g.
temperature and humidity) and deformations due to mis-
placement of the finger, typically including shifts, tilt, bend-
ing and longitudinal rotation.

Performance degradations caused by various types of fin-
ger misplacement are not new and have been addressed in
several publications. The need for a robust finger vein im-
age normalisation has already been mentioned by Kumar
and Zhou in 2012 [4]. Chen et al. [1] state that deformation
correction can be done either during pre-processing, feature
extraction or comparison. Moreover, the physical design of
the sensor can help to avoid misplacements of the finger.
In [12] the authors showed, that longitudinal finger rotation
has a severe influence on the performance of a finger vein
recognition system. There are several approaches that try to
reduce the influence of these issues during the processing
of the vein patterns. Kumar and Zhou [4] introduced a fin-
ger alignment based on the finger boundary to overcome
finger translation and rotation. Lee et al. [5] proposed a
system utilizing a minutia based alignment together with
local binary patterns as feature extraction method. Huang
et al. [2] improved the resistance against longitudinal ro-
tation by applying an elliptic pattern normalization to the
input images. Matsuda et al. [8] proposed a feature-point
based recognition system introducing a finger-shape model
and a non-rigid registration method. Yang et al. [16] in-
troduced a finger vein recognition framework including an
anatomy structure analysis based vein extraction algorithm
and integration matching strategy. Chen et al. [1] detects
different types of finger deformation by analysing the shape
of the finger and corrects them using linear and non-linear
transformations. Prommegger et al. [11] proposed a method
that applies a rotation correction on the enrolled templates
in both directions using a pre-defined angle for additional
comparisons combined with score level fusion. Besides
these software based solutions, there are some hardware-
based ones which aim to prevent finger misplacements in
the first place, during acquisition, rather than correcting
them afterwards. Kauba et al. [3] presented a finger vein
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scanner that requires the subject to place the fingers in a
flat, aligned position on a finger shaped guiding surface.
This reduces finger misplacements to a minimum. Prob-
lems resulting from finger misplacements will receive more
attention in the future as finger vein systems evolve towards
contact-less operation.

The main contribution of this work is the analysis of two
novel rotation invariant finger vein recognition methods and
the provision of two new data sets that are designed to al-
low a thorough analysis of the robustness of finger vein re-
cognition systems against longitudinal finger rotation. Both
methods aim to improve the recognition performance by en-
rolling multiple finger vein images from different perspect-
ives and compare them, just as in current system, against
a single sample acquired during authentication. This res-
ults in a more complex and expensive enrolment device,
whereas the capturing device for authentication remains in-
expensive. The first method, multi-perspective enrolment
(MPE), uses the acquired enrolment perspectives after ap-
plying circular pattern normalization (CPN), the second one
combines the different perspectives to form a perspective
cumulative finger vein template (PCT). The experiments
are carried out using the PLUSVein finger rotation data set
(PLUSVein-FR) [13]. To show the effectiveness of the pro-
posed approaches, their recognition results are compared to
the results of other methods, that claim to be robust against
longitudinal finger rotation, utilizing the new data sets.

The rest of this paper is organized as follows: Longitud-
inal finger rotation and its problems caused for finger vein
recognition systems are described in more detail in sec-
tion 2. Section 3 explains the MPE method and section 4
all details of the generation of the PCT, respectively. The
experimental set-up together with its results are described
in section 6. Section 7 concludes the paper along with an
outlook on future work.

2. Longitudinal Finger Rotation
Typically, finger vein scanners are designed to acquire

only a single finger at a time. Different types of finger mis-
placement can easily occur with these scanners and pose a
severe problem. Figure 1 shows the orientations of the x, y
and z axis with respect to the finger. The different types of
finger misplacement include planar shifts and rotation in the
xy-plane, shifts of the finger in z-direction (distance to the
camera, scaling), finger bending, finger tilt (finger tip and
root are not in the same xy-plane) and longitudinal finger ro-
tation around the y-axis. As described in [12], the influence
of some of these problematic misplacements can be reduced
or even prevented completely during acquisition by adding
support structures for finger positioning or a correction dur-
ing pre-processing, feature extraction or comparison. Al-
most all currently available sensors use such support struc-
tures, but most of them still do not prevent a rotation around

Z

Y

X

Figure 1. Definition of the axes of a finger in a three-dimensional
space (originally published in [11])

the y-axis (longitudinal finger rotation). Thus, longitudinal
finger rotation cannot be ruled out and poses a severe prob-
lem to finger vein recognition systems.

The captured vein structure is a projection of the vessel
structure in the 3D space onto a 2D plane. If the finger is
rotated along its longitudinal axis, the vein pattern is de-
formed according to a non-linear transformation. Figure 2
shows the effect of longitudinal finger rotation on the vein
pattern. The finger cross section (top row) is rotated from
-30° to +30°. As a result of the rotation the projected pat-
tern of the veins (bottom row) changes as well. Depending
on the relative position of the veins to each other and the
rotation angle, some of the captured veins might merge into
a single one. The vein structures of -30° (left), 0° (middle)
and 30° (right) are completely different. Widely used vein
recognition schemes can handle such deformations only to
a certain extent [12]. If the deformations caused by the lon-
gitudinal rotation are corrected, the negative effect can be
reduced but not completely prevented [11].

3. Multi-Perspective Enrolment

MPE requires the acquisition of multiple perspectives
during enrolment. The acquisition angles of the different
perspectives are linearly spaced over the desired acquisition
range. For authentication, only a single perspective is ac-
quired and compared to all enrolment samples together with
a maximum rule score level fusion. As shown in [11], el-
liptic pattern normalization (EPN) [2] increases the robust-
ness against longitudinal finger rotation. EPN is based on
the hypothesis, that the cross section of a finger approxim-
ately resembles an ellipsis and that the veins which are cap-
tured by the finger vein scanner are located close to the fin-
ger surface. The normalization essentially corresponds to a
rolling of the finger, which reduces the non-linear deforma-
tion of the vein structure across the entire width of the fin-
ger. After this correction is applied, a horizontal shift of the
images during comparison corresponds to a rotation of the
finger. The elliptic shape normalization proposed by Huang
et al. holds only true for the palmar and dorsal perspect-
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Figure 2. Longitudinal finger rotation principle: a schematic finger cross section showing five veins (blue dots) rotated from -30° (left)
to +30° (right) in 10° steps. The projection (bottom row) of the vein pattern is different depending on the rotation angle according to a
non-linear transformation (originally published in [12]).

ive. For other perspectives, the resulting shape is different.
Therefore, the estimation of the fingers’ cross section shape
was changed to a circle, resulting in a circular pattern nor-
malization (CPN).

There are already capturing devices available, that are
capable of acquiring multi-perspective finger vein images.
Prommegger et al. [13] proposed a multi-perspective finger
vein scanner that acquires a video of the vein structure all
around the finger (360°). Veldhuis et al. [15] presented a
capture device, that acquires images from three perspect-
ives.

4. Perspective Cumulative Finger Vein Tem-
plates

As for MPE, also PCT requires the enrolment of finger
vein images from multiple perspectives. Again, the rotation
angles of the captured samples are spread linearly over the
desired acquisition range and are normalized using CPN.
Next, the vein pattern is extracted and the single templates
are combined to one large cumulative template as follow-
ing: (1) To suppress unwanted artefacts on the finger edges,
some pixels are cut off from both sides. (2) The vein tem-
plates are combined together where their overlap reaches
the highest correlation. The correlation is calculated as de-
scribed in [9]. (3) For the first and the last image, the cut-off
border is added again after all perspectives have been com-
bined with each other.

During recognition, just as with existing systems, only
one perspective is captured and compared to the generated
PCT. This comparison is done using a correlation measure,
calculated between the PCT and in x- and y-direction shif-
ted and rotated versions of the probe image as described
in [9]. The shift is executed over the entire height, which
corresponds to the desired angular acquisition range, of the
PCT.

During extraction of the vein structure, other details, e.g.
skin folds, wrinkles, hair or other texture, are recognized.
These distortions can be seen as noise in the vein pattern
of the feature image which impede the PCT generation. In
order to obtain satisfactory PCTs, these distortions must be

Figure 3. Example of an PCT. Left: single perspectives (rotation
angle 30°) and the combined image of the three samples. Right: a
PCT on the range of 360°.

reduced to a minimum. Therefore, the level of detail during
feature extraction (compared to the level of detail used for
other methods) is reduced by smoothing the input image.

Figure 3 shows such a PCT. On the left side there are
three samples of finger vein templates with a rotation dis-
tance of 30°. The forth row is the combined image of the
three samples. The red colour corresponds to the vein pat-
tern of the first image, green to the 2nd one and blue to the
third one, respectively. The right side shows the PCT of a
finger in the full range of 360° generated with images ac-
quired in a rotational distance of 15°.

Advantages of PCT compared to MBE are the re-
duced template size and a potential for a lower comparison
runtime. The runtime improvement can be achieved by less
horizontal shifts applied during the execution of the Miura
matcher and the omission of the fusion step.

For a ROI of height h, which corresponds to the estim-
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ated diameter of the finger, and length l, n enrolled tem-
plates (normalized with CPN) have a total height of

hMPE = n · h · π
2

(1)

The PCT height for an angular range of ϕ is the arc length
of ϕ plus the non-overlapping border of the first and last
perspective

hPCT =
( ϕ

360
+ 2 · ϕ

n · 360
)
· h · π =

n+ 2

n
· ϕ

360
· h · π (2)

For an enrolment of the whole finger (ϕ = 360°) with an
angular distance of 30° between the acquired perspectives
(n = 12), the template size is reduced by factor 5.

The number of horizontal shifts during comparison is re-
lated to the size of the templates and the configured shift of
the Miura matcher. The shifts for MPE are

SMPE = n · (2 · hshift + 1) (3)

where hshift is the number of pixels shifted up and down
during a comparison. The experiments performed in sec-
tion 6 showed that a good estimation for hshift is

hshift = 2 · ϕ

n · 360 · h (4)

For PCT, the probe template is shifted over the arc length ϕ.

SPCT =
ϕ

360
· h · π (5)

For the above scenario (360°, 12 perspectives), that leads to
an reduction of the horizontal shifts by 30%.

5. Performance Validation Data Set
In order to be able to test the robustness of a recogni-

tion scheme against longitudinal finger rotation, data sets
that depict realistic scenarios regarding finger rotation are
needed. Such data sets must satisfy the following character-
istics: (1) The data set needs to provide finger vein images
from perspectives spread over the desired range. (2) The
distribution of the rotation angles must follow the character-
istics of the desired scenario. (3) It needs to contain enough
longitudinal rotation in order that a rotation compensation
is useful. (4) Ideally, also the rotation angles of the different
samples are known.

Currently, there exists no publicly available data set that
fulfills these properties. Therefore, two new data sets are
generated from the publicly available subset (±45° around
the palmar view) of the PLUSVein-FR. The first data set,
PLUSVein-FR-ED, contains vein images whose rotation
angles are equally distributed over the entire range of±45°.
It corresponds to the unconstrained placement of the finger
in a contact-less acquisition system. The rotation angles of
the second data set, PLUSVein-FR-ND, are normally dis-
tributed. This data set models a realistic real world scenario

Figure 4. Distribution of rotation angles in the subsets. Left:
PLUSVein-FR-ED, right: PLUSVein-FR-ND.

of a classical unsupervised single perspective acquisition
system. Prommegger et al. estimated the rotation angles of
different finger vein data sets in [14]. The SDUMLA-HMT
[17] exhibited the highest degree of finger rotation with ro-
tation angles up to 45° (σ = 10.6°). This standard deviation
was used for the generation of the PLUSVein-FR-ND. The
distributions of the rotation angles of the two subsets are de-
picted in Fig. 4. Both data sets are available for download
on http://wavelab.at/sources/Prommegger19d.

6. Experiments
In the first part of the experiments, the performance of

the proposed methods, MPE and PCT, all around the finger
(360°) is analysed using perspectives of the PLUSVein-FR
data set in steps of 5°, leading to 73 different perspectives
(0° and 360° are acquired separately). Every perspective
is considered as a separate data set. The template gen-
eration is done in the feature space utilizing MC features
[10]. To determine the number of perspectives needed dur-
ing enrolment, different rotational distances between the
used perspective are tested (15°, 30° and 45°). Furthermore,
to verify the effectiveness of the proposed methods, in the
second part of the experiments both approaches are applied
on the two introduced data sets, PLUSVein-FR-ED and
PLUSVein-FR-ND, and compared to other finger recogni-
tion schemes that are tolerant against longitudinal finger ro-
tation. The necessary enrolment samples are taken from the
publicly available ±45° subset of the PLUSVein-FR.

6.1. Recognition Tool Chain

The finger vein recognition tool-chain consists of the
following components: (1) For finger region detection and
finger alignment an implementation that is based on [6] is
used. (2) The ROI extraction differs from [6]: instad of cut-
ting out a defined rectangle within the finger, similar to [2],
a normalization of the finger to a fixed width is applied. (3)
To improve the visibility of the vein pattern Circular Gabor
Filter (CGF) [18] and simple CLAHE (local histogram
equalisation) [19] are used during pre-processing. (4) As
feature extraction method the well-established vein-pattern
based Maximum Curvature method [10] is employed. (5)
The comparison of the binary feature images is done us-
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ing a correlation measure, calculated between the input im-
ages and in x- and y-direction shifted and rotated versions
of the reference image as described in [9]. An implementa-
tion of the recognition tool-chain is available for download
on http://wavelab.at/sources/Prommegger19d.

6.2. Experimental Protocol

For the experiments, the data sets are split into two sub-
sets, one for enrolment and one for authentication. The en-
rolment subset contains two samples, the one for authen-
tication three. To quantify the performance, the EER, the
FMR100 (the lowest FNMR for FMR≤ 1%), the FMR1000
(the lowest FNMR for FMR ≤ 0,1%) as well as the Zer-
oFMR (the lowest FNMR for FMR = 0%) are used. For
the evaluation, the experiments follow the test protocol of
the FVC2004 [7]: For calculating the genuine scores, all
possible genuine comparisons are performed, which are
63 · 4 · 3 · 2 = 1512 matches. For calculating the im-
postor scores, only the first image of a finger is compared
against the first image of all other fingers, resulting in
(63 · 4) · (63 · 4 − 1) = 63252 matches, so together 64764
matches in total.

As a reference for the quantification of MPE and PCT,
the intra-perspective performance of all 73 perspectives,
without applying any rotation compensation methods and
by applying CPN, is evaluated. For this calculations every
perspective is considered as its own data set, which implies,
that every perspective is its own independent classical single
perspective recognition system, where enrolment and probe
image are acquired from the same perspective. Although
the results are presented together, they are completely inde-
pendent from each other. Rotational differences between
the enrolment and probe sample would be subject to the
same degradations as presented in [11]. Therefore, no ro-
tational invariance can be concluded from the presentation
of the intra-perspective results. As MPE and PCT aim to
generate rotation invariant recognition results for a single
finger vein image acquired from any perspective during au-
thentication, results close to or even better than the intra-
perspective results without rotation correction can be con-
sidered as good performance.

To quantify the decrease in performance of a method,
the relative performance degradation (RPD), which is cal-
culated as stated in equation (6), is used:

RPD =
EERx − EERref

EERref
. (6)

EERref is the EER of the reference data set andEERx the
EER of the evaluated data set. A RPD of 0 means no change
in performance, a RPD of 1 corresponds to an EER increase
to its doubled value. For a negative RPD, the performance
increased. For the evaluation of the performance increase
due to rotation correction, the relative performance increase
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Figure 5. Recognition performance (EER): in-perspective vs MPE
comparisons

(RPI) as in equation (7) is calculated:

RPI =
EERref − EERx

EERx
. (7)

Again, EERref is the EER of the reference data set and
EERx the EER of the evaluated data set. A RPI of 0 means
no change in the performance, a RPI of 1 corresponds to a
drop in the EER to half of its value. For a negative RPI, the
performance decreased. All values are given in percentage
terms, e.g. 2.35 means 2.35%.

6.3. Results

6.3.1 Multi-Perspective Enrolment

For MPE, three different enrolment scenarios with differ-
ent distances between the acquired samples are evaluated
(15°→ 24 perspectives, 30°→ 12 and 45°→ 8). Each of
the 73 perspectives provided by PLUSVein-FR is compared
against all enrolled samples. To get the final score, a simple
maximum score level fusion is applied. The trend of the res-
ulting EERs are depicted in Figure 5. Additionally to MPE,
also the intra perspective performance results for applying
no correction and CPN are visualized. The performance of
both methods show the same trend, just at different EER
levels: The best performance results are obtained in the pal-
mar (0°) region followed by the dorsal (180°) region. The
perspectives inbetween show inferior results, achieving the
worst results around 90° and 270°. CPN outperforms no
correction over the whole range in average by a factor 2,
which corresponds to an RPI of 100%. As expected, the
results of the MPE scenarios depend directly on the num-
ber of enrolment perspectives: the less the cameras are ro-
tated away from each other, the better the resulting recog-
nition accuracy is. MPE 15° achieves the overall best res-
ults. It’s EER values are between 0.2 and 1.4% for all per-
spectives all around the finger, which corresponds to RPIs
between 25% and 250%, followed by MPE 30° and MPE
45°. MPE 15° and MPE 30° even outperform the intra per-
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Perspective Method EER (CI) FMR100 FMR1000 ZeroFMR RPD RPI

0°

No Correction 0.87 (± 0.23) 0.86 1.39 3.71 - -
CPN 0.46 (± 0.17) 0.46 0.53 1.19 - 86.8

MPE 15° 0.27 (± 0.13) 0.28 0.28 0.48 - 215.9
MPE 30° 0.20 (± 0.11) 0.20 0.27 0.68 - 324.7
MPE 45° 0.47 (± 0.17) 0.47 0.68 1.56 - 82.9
PCT 15° 4.25 (± 0.50) 7.08 12.65 35.83 391.1 -
PCT 30° 4.76 (± 0.53) 7.80 14.71 35.93 449.1 -
PCT 45° 6.51 (± 0.61) 10.69 17.52 31.19 651.9 -

60°

No Correction 3.18 (± 0.43) 4.70 9.34 30.13 - -
CPN 1.53 (± 0.30) 1.66 2.98 7.68 - 108.4

MPE 15° 0.62 (± 0.20) 0.62 1.24 1.99 - 415.2
MPE 30° 0.81 (± 0.22) 0.81 1.69 3.99 - 291.6
MPE 45° 2.50 (± 0.39) 3.11 5.95 13.31 - 27.2
PCT 15° 5.84 (± 0.58) 11.68 20.54 35.85 83.7 -
PCT 30° 5.28 (± 0.55) 9.34 16.72 32.97 66.2 -
PCT 45° 8.11 (± 0.67) 16.28 26.62 53.58 155.2 -

120°

No Correction 4.11 (± 0.49) 5.97 10.01 17.57 - -
CPN 2.04 (± 0.35) 2.59 4.18 16.05 - 101.8

MPE 15° 1.11 (± 0.26) 1.31 2.13 4.61 - 272.3
MPE 30° 1.56 (± 0.31) 1.63 2.58 12.81 - 163.7
MPE 45° 3.92 (± 0.48) 5.07 8.66 24.22 - 4.9
PCT 15° 7.08 (± 0.64) 13.34 25.38 49.38 72.1 -
PCT 30° 8.34 (± 0.68) 15.32 25.90 44.81 102.8 -
PCT 45° 11.50 (± 0.79) 23.75 35.86 61.43 179.6 -

180°

No Correction 2.26 (± 0.36) 3.06 5.58 9.30 - -
CPN 1.19 (± 0.27) 1.20 2.26 5.25 - 89.1

MPE 15° 0.55 (± 0.18) 0.48 1.31 3.58 - 310.4
MPE 30° 0.74 (± 0.21) 0.68 1.63 3.32 - 203.2
MPE 45° 1.69 (± 0.32) 1.96 3.45 6.90 - 33.6
PCT 15° 3.37 (± 0.45) 4.40 9.22 15.61 49.1 -
PCT 30° 4.34 (± 0.50) 5.83 10.17 21.02 92.2 -
PCT 45° 4.86 (± 0.53) 7.31 11.43 22.60 115.0 -

Table 1. Performance results for evaluation in-perspectiv analysis, MPE and PCT in steps of 45°. RPD and RPI are calculated with respect
to No Correction

spective CPN results. The performance of MPE 45° is just
below the inter perspective comparisons without any cor-
rection. Table 1 holds the performance results for selected
perspectives. All performance results can be downloaded at
http://wavelab.at/sources/Prommegger19d.

6.3.2 Perspective Cumulative Finger Vein Templates

As for MPE, also for PCT three different enrolment scen-
arios with rotation distances of 15°, 30° and 45° between the
acquired perspectives are evaluated. Again, all 73 perspect-
ives are compared against the generated PCT. The trend of
the resulting EERs are visualized inf Figure 6. All three
methods perform worse than the intra perspective compar-
isons without any rotation compensation. The course of the
PCT curves is relatively even. This also applies to those
perspectives for which no enrolment samples have been ac-
quired. Applying PCT 15° results in a RPD between 50%
and 400%, PCT 30° between 60% and 450% and PCT
45° between 100% and 650%, respectively. The promin-
ent jump at 180° is due to the generation of the template. It
was generated from -180° to +180°. As a result of this, the
template contains more information from this perspective as
also the border, which was cut off during the template gen-
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eration, is added to the PCT. The overall inferior results can
be explained by the fact, that, as described in section 4, the
level of detail had to be reduced in order to achieve satis-
factory results when combining the single perspective tem-
plates to the cumulative template. Again, table 1 holds the
results for selected perspectives.
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6.3.3 Performance Validation

For the validation of the performance of the proposed meth-
ods, they are compared to well known recognition schemes,
that are tolerant against longitudinal finger rotation, namely
a rotation compensation using the information of the rota-
tion angle provided by the data set (known angle method)
[11], EPN [2], CPN and a method that compensates the ro-
tational deformations without the knowledge of the actual
rotation angle by applying a rotation correction in both dir-
ections using a pre-defined angle combined with score level
fusion (fixed angle correction) [11]. Additionally, the per-
formance of the unmodified data set is stated as a reference.
The data sets used for validation are the data sets described
in section 5 (PLUSVein-FR-ED and PLUSVein-FR-ND).
The validation includes four different MPE scenarios: a two
camera version including enrolment cameras positioned
±20° from the palmar view (0°), 3 cameras (±30° and 0°),
a 4 camera setting (±45° in steps of 30°) and a 7 camera
setting (±45° in steps of 15°). The combined templates
are again generated for camera distances of 15°, 30° and
45°. The vein images necessary for the MPE scenarios and
for the generation of the PCTs are taken from the publicly
available PLUSVein-FR ±45° sub set.

Note that all rotation compensation schemes but MPE
and PCT, only acquire a single perspective for enrolment
and authentication. As a result of this, they are only tol-
erant against longitudinal finger rotation to a certain ex-
tent (< ±30°, [11]). MPE and PCT acquire multiple per-
spectives during enrolment and use this information for au-
thentication against a single perspective. The comparison
carried out in this section analyses the performance only
in a limited range (±45°) in which also single perspect-
ive enrolment methods can show a reasonable performance.
As shown in the experiments, MPE and PCT are invari-
ant against longitudinal finger rotation all around the finger.
Nevertheless, these experiments give a good indication of
the strengths (MPE) and weaknesses (PCT) of the proposed
approaches.

The results for both data sets are listed in table 2. As
mentioned in section 5, the PLUSVein-FR-ED contains fin-
ger vein images with rotation angles that are equally dis-
tributed in the range of ±45°. Therefore, the rotation dis-
tances between two samples of the same finger might be
high. The maximum rotation angle of two samples of the
same finger is 89°. This fact is also reflected in the recog-
nition results of the different recognition schemes. Apply-
ing only horizontal and vertical shifts (Miura matcher [9])
cannot compensate this rotation. As a result of this, the res-
ulting EER of 21.63% is high. Applying different schemes
to increase the robustness against longitudinal finger rota-
tion improves the Performance. EPN improves the perform-
ance to an EER of 15.87%, CPN to 15.34% and the fixed
angle approach to 5.24%, respectively. As the data set also

Figure 7. Finger samples exhibiting a large rotational distance
(PLUSVein-FR: subjectId 50, fingerId 4, sampleNo 1, rotation
angle ±45°). Top: acquired image, bottom: rotation corrected
images.

provides the rotation angle of the samples, it is possible to
apply an exact rotation compensation, which improves the
EER to 5.44%. The results of the MPE scenarios and the
PCT setings are superior even to the exact rotation com-
pensation. This is reasonable: due to the enrolment pro-
cess, where more than one perspective is aquired for MBE
and PCT, they hold more information of the vein pattern of
the finger than a single perspective enrolment. Addition-
ally, rotating the finger vein samples into their correct posi-
tion using the provided rotation angle results in areas of the
ROI, that contain no vein information (areas, where no vein
information is present are filled with the average grey level
of the image). Higher rotation angles result in larger ROI
regions without vein information. In case of big distances
in the rotation angles, this has a negative effect on the score
of the Miura matcher. Fig. 7 shows two samples with a large
rotational difference. The left side is rotated 45° to the left,
the right one 45° to the right. The unmodified ROI images
in the top row show a big difference between the pattern of
both images. In the bottom row, which depicts the rotation
corrected versions of the images, the vein structure is more
similar. Both images hold quite a large region without any
vein information. As the same region in the other sample
contains vein information, the comparison score is reduced.
When applying MPE or comparing to PCT, the samples are
not rotated and this effect does not occur. The best results
for MPE is achieved in the 7 camera scenario with an EER
of 0.33%. The best PCT result with an EER of 3.00% is
achieved when the rotational difference between the enrol-
ment perspectives is 15°. This corresponds to an RPI of
6379% for MPE and 620% for PCT compared to the per-
formance on the original data set.

The second data set, PLUSVein-FR-ND, consists of fin-
ger vein images which rotation angles are normally distrib-
uted over the range of ±45° and should correspond to a
realistic scenario. The rotation contained is a lot less than
for PLUSVein-FR-ED. The EER for the original data set is
3.39%. EPN improves the EER to 1.72%, CPN to 1.52%,
the fixed angle approach to 0.66% and the fixed angle cor-
rection to 1.13%, respectively. The different MPE scen-
arios again improve the performance. The best MPE res-
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Data Set Method EER (CI) FMR100 FMR1000 ZeroFMR RPD RPI

PLUSVein-FR-ED

No Correction 21.63 (± 1.01) 38.69 46.18 58.06 - -
CPN 15.34 (± 0.88) 23.89 28.73 40.88 - 41.0
EPN 15.87 (± 0.89) 25.61 31.39 42.60 - 36.3

Fixed Angle (ϕ = 20°) 5.24 (± 0.30) 7.00 8.85 12.97 - 312.5
Known Angle 5.44 (± 0.55) 9.49 14.66 22.63 - 297.6

MPE 2 Cameras 1.66 (± 0.31) 1.86 2.86 5.92 - 1202.8
MPE 3 Cameras 1.13 (± 0.26) 1.13 1.60 3.13 - 1807.1
MPE 4 Cameras 0.60 (± 0.19) 0.53 1.00 3.20 - 3513.8
MPE 7 Cameras 0.33 (± 0.14) 0.20 0.87 2.07 - 6379.3

PCT 15° 3.00 (± 0.42) 4.21 7.48 21.23 - 620.3
PCT 30° 3.53 (± 0.45) 4.53 7.26 16.39 - 512.2
PCT 45° 3.91 (± 0.48) 6.12 10.70 24.87 - 452.9

PLUSVein-FR-ND

No Correction 3.39 (± 0.44) 5.31 7.49 16.58 - -
CPN 1.52 (± 0.30) 1.72 2.32 5.37 - 122.3
EPN 1.72 (± 0.32) 1.86 2.59 5.70 - 96.4

Fixed Angle (ϕ = 20°) 0.66 (± 0.11) 0.60 1.05 1.48 - 412.4
Known Angle 1.13 (± 0.26) 1.19 2.45 3.78 - 200.4

MPE 2 Cameras 0.80 (± 0.22) 0.80 1.26 2.86 - 324.0
MPE 3 Cameras 0.53 (± 0.18) 0.40 0.73 1.20 - 534.1
MPE 4 Cameras 0.67 (± 0.20) 0.60 0.93 1.87 - 407.3
MPE 7 Cameras 0.34 (± 0.14) 0.20 0.53 1.00 - 909.9

PCT 15° 2.20 (± 0.36) 2.74 4.61 13.03 - 53.7
PCT 30° 2.72 (± 0.40) 3.54 4.60 12.14 - 24.7
PCT 45° 2.80 (± 0.40) 3.79 6.59 18.58 - 21.0

Table 2. Comparison of evaluated rotation compensation schemes.

ult is achieved for the 7 camera scenario hitting an EER of
0.34% which corresponds to an RPI of 910%. The PCT ap-
proach improves the recognition performance compared to
the original data set as well, but not to the same extent as
the other methods. The best PCT result is achieved with
an EER of 2.20% for a rotational distance of 15° between
the perspectives used for the PCT generation. Reasons for
the lesser improvement compared to the other methods are:
(1) According to [11], the other methods can handle small
rotation better than larger rotations whereas PCT keeps the
recognition performance quite stable over the whole range
under investigation. (2) The single perspective templates
used for the PCT generation contain less details than the
templates used for the other approaches.

7. Conclusion

In this article, we proposed two novel methods for ro-
tation invariant finger vein recognition. The first method,
multi perspective enrolment, utilizes multiple finger vein
images acquired during enrolment and compares, just as for
commonly used finger vein recognition systems, a single
perspective during authentication. The second method, per-
spective cumulative finger vein templates, combine mul-
tiple finger vein images from different perspectives into
one larger template that holds the vein information over
the whole range of interest. Additionally, we introduced
two publicly available data sets, PLUSVein-FR-ED and
PLUSVein-FR-ND, which were especially designed for the
analysis of robustness of finger vein recognition systems
against longitudinal finger rotation.

Both methods increase the recognition performance
compared to the original data set without applying any ro-
tation correction or compensation method. MPE achieves
superior results with respect to all other rotation tolerant
schemes. If enough cameras are used during enrolment,
negative effects of longitudinal finger rotation on the recog-
nition performance can be inhibited. PCT still has some
issues, mainly related to the generation of the template. In
order to achieve satisfactory results for the template gener-
ation, the degree of detail of the vein pattern had to be re-
duced. This inevitably leads to worse recognition rates. For
both methods, the improvement of the recognition perform-
ance is achieved by increasing the effort (acquiring addi-
tional perspectives, template generation) during enrolment.

In our future work we will apply the PCT method not
only in the feature space, but also in the image space. This
would enable the possibility to use the proposed method not
only on vein pattern based methods, but also on more soph-
isticated recognition systems as ASAVE [16] and DTFPM
[8]. Also it might be possible to increase the level of detail
in order to achieve better results. Additionally, we plan to
further develop MPE in order that the number of required
perspectives can be reduced. We also plan to evaluate the
MPE approach for other recognition schemes than MC.
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Abstract—Finger vein recognition deals with the recognition
of subjects based on their venous pattern within the fingers. It
has been shown that its recognition accuracy heavily depends
on a good alignment of the acquired samples. There are several
approaches that try to reduce the impact of finger misplacement.
However, none of these approaches is able to prevent all possible
types of finger misplacements. As finger vein scanners are
evolving towards contact-less acquisition, alignment problems,
especially due to longitudinal finger rotation, are becoming even
more important. Along with rotation detection and correction,
capturing the vein pattern from multiple perspectives, as e.g. in
multiple-perspective enrolment (MPE, [1]), is a way to tackle
the problem of longitudinal finger rotation. Involving multiple
cameras increases cost and complexity of the capturing devices,
and therefore their number should be kept to a minimum.
Perspective multiplication for MPE (PM-MPE, [2]) successfully
reduces the number of cameras needed during enrolment while
keeping the recognition rates at a high level. So far, (PM-)MPE
has only been applied using Maximum curvature features (MC,
[3]). This work analyses further approaches to improve the their
recognition rates and investigates the applicability of (PM-)MPE
to recognition schemes using features other than MC.

Index Terms—Finger vein recognition, longitudinal finger ro-
tation, rotation invariant recognition system

I. INTRODUCTION

Vascular pattern based biometric systems, commonly de-
noted as vein biometrics, offer several advantages over other
well-established biometric recognition systems. In particular,
hand and finger vein systems have become a serious alternative
to fingerprint based ones for several applications. Vein based
systems use the structure of the blood vessels inside the human
body, which becomes visible under near-infrared (NIR) light.
As the vein structure is located inside the human body, it
is resistant to abrasion and external influences on the skin.
Furthermore, a lifeness detection to detect presentation attacks
can be performed easily [4].

The performance of finger vein recognition systems suffers
from different internal and external factors. Internal factors
include the design and configuration of the sensor itself,
especially the NIR light source and the camera module. Exter-
nal factors include environmental conditions (e.g. temperature
and humidity) and deformations due to misplacement of the
finger, typically including shifts, tilt, bending and longitudinal
rotation. Performance degradations caused by various types of
finger misplacement are not new and have been addressed in

several publications. The need for a robust finger vein image
normalisation including rotational alignment has already been
mentioned by Kumar and Zhou in 2012 [4]. Chen et al. [5]
state that deformation correction can be done either during
pre-processing, feature extraction or comparison. Moreover,
the physical design of the sensor, e.g. [6], [7], can help to
avoid misplacements of the finger. In [8] the authors showed
that longitudinal finger rotation has a severe influence on the
recognition performance of a finger vein recognition system.
There are several approaches that try to reduce the influence
of these issues in traditional single perspective systems during
the processing of the vein patterns, e.g. [4], [5], [9]–[13].
Other systems try to utilize multi-camera capturing devices to
overcome the problem of longitudinal finger rotation. Bunda
[14] and Sonna Momo et al. [15] propose multi-perspective
recognition systems using capturing devices that acquire the
vascular template from three different perspectives at the same
time. Kang et al. [16] proposed a finger vein recognition
system in the 3D space. Prommegger and Uhl [1] introduced
two methods that make finger vein recognition fully invariant
against longitudinal rotation. Both methods acquire multiple
perspectives during enrolment, while only one perspective
is captured during recognition. The first approach, multi-
perspective enrolment (MPE), compares the probe image to all
acquired enrolment perspectives, while the second approach,
perspective cumulative finger vein templates, generates a sin-
gle template that holds the vein pattern all around the finger.
In [2] the number of cameras needed during enrolment for
MPE has successfully been reduced by introducing pseudo
perspectives.

This article is an extension to the work presented in [1]
and [2]. While in [1] and [2] only one recognition scheme,
Maximum curvature (MC, [3]), was applied, this work analyses
the applicability of (PM-)MPE to recognition schemes using
features other than MC. The schemes under investigation are
the Wide Line Detector (WLD, [9]), Finger Vein Recognition
With Anatomy Structure Analysis (ASAVE, [13]) and a SIFT-
based recognition scheme (SIFT, [17]). Furthermore, two
additional adoptions to increase the performance of MPE and
PM-MPE are analysed. The first approach strives to improve
the performance of MPE by changing the position of the
enrolment cameras, while the second method adopts PM-MPE
by adding extra pseudo perspectives between two enrolment
cameras. All experiments are carried out using the PLUSVein978-1-7281-6232-4/20/$31.00 ©2020 IEEE
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Fig. 1. Rotational shift of enrolment cameras for MPE: MPE as proposed
in [1] (left) always includes the palmar view (0°), whereas for the proposed
method (right) the start position is shifted by ϕ.

finger rotation data set (PLUSVein-FR) [18]. This article
focuses on further analyses on and limitation of (PM-)MPE.
Comparisons to methods that represent the state of the art in
rotation invariant finger vein recognition have been omitted as
such an analysis has already been carried out in the original
publications [1], [2].

The reminder of this paper is organized as follows: In sec-
tion II perspective shift for (PM-)MPE is described. Section III
holds some details on PM-MPE and section IV the proposed
approach to introduce additional pseudo perspectives. The
experimental set-up together with its results are described in
Section V. Section VI concludes the paper along with an
outlook on future work.

II. PERSPECTIVE SHIFTS FOR MULTI-PERSPECTIVE
ENROLMENT

The positioning of the enrolment cameras around the finger
can be an influential factor for the recognition performance
of the system. Two aspects need to be considered: (1) the
performance of the different perspectives itself and (2) the
rotational distance of the probe sample to the nearest enrol-
ment perspective. For (1) it has been shown that finger vein
recognition systems perform best around the palmar and dorsal
view and worst around 90° and 270° [18]. For (2) it has been
shown in [12] that state of the art recognition systems cannot
compensate rotational distances exceeding 30°.

MPE and PM-MPE, as proposed in [1] and [2], start the
positioning of the enrolment cameras always at the most
commonly used palmar perspective. For some configurations,
i.e. MPE 60°, this leads to the simultaneous occurrence of (1)
inferior performing perspectives and (2) the maximum distance
of the probe sample to the acquired enrolment perspectives. By
rotating the acquired enrolment perspectives with an rotation
angle of ϕ, the two negative impact factors should be sepa-
rated. Fig. 1 visualizes the idea for MPE 60°. The right image
shows the positioning of the enrolment cameras for MPE as
proposed in [1]: They are linearly spaced around the finger
starting at the palmar view (0°) with a rotational distance
between two adjacent cameras of α = 60°. The perspectives
acquired during enrolment are: 0°, 60°, 120°, 180°, 240° and
300°. The maximum distance of the recognition perspective
and the closest enrolment perspective is reached exactly in-
between two enrolment perspectives. As a consequence of
this positioning, for the worst performing perspectives (90°

0◦
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90◦270◦
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−'
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Fig. 2. Camera positioning for PM-MPE for a rotational distance of 90°
between two adjacent enrolment perspectives. The filled blue dots are cameras,
the red circles represent pseudo perspectives. The left image (originally
published in [2]) shows the position of the pseudo perspectives as proposed
in [2], the right side visualizes the principle of adding additional pseudo
perspectives.

and 270°, [18]), the distance to the nearest enrolment camera
reaches its maximum of 30°. In the left image the enrolment
cameras are shifted by an angle of ϕ = 30°. Due to this shift,
there are enrolment cameras at 90° and 270°, and hence, the
negative impact factors do not occur simultaneously any more.

III. PERSPECTIVE MULTIPLICATION FOR
MULTI-PERSPECTIVE ENROLMENT

PM-MPE, as proposed in [2], combines MPE and the fixed
angle rotation compensation method of [12] to reduce the num-
ber of perspectives needed during enrolment. At enrolment
n perspectives with a rotational distance of α are acquired.
PM-MPE adds two pseudo perspectives between two adjacent
cameras by rotating every perspective with an rotational angle
of ±ϕ = α/3 in both directions. For authentication, just as for
traditional single-perspective finger vein recognition schemes,
only a single perspective is acquired and compared to all
enrolled perspectives and the generated pseudo perspectives.
This leads to 3∗n comparisons for each authentication attempt.
The left image of Fig. 2 shows the positions of the enrolment
cameras and pseudo perspectives for α = 90° between two
adjacent enrolment perspectives. The solid blue dots represent
perspectives actually acquired during enrolment. As for MPE,
they are spread linearly around the finger at 0°, 90°, 180° and
270°. The remaining perspectives (red circles) are generated by
rotating the acquired finger vein images by a rotation angle of
ϕ = 90°/3 = 30° in both directions. It was shown in [2] that by
applying PM-MPE, the distance of the enrolment perspectives
can be increased while keeping the recognition performance
at a high level.

IV. GENERATION OF ADDITIONAL PSEUDO PERSPECTIVES
FOR PM-MPE

The improvement in recognition performance of PM-MPE
compared to MPE is based on the reduction of the horizontal
shift executed during comparison. Deviating from PM-MPE,
the approach proposed here, PMx-MPE, adds more than two
pseudo perspectives between two enrolment perspectives. Each
perspective is rotated m times with multiples of ϕ in both
directions, where ϕ = α/(2 ∗m+ 1). As a result of the addi-
tional pseudo perspectives, the rotational distance between the
perspectives used for recognition is lower than for PM-MPE.
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Enrolment
Perspectives

Distance between adjacent perspectives # of comparisons Max distance recognition ↔ enrolment
MPE PM-MPE PM2-MPE PM3-MPE MPE PM-MPE PM2-MPE PM3-MPE MPE PM-MPE PM2-MPE PM3-MPE

n α α ϕ = α/3 ϕ = α/5 ϕ = α/7 n 3 · n 5 · n 7 · n α/2 ϕ/2 ϕ/2 ϕ/2
24 15° 15° - - - 24 - - - 7.5° - - -
12 30° 30° 10° - - 12 36 - - 15° 5° - -
8 45° 45° 15° 9° - 8 24 40 - 22.5° 7.5° 4.5° -
6 60° 60° 20° 12° 8.6° 6 18 30 42 30° 10° 6° 4.3°

TABLE I
DISTANCE BETWEEN ADJACENT (PSEUDO) PERSPECTIVES, NUMBER OF COMPARISONS NEEDED DURING RECOGNITION AND MAXIMUM DISTANCE OF

THE PROBE SAMPLE TO THE NEAREST (PSEUDO) PERSPECTIVE FOR MPE, PM-MPE, PM2-MPE AND PM3-MPE.

Therefore, the horizontal shifts during comparison can be
reduced. According to the results of [19], this should lead to
a better separation of genuine and impostor scores, which in
turn results in a better recognition performance. The right side
of Fig. 2 shows the principle for α = 90° and m = 2, which
results in 2∗m = 4 pseudo perspectives between two adjacent
enrolment perspectives. Each acquired perspective is rotated
by ±ϕ and ±2 ∗ ϕ. The distance between two perspectives is
ϕ = 90°/5 = 18° instead of 30° as for PM-MPE in [2].

A drawback of the additional pseudo perspectives is that
the number of comparisons during recognition increases. In-
stead of 3 ∗ n comparisons as for PM-MPE, the additional
perspectives results in (2 ∗ m + 1) ∗ n comparisons. The
experiments in the section V-D should show if adding more
pseudo perspectives improves the recognition rates and if so,
if this improvement justifies the added computational cost for
generating the additional pseudo perspectives during enrol-
ment and comparisons during recognition. Table I contains de-
tailed information about various settings (different numbers of
enrolment cameras) of MPE and the PM-MPE. This includes
the number of perspectives involved, the distance between the
cameras, the maximum rotational distance between a probe
sample with an arbitrary rotational position of the finger
and the closest enrolment perspective and the number of
comparisons needed for one recognition attempt.

V. EXPERIMENTS

The experiments are split into two parts: In the first part,
the influence of perspective shifts, as explained in section II,
is evaluated. The second part analyses the impact of the num-
ber of generated pseudo perspectives between two adjacent
enrolment perspectives which is described in section IV.

A. Recognition Tool Chain

The finger vein recognition tool-chain consists of the fol-
lowing components: (1) For finger region detection and finger
alignment an implementation that is based on [20] is used. (2)
The ROI extraction differs from [20]: instead of cutting out a
defined rectangle within the finger, similar to [9], a normaliza-
tion of the finger to a fixed width is applied. (3) To improve
the visibility of the vein pattern High Frequency Emphasis
Filtering (HFE) [21], Circular Gabor Filter (CGF) [22] and
simple CLAHE (local histogram equalisation) [23] are used
during pre-processing. (4a) For the simple vein pattern based
feature methods, MC and WLD, the binary feature images
are compared using a correlation measure, calculated between
the input images and in x- and y-direction shifted and rotated
versions of the reference image as described in [24]. (4b) The

more sophisticated vein pattern based method, ASAVE, applies
feature extraction and comparison as proposed in [13], and (4c)
the SIFT based approach as described in [17], respectively. An
implementation of the recognition tool-chain together with the
used configurations and results are available for download on
http://www.wavelab.at/sources/Prommegger20a.

B. Experimental Protocol

For the experiments, the data set is split into tow subsets,
one for enrolment and one for authentication. The enrolment
subset contains two samples, the subset for authentication three
samples. To quantify the performance, the EER, the FMR100
(the lowest FNMR for FMR ≤ 1%), the FMR1000 (the lowest
FNMR for FMR ≤ 0,1%) as well as the ZeroFMR (the lowest
FNMR for FMR = 0%) are used. For the evaluation, the
experiments follow the test protocol of the FVC2004 [25].

Due to the high number of results generated during the
experiments, only the EER values are visualized in the article.
The detailed individual results for all performance descriptors
for all perspectives and recognition schemes can be down-
loaded on http://www.wavelab.at/sources/Prommegger20a.

C. Baseline Results

In order to have a reference for the quantification of
MPE and PM-MPE results, the intra-perspective performance
(IPP) of all 73 perspectives, without applying any rotation
compensation methods and by applying CPN [1], is evaluated.
For this calculations every perspective is considered as its
own data set, which implies, that every perspective is its own
independent classical single perspective recognition system
where enrolment and probe image are acquired from the same
perspective. As a result of this, rotational differences between
the samples due to finger misplacement, i.e. longitudinal finger
rotation, are subject to the same degradations as presented
in [8]. Although the results of the different perspectives are
presented together, they are completely independent from each
other. Therefore, no rotational invariance can be concluded
from the presentation of the intra-perspective results. As MPE
and PM-MPE aim to generate rotation invariant recognition
results for a single finger vein image acquired from any
perspective during recognition, results close to or even better
than the intra-perspective results without rotation correction
can be considered as good performance.

D. Perspective Shifts for Multi-Perspective Enrolment

The idea behind perspective shifts for MPE is to mitigate the
prominent performance drops at 90° and 270° for MPE 60°
and PM-MPE 60° by separating the two negative impact fac-
tors: (1) largest rotational distance to the perspective acquired
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Fig. 3. Performance results (EER) for MPE (top) and PM-MPE (bottom)
applying rotational shifts to the enrolment perspectives.

during enrolment and (2) inferior performing perspectives.
This separation is achieved by rotating the enrolment cameras
by an angle of ϕ (see Fig. 1). The experiments are carried
out for MPE 60° and PM-MPE 60° using four different ϕ,
namely 0° (no shift), 15°, 30° and 45°. With a shift of ϕ = 30°
there are enrolment cameras at 90° and 270°. This results in
a separation of the two negative factors.

Fig. 3 depicts the results for MPE 60° and PM-MPE 60°.
The shift of the enrolment cameras only leads to a shift of
performance drop by the same angle ϕ, which is particularly
evident in the PM-MPE plot (bottom). This indicates that
the influence of the distance to the enrolment perspective is
greater than that of the inferior perspectives. Prommegger et
al. showed in [18] that MC cannot compensate longitudinal
finger rotation > 30°. Considering these results, one can
conclude that for MC a rotational distance of α > 60° between
enrolment perspectives is not useful.

E. Pseudo-Perspectives in Perspective Multiplication for
Multi-Perspective Enrolment

The experiments in this part serve two goals: They analyse
(1) the impact of the number of generated pseudo perspectives
between two adjacent enrolment perspectives and (2) the
applicability of (PM-)MPE to recognition schemes using other
features than MC. The schemes used are two simple vein
pattern based ones using the well known MC and WLD
features and a more sophisticated one, namely ASAVE. In
addition, a keypoint based scheme (SIFT) is analysed. The ro-
tational distance between two adjacent enrolment perspectives
is α = 45° and 60°. The number of inserted pseudo perspec-
tives between two cameras are 0 (MPE, [1]), 2 (PM-MPE,
[2]), 4 (PM2-MPE) and 6 (PM3-MPE, only for α = 60°). The
latter two have not been applied before.

Fig. 4 shows the performance results (EER) of the vein
pattern based methods (note the different scaling of the plots).
The simple vein pattern based methods, MC (left column)

and WLD (middle), behave similar: For α = 45° (top row),
the EERs for MPE follow pretty much the intra-perspective
results. They achieve the best results in the palmar region
(around 0°) and the dorsal region (around 180°). The EERs
inbetween are inferior, hitting its highest values around 90°
and 270°. Introducing two pseudo perspectives (PM-MPE)
noticeable improves the performance. The perspectives fur-
thest away from the enrolment perspectives exhibit a notice-
able performance degradation. These drops in the recognition
performance are more prominent for MC and are visible as
spikes in the EER curve at e.g. 67.5° and 292.5°. Generating
four pseudo perspectives between two adjacent enrolment
cameras still improves the performance, but not to the same
degree as from MPE to PM-MPE. For α = 60° (bottom
row), the performance of MPE delivers worse results than the
intra-perspective results. Especially striking is the prominent
performance degradation at 90° and 270°. Again, introducing
pseudo perspectives improves the recognition results. Similar
to MPE 45°, also MPE 60° shows drops in the performance
for the perspectives with the maximum distance to the en-
rolment cameras. PM-MPE outperforms the intra-perspective
results except for some regions with a large distance to the en-
rolment cameras, e.g. for MC at 270° and WLD around 300°.
In turn with the results for PM2-MPE 45°, also PM2-MPE 60°
shows a slight improvement compared to PM-MPE 60°. Intro-
ducing even more pseudo perspectives (PM3-MPE 60°) does
not further improve the recognition performance.

When using MPE 45° in combination with ASAVE (left col-
umn), the performance is again similar to the intra-perspective
results. Introducing pseudo perspectives still improves the
results, but not to the same extend as for MC and WLD. The
lower performance increase is reasonable as ASAVE has an
integrated image alignment based on the vein backbone of
the finger vein images. The creation of pseudo perspectives
is in principle only an (albeit inaccurate) attempt to better
align the images. Since ASAVE has already integrated such an
alignment, the potential for improvement is lower. For more
information on ASAVE, the interested reader is referred to
the original article [13]. At a rotational distance of α = 60°
similar results are given, although with slightly higher EERs.
For ASAVE also the trend of the intra-perspective comparisons
is interesting. Contrary to all other recognition schemes under
investigation, the best results are achieved around 45° and 315°

The last studied recognition scheme is a keypoint based
system using SIFT descriptors as features. SIFT is, to some
degree, invariant against certain variations in the image, e.g.
changes in the illumination, and some transformations, e.g.
translation, rotation or scaling. Therefore, the introduction of
pseudo perspectives should not have an positive effect on
the recognition performance of the system. Fig. 5 depicts
the trend of SIFT’s EER. The achieved EERs for MPE are
higher than for the intra-perspective comparisons. For both,
α = 45° and 60°, the spikes between the enrolment perspec-
tives are apparent. This is in line with the results of [12] where
the authors showed that applying SIFT together with elliptic
pattern normalization, which is similar to the used CPN, shows
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Fig. 4. Performance results (EER) for MC (left), WLD (middle) and ASAVE (right) using different rotational distances between adjacent enrolment perspectives:
α = 45° (top), α = 60° (bottom).
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Fig. 5. Performance results (EER) for SIFT applying MPE, PM-MPE, PM2-
MPE and PM3-MPE for α = 45° and 60°.

a higher performance degradation compared to simple vein
pattern based systems. It delivers only good recognition rates
for rotational distances < ±15°. The maximum distance for
α = 45° and 60° is 22.5° and 30°, respectively. This implies
that in areas exceeding this 15°, the rotation can no longer
be compensated. As expected, the introduction of additional
pseudo perspectives does not improve the recognition rates, in
contrary, they got slightly worse.

VI. CONCLUSION

The analysis of the different recognition schemes in sec-
tion V-D showed that simple vein pattern based systems
benefit most from the insertion of pseudo perspectives. For
schemes that have already some kind of image alignment
included, the benefit of adding additional perspectives is
lower. As already shown in [2], MC benefits from introducing

two pseudo perspectives (PM-MPE) between two neighbour-
ing enrolment cameras. Using four additional perspectives
(PM2-MPE), results into another slight improvement. Adding
more perspectives (PM3-MPE) does not further improve the
performance. WLD, the second simple vein pattern based
algorithm, shows the same behaviour but with better results
for methods using perspective multiplication. For ASAVE, a
more sophisticated vein pattern based method, applying MPE
also results in rotation invariant recognition results. As ASAVE
pre-aligns the images using their vein backbone, introducing
pseudo perspectives has not the same impact as for the simple
methods MC and WLD.

The last method examined, a SIFT-based approach, does not
seem to be suitable for (PM)-MPE. The achieved recognition
rates are noticeable worse than those of the intra-perspective
comparisons. Furthermore, this approach is more sensitive to
longitudinal rotation than vein pattern based methods.

For the analysis of perspective shifts, we changed the
camera positions from 0° (original setting from [1] and [2])
to 45° in steps of 15°. The experiments showed that a shift of
the enrolment perspectives did not result in an improvement of
the recognition performance in regions with a high rotational
distance to the enrolment cameras. The performance drop is
only shifted with the same angle as the enrolment cameras
were rotated. This indicates that the influence of an inferior
intra-perspective performance is less than the impact of a large
rotational distance to the enrolment cameras. This holds true
for both, MPE and PM-MPE. Considering these results along
with those of [12], rotational distances of α > 60° between
the enrolment perspectives are not useful.

For the analysis of introducing additional pseudo perspec-
tives for PM-MPE, we inserted different numbers of pseudo
perspectives between adjacent enrolment cameras. The ex-
periments showed that simple vein pattern based systems
benefit most from the insertion of pseudo perspectives. For
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schemes that have already some kind of image alignment
included, the benefit of adding additional perspectives is
lower. MC and WLD benefit from introducing two pseudo
perspectives (PM-MPE) between two neighboring enrolment
cameras. Using four additional perspectives (PM2-MPE) re-
sults into another slight improvement. Adding more perspec-
tives (PM3-MPE) does not further improve the performance.
ASAVE, a more sophisticated vein pattern based system, still
benefits from the use of PM-MPE, the impact of the intro-
duction of additional perspectives is limited. The SIFT-based
recognition system does not benefit from the introduction of
pseudo perspectives at all.

Adding pseudo perspectives during enrolment introduces
computational cost for their generation during enrolment and
the additional comparisons for every recognition attempt. With
standard applications, enrolment is carried out once while
recognition is executed numerous times. Therefore, the addi-
tional costs during registration are not so decisive, especially
not if it reduces the number of acquired perspectives and
thus the cost and complexity of the capturing device. This
applies e.g. for PM-MPE 60°: compared to MPE 45° one
can save two cameras while achieving similar recognition
rates. Compared to MPE the number of comparisons for a
recognition attempt are trippled for PM-MPE, quintupled for
PM2-MPE and increased by seven times for PM3-MPE. The
performance gain for PM-MPE justified this extra effort. When
looking at the results of PM2-MPE and PM3-MPE, the extra
effort is not justifiable.

In our future work, we aim to further improve the invariance
of finger vein recognition with respect to longitudinal finger
rotation. We will experiment with different camera settings,
e.g. multi perspective enrolment combined with multi per-
spective authentication. Furthermore, we will try to improve
the results for perspective cumulative finger vein templates as
proposed in [1].
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Abstract—Finger vein recognition deals with the identification
of subjects based on their venous pattern within the fingers. The
recognition accuracy of finger vein recognition systems suffers
from different internal and external factors. One of the major
problems are misplacements of the finger during acquisition. In
particular longitudinal finger rotation poses a severe problem
for such recognition systems. The detection and correction of
such rotations is a difficult task as typically finger vein scanners
acquire only a single image from the vein pattern. Therefore,
important information such as the shape of the finger or the
depth of the veins within the finger, which are needed for
the rotation detection, are not available. This work presents a
CNN based rotation detector that is capable of estimating the
rotational difference between vein images of the same finger
without providing any additional information. The experiments
executed not only show that the method delivers highly accurate
results, but it also generalizes so that the trained CNN can also
be applied on data sets which have not been included during
the training of the CNN. Correcting the rotation difference
between images using the CNN’s rotation prediction leads to
EER improvements between 50-260% for a well-established vein-
pattern based method (Maximum Curvature) on four public finger
vein databases.

I. INTRODUCTION

Vascular pattern based biometric systems, commonly de-
noted as vein biometrics, offer several advantages over other
well-established biometric recognition systems. In particular,
hand and finger vein systems have become a serious alternative
to fingerprint based ones for several applications. Vein based
systems use the structure of the blood vessels inside the human
body, which becomes visible under near-infrared (NIR) light.
As the vein structure is located inside the human body, it
is resistant to abrasion and external influences on the skin.
Furthermore, due to the blood flow exhibited in NIR finger
vein videos, liveness detection techniques can be applied to
prevent presentation attacks [2], [25].

The performance of finger vein recognition systems suffers
from different internal and external factors. Internal factors
include the design and configuration of the sensor itself,
especially the NIR light source and the camera module. Exter-
nal factors include environmental conditions (e.g. temperature

This project was partly funded from the FFG KIRAS project
AUTFingerATM under grant No. 864785 and the FWF project ”Advanced
Methods and Applications for Fingervein Recognition” under grant No.
P 32201-NBL.

and humidity) and deformations due to misplacement of the
finger, typically including shifts, tilt, bending and longitudinal
rotation.

Performance degradations caused by various types of finger
misplacement are not new and have been addressed in several
publications. Kumar and Zhou [12] addressed the need for
robust finger vein image normalization, including rotational
alignment, already in 2012. Chen et al. [4] stated that de-
formations caused by a misplacement of the finger can be
corrected either during pre-processing, feature extraction or
comparison. Moreover, the design of the finger vein sensor
helps to avoid or reduce misplacements of the finger as well. In
[20] the authors showed, that longitudinal finger rotation has a
severe influence on the recognition performance of finger vein
recognition systems. There are several approaches that try to
handle these issues during the processing of the vein images.
These approaches can be grouped into two different categories:
(1) approaches that use classical single perspective capturing
devices, e.g. [4], [5], [9], [13], [16], [19], [31] and (2) methods
that acquire multiple perspectives either during enrolment
[23], [24], or for both, enrolment and recognition, [3], [10],
[28]. However, none of theses approaches quantify the extent
(i.e. the rotation angle) of the misplacements on which the
deformation is based on. Prommegger et al. estimated the
rotation angles in four publicly available data sets in [22]. For
the rotation estimation between two finger vein samples, one
sample is rotated 90 times in the range of ±45° in steps of 1°.
The other sample is compared to the first sample and its 90
rotated versions, so 91 comparisons in total. The rotation angle
is taken from the comparison at which the highest correlation
(the highest score) is achieved. However, such a time-intensive
empirical approach can only be used to analyse existing data
sets, but is not suitable for real world applications. Therefore,
a system that is able to determine the rotation angle between
two vein images in real time would be desirable. This article
proposes a CNN based rotation detector that is capable of
doing so.

CNNs have already been used for rotation estimation in
several biometric applications. In [26] a siames network based
approach was used to estimate the rotation of finger prints. In
[6], CNNs were applied to detect hands and estimate their
rotation and in [8], CNNs were applied to estimate head pose
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angles for face-related applications like face recognition. Up
to now, there is no CNN-based prior work that tries to estimate
the rotation of finger vein images.

The main contribution of this work is the proposal of a
CNN-based rotation detector that estimates the difference in
longitudinal rotation between vein images of the same finger.
The experimental results show that the CNN is not only
capable of estimating the rotation for the data set it is trained
on, but can also be used for data sets not included during
training. The CNN has been trained using data provided by the
PROTECT Multimodal Dataset (PMMDB) [27] and evaluated
on the PLUSVein Finger Rotation Dataset (PLUSVein-FR)
[21]. To verify the generalisability of the proposed model, it
is also applied on four often used publicly available data sets,
namely SDUMLA-HMT [32], FV-USM [1], UTFVP [29] and
PLUSVein-FV3 [11]).

The reminder of this paper is organized as follows: Longitu-
dinal finger rotation and the problems it causes for finger vein
recognition systems are described in more detail in section II.
Sections III hold all details on the used CNN model and its
training, section IV describes the region of interest detection
and section V explains the rotation correction of finger vein
images. The experimental setup together with its results are
described in section VI. Section VII concludes the paper.

II. LONGITUDINAL FINGER ROTATION IN FINGER VEIN
RECOGNITION

Typically, finger vein scanners are designed to acquire a
single finger at a time. Different types of finger misplacement
can easily occur with these scanners. The different types of
finger misplacement includes planar shifts and rotations, a
change of the distance to the camera (scaling), finger bending,
finger tilt (finger tip and root are not in the same plane) and
longitudinal finger rotation. As described in [20], the influence
of some of these problematic misplacements can be reduced or
even prevented completely either during acquisition by adding
support structures for finger positioning or a correction during
pre-processing, feature extraction or comparison. Almost all
currently available sensors use such support structures, but
most of them still do not prevent longitudinal finger rotation.
Thus, longitudinal finger rotation poses a severe problem to
finger vein recognition systems.

The vein structure captured in finger vein images is a
projection of the blood vessel structure in the 3D space onto
a 2D plane. If the finger is rotated along its longitudinal
axis, the vein pattern is deformed according to a non-linear
transformation. Figure 1 shows the effect of longitudinal finger
rotation on the vein pattern. The finger cross section (top row)
is rotated from -30° to +30°. As a result of the rotation the
projected pattern of the veins (bottom row) changes as well.
Depending on the relative position of the veins to each other
and the rotation angle, some of the captured veins might even
merge into a single one. The vein structures of -30° (left),
0° (middle) and 30° (right) are completely different. Widely
used vein recognition schemes can handle such deformations
only to a certain extent [20]. If the deformations caused by

the longitudinal rotation are corrected, the negative effect can
be reduced but not completely prevented [19].

III. ROTATION DETECTION USING CNNS

The idea of the CNN-based rotation detector is to have pairs
of different rotated but otherwise identical images as inputs for
a CNN, so that it can learn to estimate the rotation difference.
Typically, CNN inputs in image processing tasks are either 3-
channel images (images in RGB or other color spaces) or one
channel images (grayscale images). The proposed approach
follows a different strategy: It uses a 2-channel input, where
both channels contain grayscale finger vein images, with the
image of the second channel being a rotated version of the
image of the first channel (see figure 2). A somehow similar
approach was already applied in [7], where two finger vein
images where merged to a 2-channel image which was used
as CNN input. However, in [7], the CNN was directly used
for identification (using the cross entropy loss) whereas the
proposed approach estimates the rotational difference between
the two images.

In order to learn the rotation difference ϕIi,Irotated
i

between
a pair of differently rotated images, Ii and Irotatedi , the mean
squared error (MSE) loss function, which is defined in Eq. (1),
is applied.

L =
1

N

N∑

i=1

(ϕi − ϕ̂i)2 (1)

ϕi is the actual rotational distance between a pair of training
images, ϕ̂i is the CNN’s prediction of the rotation angle of
the considered image pair and N is the batch size.

Figure 2 visualizes the CNN training process.
As CNN, the ResNeXt [30] architecture (ResNeXt-101),

a highly modularized and deep network architecture for im-
age classification, is used. The CNN weights are initialized
from a model that was already trained on the ImageNet
database1. The pre-trained model was trained on 3-channel
RGB images, whereas the proposed model requires two chan-
nel input images. The problem is solved by replacing the
original 3-channel filter kernels of the first convolutional layer
with 2-channel filter kernels, whereas both channels of the
new filter kernel are grayscale versions of the original 3-
channel filter kernel. Furthermore, instead of the originally
1000-dimensional output from the ImageNet database, a one-
dimensional CNN output (the predicted rotation difference) is
required. Therefore, the last fully connected layer is resized
from 1000*2048 to 1*2048 using randomly initialized weights.

IV. REGION OF INTEREST DETECTION

The region of interest (ROI), which serves as input for the
CNN as well as the recognition tool-chain in section VI-C2,
is extracted as following: First, an edge detection algorithm
is used to detect the finger outlines. The area between the
two finger lines is accounted as finger region. Next, a straight
line is fitted between the two finger lines. This line represents

1http://www.image-net.org/
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Fig. 1. Longitudinal finger rotation principle: a schematic finger cross section showing five veins (blue dots) rotated from -30° (left) to +30° (right) in
10° steps. The projection of the vein pattern (bottom row) is different depending on the rotation angle according to a non-linear transformation (originally
published in [20]).

ResNext CNN

MSE
loss

2-channel input image

rotation
prediction

actual
rotation

Images of the same finger but with 
different rotations (0° and 45°)

Fig. 2. Scheme of CNN training for rotation estimation

Fig. 3. ROI extraction - left: finger line detection. The straight line in the
middle represents the center of the finger at which it is horizontally aligned.
The top and bottom lines are the detected finger outlines which separate the
finger from the background. The region between the lines is regarded as finger
region. Right: the finger region is transformed to a fixed height. Afterwards
the ROI, visualized as white square, of a fixed size is cut out.

the center of the finger. Based on this center line, the finger
is aligned (rotated and vertically shifted) such that it is in a
horizontal position and the center line of the finger is in the
middle of the image. The area outside of the finger lines is
masked out (pixels set to black). Afterwards, the finger region
is transformed to a fixed height. In the last step, the finger
ROI is cut out. Fig. 3 visualizes this process. The left image
shows the finger with the center and finger outlines, the right
image shows the final ROI after its transformation to a fixed
height.

V. ROTATION CORRECTION OF FINGER VEIN IMAGES

For the generation of rotated vein images, not only the
position of the veins in the 2D image, but also the shape of
the finger and the depth of the veins within the finger have to
be known. As the last two informations are not available in
general, both need to be estimated. In this work, it is assumed
that the cross section of a finger approximately resembles a
circle (as e.g. Matsuda et al. did in [16]) and that the captured
veins are close to the finger surface (cf. Huang et al. [9]).

The rotation of the veins by an angle of ϕrotate is calculated
by applying a rotation matrix given in Eq. (2).

[
xr
yr

]
=

[
cos(−ϕrotate) −sin(−ϕrotate)
sin(−ϕrotate) cos(−ϕrotate)

]
∗
[
x
y

]
(2)

x and y are the coordinates of the vein pixel in the acquired
image, xr and yr the ones in the rotated image. x is the
position of the pixel in the vein pattern, y is calculated by

y =
√
r2 − x2 (3)

where r is the approximated radius of the finger, which
corresponds to half of the height of the vein image. The part
of the rotated ROI image that contains no information (due
to the transform) is filled with the average gray level of the
image. For more details, the interested reader is referred to
[22].

VI. EXPERIMENTS

The aim of the experiments is to show that a CNN can
be trained to estimate the longitudinal rotation between two
finger vein samples of the same finger using the approach
presented ins section III. The rotational range, for which the
CNN should be capable of estimating the longitudinal finger
rotation, was determined based on the results of [19]. There,
Prommegger et al. showed that a rotation correction gives very
good results in the range of ±30°. However, a correction for
rotation angles of more than 45° no longer makes sense as the
recognition rates drop rapidly. Therefore, this work analyses
the rotation estimation in the range of ±45°. Although, the
range of particular interest is that between ±30°.

The training of the CNN model is done using data from
the PMMDB data set. The range Θ, from which the training
samples are taken is varied from ±45° to ±60° in steps of
5°. The evaluations are carried out on the PLUSVein-FR. To
prove the generalizability of the model, it is also applied on
four publicly available data sets, SDUMLA-HMT, FV-USM,
UTFVP and PLUSVein-FV3, which have not been included
during training. The rotation angles of these four data sets have
also been evaluated in [22] and therefore, a direct comparison
of the results from this work and [22] is possible.

A. Data Sets

The PLUSVein-FR provides vein images of perspectives all
around the finger (360°) in steps of 1°. It was acquired for
63 different subjects, 4 fingers per subject, which sums up to
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a total of 252 unique fingers. For each finger, five samples
were acquired. Each one of the five samples consists of 361
images (one per perspective, 0° and 360° have been acquired
separately). This results in 252 · 5 = 1.260 finger vein images
per perspective. This work uses the publicly available subset
±45° Around the Palmar View [19], which contains all images
acquired for the 92 perspectives perspectives between -45° and
+45°, resulting in a total of 92×1.260 = 115.920 vein images.

The PMMDB finger vein database was acquired in two data
acquisition events with one year between the two sessions. In
this work only data acquired during the second session using
the same capturing device as for the PLUSVein-FR is used.
From the 33 acquired subjects, only 29 are used in this work
(4 subjects are part of both, PMMDB and PLUSVein-FR, and
therefore were removed from PMMDB). This sums up to a
total of 116 unique fingers (4 fingers per subject). As the two
data sets were acquired using the same capturing device and
the same acquisition protocol, they are very similar.

To show the generalizability of the presented rotation detec-
tor, it was used to evaluate the rotation angles in four publicly
available finger vein data sets: SDUMLA-HMT, FV-USM,
UTFVP and PLUSVein-FV3 (only the dorsal images acquired
by the laser version of the sensor). The data sets itself do not
provide any information on the longitudinal rotation of the
samples. In [22], their rotation angles have been estimated. Ac-
cording to these estimates, PLUSVein-FV3 shows the lowest
degree of longitudinal finger rotation, followed by UTFVP and
FV-USM, while SDUMLA-HMT exhibits the highest amount.

B. Rotation Detection using CNNs

This Section describes the experimental setup for CNN
training and evaluation and presents the CNN results.

1) Experimental Setup for CNN Training: CNN training is
performed on pairs of images from the PMMDB database.
For each image of the PMMDB database in the relevant range
of ±Θ, a randomly chosen image of the same subject and
sample but from a different perspective is selected as the
second image of the input image pair (remember, for the
PMMDB vein images are acquired all around the finger in
steps of 1° ⇒ one sample consists of 361 vein images from
361 different perspectives, where 0° and 360° are acquired
separately). For these pairs of images, the exact rotational
difference is known. Theoretically, 0° and 360° should be the
same but practically there can occur small differences because
of accumulated errors across the 360° rotation or small pose
changes of the finger during data acquisition. Hence, to avoid
any training errors, the pairs of images for CNN training are
always selected either from the positive [0°,Θ] or negative
range [−Θ, 360°], but no combinations across both rotational
ranges.

The CNNs are trained for 60 epochs using a batch size
of 8. Training starts with a learning rate of 0.0001 and is
subsequently reduced by multiplying it with factor 0.3 after
20, 30, 40 and 50 epochs of CNN training. In every epoch,
each of the 77.704 images of the PMMDB database is used
once as first image of an image pair, the second image is

randomly chosen from the same range as the first one. First,
the 2-channel input image (the image pair) is resized to size
224×254. Data augmentation is applied by randomly cropping
image patches of size 224×224 (the required input size for the
CNN) from the resized image independently for each of the
two channels. In that way the CNN’s robustness to horizontal
shifts (resulting from finger misplacements) is increased. This
is important since there are no shifts between finger images
of the same sample, whereas for evaluation, image pairs are
built of images from different samples and so shifts do occur
(also in practical application, the acquired images are subject
to such misplacements). For evaluation, data augmentation is
skipped and patches of size 224 × 224 are directly cropped
from the center of the resized 224× 254 images.

2) Evaluation Protocol: For evaluation, the trained CNN
is applied on the subset ±45° around the palmar view of the
PLUSVein-FR data set. As already mentioned, PLUSVein-FR
and PMMDB have been acquired using the same sensor and
acquisition protocol. The only difference are the acquired
subjects.

The rotation angles are always evaluated with respect to the
palmar perspective (0° or 360°) of the first sample of each
finger (denoted as reference image). Just as for the training
setup, depending on the rotation angle α of the probe image,
the rotation detection is made against the reference image at
0° (α >= 0°) or 360° (α < 0°), respectively. To achieve a
more robust result, similar to [22], the rotation angle Φi(α) is
calculated as the average of ϕ̂i(α),ref (the predicted angle of the
ith sample at α against the reference image) and ϕ̂ref,i(α) (the
predicted angle of the reference image against the ith sample
at α):

Φi(α) = avg
(
ϕ̂i(α),ref,−ϕ̂ref,i(α)

)
(4)

As the CNN is trained on the range of ±Θ, it is not capable
of estimating rotation angles outside of this range. Prediction
results that exceed Θ are rejected and the resulting rotation
angle Φi(α) is taken from the remaining prediction. If both
estimates, ϕ̂i(α),ref and ϕ̂ref,i(α), are rejected, the rotation angle
is set to 0°.

In order to correct any rotational misalignments between
two samples of the same finger, the rotational distance of the
ith sample at the palmar view to the palmar view of the first
sample (Φi(palmar)) is subtracted from Φi(α). The predicted
rotation angle α̂ is thus determined as follows:

α̂ = Φi(α) − Φi(palmar) (5)

3) Results: Figure 4 shows the result for all four training
ranges Θ. The red solid line represents the median, the blue
dashed lines mark the limits of the 90% quantile. The thinner
dash-dotted lines serve as ledger lines for the ideal rotation
prediction (prediction error = 0°) and ±15° (this is the range in
which, according to [19], commonly used recognition deliver
good recognition rates even without any rotation correction or
compensation). For all four training ranges Θ, up to a rotation
angle of ±30°, the median of the predictions is quite close
to the ideal prediction. Outside of this range, the prediction

Chapter 3. Publications

60



Fig. 4. Results of rotation detection on PLUSVein-FR (median and 90% quantile) for different training ranges Θ. From left to right: ±45°, ±50°, ±55°and
±60°

error increases. In general, the proposed CNN-model tends to
underestimate the rotation angle. This can be seen in the plots
by the fact, that the median is below the ideal estimate for
rotation angles >0° and above for angles <0°, respectively.
For Θ = 45°, the estimation error stays below 15° on the
examined range. With increasing training range, the prediction
error for larger rotation angles increase. This is especially
obvious for rotations > +35° for Θ = 60°.

The 90% quantile visualizes the accuracy of the determined
rotation angles. For Θ = 45°, up to ±30°, the limits of the
quantile are close to the median. In this area it also remains
within the ±15° range. For rotation angles that exceed 30°,
the deviations of the prediction increase. This widens the
90% quantile. Increasing the angular range Θ, from which
the training data is taken, does not improve the predictions. In
contrary, the estimates differ more from their actual value.

C. Application on Public Finger Vein Data Sets

Both data sets used in section VI-B, PMMDB and
PLUSVein-FR, have been acquired using the same capturing
device following the same acquisition protocol. Therefore, the
data sets (with exception of the acquired subjects) are very
similar. To show that the trained model is not limited to a
specific data set or sensor, it is also applied on four pub-
licly available data sets, namely SDUMLA-HMT, FV-USM,
UTFVP and PLUSVein-FV3, that were acquired using differ-
ent capturing devices and acquisition protocols. Experiments
are conducted to show the positive effect of rotation correction
on the EERs for the four public datasets. The performance
results are evaluated using the best performing model of
section VI-B (Θ = 45°).

1) Evaluation Protocol: As in [22], the data sets are
corrected on the basis of the estimated rotation angles. As
a result, all images of a finger should be aligned with each
other with respect to their longitudinal rotation. The results
are compared to those of the original data set (ORI) and the
results achieved in [22]. For the experiments two corrected
data sets are generated: In the first version (ROT), all samples
are corrected with respect to the first sample of each finger,
in the second one (ROT Mean), all samples of a finger are
corrected with respect to the calculated mean rotation angle

TABLE I
NUMBER OF COMPARISONS FOR EACH DATA SET

Name Genuine Impostor Total
SDUMLA-HMT 9540 200340 209880

UTFVP 2160 63720 65880
FV-USM 32472 120048 152520

PLUSVein-FV3 3600 63720 67320

of this finger. In real world applications, the rotation correction
differs from the two approaches mentioned above (ROT, ROT
Mean). There, it is not clear if the enrolment and probe sample
are actually from the same finger/subject. As a result of this,
the rotation estimation and correction needs to be executed
prior to every comparison (regardless of whether it is a genuine
or impostor comparison).

To quantify the performance of the data sets, the EER is
used. The experiments follow the test protocol of the FVC2004
[15]: For calculating the genuine scores, all possible gen-
uine comparisons are performed. For calculating the impostor
scores, only the first sample of a finger is compared against
the first sample of all other fingers. The resulting numbers of
comparisons for all data sets are listed in table I. To quan-
tify the change of the performance, the relative performance
increase (RPI) as stated in Eq. (6) is used.

RPI =
EERref − EERx

EERx
(6)

EERref is the EER of the reference data set and EERx the
EER of the evaluated data set.

2) Recognition Tool-Chain: The finger vein recognition
tool-chain consists of the following components:

1) The ROIs are extracted as described in section IV
2) The rotation angle between two vein images is estimated

using the CNN rotation estimator in section VI-B (train-
ing range Θ = 45°)

3) Rotated versions of the input images are generated as
described in section V

4) To improve the visibility of the vein pattern High Fre-
quency Emphasis Filtering (HFE) [34], Circular Gabor
Filter (CGF) [33] and simple CLAHE (local histogram
equalisation) [35] are used as pre-processing steps.
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TABLE II
RECOGNITION PERFORMANCE OF THE EVALUATED DATA SETS AND ITS
CORRECTED VERSIONS: ORI = ORIGINAL DATA SET, ROT = ROTATION
CORRECTED TO 1ST IMAGE, ROT MEAN = ROTATION CORRECTED TO

MEAN OF FINGER. BEST ACHIEVED EER AND RPI VALUES ARE
HIGHLIGHTED IN BOLD.

Data Set Correction Method Performance Indicators
EER [%] RPI [%]

SD
U

M
L

A
-H

M
T ORI - 4.73 -

ROT proposed 1.30 263.40
ICB’19 [22] 1.07 341.59

ROT Mean proposed 1.37 244.77
ICB’19 [22] 1.14 315.85

FV
-U

SM

ORI - 1.23 -

ROT proposed 0.52 137.03
ICB’19 [22] 0.56 120.06

ROT Mean proposed 0.76 61.89
ICB’19 [22] 0.77 59.38

U
T

FV
P

ORI - 0.42 -

ROT proposed 0.18 125.47
ICB’19 [22] 0.19 124.53

ROT Mean proposed 0.19 115.54
ICB’19 [22] 0.09 349.06

PL
U

SV
ei

n-
FV

3 ORI - 0.08 -

ROT proposed 0.05 61.23
ICB’19 [22] 0.06 50.00

ROT Mean proposed 0.06 52.12
ICB’19 [22] 0.08 0.94

5) As feature extraction method, the well-established vein-
pattern based Maximum Curvature method (MC) [18] is
employed.

6) The comparison of the binary feature images is done
using a correlation measure, calculated between the
input images and in x- and y-direction shifted versions
of the reference image as described in [17].

3) Results: Table II holds the performance results of the
proposed method as well as for the unmodified data set (ORI)
and the results achieved in [22] for all four data sets. Both
corrected data sets outperform the original data set in all
four cases. For all data sets, the correction with respect to
the first sample achieves slightly better results. The highest
performance increase is achieved for SDUMLA-HMT. There
the EER dropped from 4.73% (ORI) to 1.3% (ROT), which
corresponds to a RPI of 263%. For the three other data sets the
performance increased as well, but not to the same extent. For
FV-USM the performance increased by 137%, for UTFVP by
125% and for PLUSVein-FV3 by 61%, respectively. These
results essentially correspond with those achieved in [22].
SDUMLA-HMT shows the biggest performance differences.
Such a result was to be expected since (according to [22])
this data set contains the largest rotation angles, including
rotations up to 45°. According to the results of section VI-B3,
the accuracy of the predicted rotations decreases noticeable
for rotations above ±30°.

TABLE III
MEAN AND STANDARD DEVIATION OVER THE ABSOLUTE VALUED

DIFFERENCES OF THE PREDICTED ROTATION ANGLES OF THE PROPOSED
SYSTEM TO THE RESULTS IN [22]

Name Mean Standard Deviation
SDUMLA-HMT 3.07° 3.87°

UTFVP 2.18° 2.04°
FV-USM 1.78° 2.00°

PLUSVein-FV3 1.32° 1.35°

The main advantage of the proposed rotation detector is
its applicability in real world finger vein recognition systems.
The detection of one rotation angle requires only a single
forward pass of the proposed CNN which takes in average
15ms (GPU: GeForce GTX Titan X). The approach in [22]
needs 91 comparisons (2.621ms per comparison or 238ms in
total) if all 91 rotated versions of each image are already
available in storage.

Table III shows the mean and the standard deviation for the
difference between the predictions of the proposed approach
and the estimated rotation angles of [22]. The mean deviation
is below 3.1° for all four databases, the standard deviation is
never higher than 4°. The low differences between the rotation
angles of both independent approaches imply that the predicted
angles should be fairly accurate estimates. Therefore, also the
majority of the errors in the prediction will be below ±15°,
which, according to [19], can be compensated by commonly
used finger vein recognition systems.

VII. CONCLUSIONS

In this article, a CNN-based rotation detector for finger vein
biometrics was presented. The detector accurately estimates
the longitudinal rotation between two finger vein images of
the same finger and is not limited on the data sets it was
trained on. The prediction of one rotation angle is very fast
(one estimation takes approximately 15ms on a GPU system).
This makes the proposed detector the first system that can be
practically applied in finger vein recognition systems.

The first part of the experiments analysed the accuracy
of the estimated rotation angles. The results showed, that
the rotation detector delivers accurate results in the range
of particular interest (±30°). For rotation angles >30°, the
estimation error rises noticeable.

To show that the system is not limited to the data set it was
trained on, it was applied on four publicly available finger vein
data sets, that differ from the training data (different capturing
devices and acquisition protocols). A rotation correction using
the estimated rotation angles leads to distinct improvements
in the EER on all four data sets between 50 and 260%
compared to the performance without rotation correction. The
only prerequisite to apply the proposed system is that the ROIs
of the finger vein images are extracted in the same way as
during the training of the CNN.
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The Two Sides of the Finger - An Evaluation on the
Recognition Performance of Dorsal vs. Palmar Finger-Veins

Christof Kauba1, Bernhard Prommegger1, Andreas Uhl1

Abstract: Vascular pattern (vein) based biometrics, especially finger- and hand-vein recognition
gain more and more attention. In finger-vein recognition, the images are usually captured from the
palmar (bottom) side of the finger. Dorsal (top) side finger vein recognition has not got much at-
tention so far. In this paper we establish a new, publicly available, two-sided (dorsal and palmar)
finger-vein data set. The data set is captured using two custom designed finger vein scanners, one
based on near-infrared LED illumination, the other one on near-infrared laser modules. A recogniti-
on performance comparison between the single subsets (palmar and dorsal) as well as cross-subset
(palmar vs. dorsal) comparison is conducted using several well-established finger-vein recognition
schemes. The experimental results confirm that the palmar side achieves the overall best recognition
performance but in general the dorsal side works better due to inherent finger texture information.

Keywords: Finger Vein Recognition, Palmar-Dorsal Data Set, Performance Evaluation, Finger Tex-
ture Analysis, Finger Vein Scanner Device

1 Introduction

Vein or to be more precise vascular pattern based recognition is an emerging new biometric
as it might help to overcome some of the problems existing biometric recognition systems
suffer from. Vein based systems rely on the structure of the vascular pattern formed by
the blood vessels inside the human body tissue, which becomes visible in near-infrared
(NIR) light only. Vein based biometrics are insensitive to abrasion and skin surface con-
ditions. Moreover, a liveness detection can be performed easily [KZ12]. Especially hand-
and finger-vein based systems are introduced in commercial systems too. In finger-vein
recognition it is common to use the palmar (bottom) side of the finger. The dorsal (top)
side of the finger has only got little attention so far. Moreover, it is not clear if the palmar
or the dorsal side yields a better recognition performance.

The main contribution of this paper is a new two-side finger-vein data set, comprising dor-
sal as well as palmar finger-vein images captured from the same subjects. Our data set
provides high resolution palmar and dorsal finger-vein images of 360 individual fingers. It
contains 4 subsets: one palmar and one dorsal one captured utilising our NIR LED and our
NIR laser module based scanner, respectively. Based on these data sets a recognition per-
formance evaluation of both, the palmar and dorsal subsets is conducted in order to answer
the question: which side is better in terms of recognition performance - palmar or dorsal?
In addition, a cross-comparison experiment between the palmar and dorsal view was done
1 Department of Computer Sciences, University of Salzburg, AUSTRIA, {ckauba, bprommeg,

uhl}@cs.sbg.ac.at
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to confirm that the vein patters differ and a cross-comparison is not possible. Moreover, a
finger texture analysis is conducted in order to quantify the amount of information which
is extracted unintentionally from the skin surface texture instead of the vein patterns.

The rest of this paper is organised as follows: Section 2 gives an overview on publicly
available finger-vein data sets and related work on dorsal finger-veins, followed by a des-
cription of our new two-side, dorsal and palmar, finger vein data set as well as the scanner
device. Section 3 outlines the experimental set-up, including the recognition tool-chain as
well as the evaluation protocol and presents the performance evaluation results together
with a results discussion. Section 4 concludes this paper.

2 Finger-Vein Data Sets

Tab. 1 gives an overview on the 8 publicly available finger vein data sets we found so far.
Only one of these data sets includes images that are captured from the dorsal side of the
finger, which is the PROTECT Multimodal Database [UoR17]. All the other data sets are
captured from the palmar side of the finger. There is some research on dorsal finger-veins,
e.g. the work of Raghavendra and Busch [RB15] but their data set has never been publis-
hed. Heenaye and Khan [HK12] established a dorsal and palmar hand-vein data set and did
a score level fusion to improve the overall recognition results. However, they did no direct
comparison of the individual performances of palmar and dorsal images. Due to the fact
that the vein geometry and properties are different for hand- and finger-veins (finger-veins
are smaller and more dense compared to hand-veins), recognition performance results for
finger-veins cannot be inferred from hand-veins. To the best of our knowledge there is no
work on the direct comparison of palmar and dorsal finger-vein images. Hence, it is not
obvious if the palmar or the dorsal side achieves a better recognition performance.

name subjects fingers images dors/palm sess. resolution
UTFVP [TV13] 60 6 1440 palmar 2 672×380

SDUMLA-HMT [YLS11] 106 6 3816 palmar 1 320×240
FV-USM [ASR14] 123 4 5940 palmar 2 640×480

VERA FingerVein [TVM14] 110 2 440 palmar 2 665×250
MMCBNU_6000 [Lu13] 100 6 6000 palmar 1 640×480
THU-FVFDT [YYL09] 610 2 6540 palmar 2 720×576

HKPU-FID [KZ12] 156 2 3132 palmar 2 512×256
PMMDB-FV [UoR17] 20 4 240 dorsal 1 1280×440

Tab. 1: Overview on publicly available finger-vein data sets. Note: only one contains dorsal images.

2.1 PLUSVein Dorsal-Palmar Finger-Vein Data Set

Our PLUSVein Dorsal-Palmar finger-vein data set was acquired with our two custom desi-
gned finger vein scanners, an NIR LED and a NIR laser module based version, which are
depicted in Fig. 1. The scanners are designed to capture 3 fingers (index, middle and ring
finger) at once. Both scanners are based on an NIR enhanced industrial camera equipped
with a 9 mm lens in combination with an NIR pass-through filter. Its main light source is
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a transillumination one consisting of 3 stripes (one underneath each finger) of NIR LEDs
for the LED version or NIR laser modules for the laser version of the scanner, respectively.
Each LED/laser module is brightness controlled individually and automatically based on a
preset brightness value to achieve an optimal image contrast. An LED ring consisting of 8
850 nm LEDs, 8 950 nm LEDs and 8 daylight LEDs for capturing reflected light images is
situated on top of the device and can be automatically brightness controlled too. To assist
in positioning of the finger, the lower part contains a custom 3D printed finger support
which also serves as a bracket for the 3 illumination stripes.

Camera with
Lens

Control
Board

Finger
Support

Reflected Light
Illuminator

Transillumination Light
Source: NIR LEDs

NIR Pass-
Through

Filter

Camera with
Lens

Control
Board

Finger
Support

Reflected Light
Illuminator

Transillumination Light
Source: Laser Modules

NIR Pass-
Through

Filter

Fig. 1: Left: LED based finger-vein scanner, right: laser module based finger vein scanner

The finger-vein data set itself consists of 4 subsets: one dorsal and one palmar finger-vein
subset captured using transillumination with the LED and the laser module based scanner,
respectively. 60 subjects, 6 fingers (left and right index, middle and ring finger) and 5
images per finger in 1 session were captured for each of the four subsets. So each subset
consists of the same 360 individual fingers but captured from a different view - palmar
for the first two and dorsal for the second two. Each scanner captures 3 fingers at a time.
Thus, each subset contains 600 raw finger-vein images. Some example images can be seen
in Fig. 2. The images are then separated into 3 parts, corresponding to index, middle and
ring finger, respectively. Hence, there are effectively 1800 images in each subset and 7200
images in total for the whole data set. The raw images have a resolution of 1280× 1024
pixels and are stored in 8 bit greyscale png format. The finger separated images have a
resolution of 420×1024 pixels and the visible area of the finger inside the images is about
200× 750 pixels per finger. The data set is publicly available for research purposes and
can be downloaded at: http://www.wavelab.at/sources/PLUSVein-FV3/.

3 Experiments

The finger-vein processing tool-chain consists of ROI (region of interest) extraction, pre-
processing, feature extraction and comparison. At first the input image is split into 3 parts
based on fixed coordinates, corresponding to index, middle and ring finger, respectively.
From here on each image is processed individually. The ROI is extracted by first detec-
ting the finger outline. Then the area outside the finger is masked out (pixels set to black).
Afterwards, the finger is aligned (rotated and shifted) such that it is in upright position in

Chapter 3. Publications

66



4 Christof Kauba, Bernhard Prommegger and Andreas Uhl

Fig. 2: Finger-vein example images captured by our three finger vein scanners, top: laser scanner,
bottom: LED scanner, first and third column: dorsal, second and fourth column: palmar

the centre of the image based on a straight centre line which is fitted into the finger and
a rectangular ROI is fit inside the finger area. The ROI images have a size of 192× 736
pixels. To improve the visibility of the vein pattern we employ High Frequency Empha-
sis Filtering (HFE), Circular Gabor Filter (CGF) and simple CLAHE (local histogram
equalisation) as preprocessing. We opted for three well-established binarisation type fea-
ture extraction methods as well as one SIFT key-point based method (SIFT) with addi-
tional key-point filtering. Maximum Curvature (MC) [MNM07], Principal Curvature
(PC) [Ch09] and Gabor Filter (GF) [KZ12] aim to extract the vein pattern from the back-
ground resulting in a binary image, followed by a comparison of these binary images.
Comparing the binary feature images is done using template matching as suggested by
Miura et al. [MNM07]: The maximum correlation value, calculated between the input
images and in x- and y-direction shifted and rotated versions of the reference image is
used as comparison score. For more details on the preprocessing, feature extraction and
comparison methods please refer to [KRU14].

The EER as well as the FMR1000 (the lowest FNMR for FMR ≤ 0.1%) and the Ze-
roFMR (the lowest FNMR for FMR = 0%) are used to quantify the performance. All
possible genuine comparisons are performed, which are 60 · 6 · 5·4

2 = 3600 comparisons,
while for the impostor comparisons only the first image of each finger is compared against
the first image of all other fingers, resulting in 60·6·(60·6−1)

2 = 64620 impostor compa-
risons and68220 comparisons in total. All result values are given in percentage terms,
e.g. 2.78 means 2.78%. An implementation of the complete processing tool-chain as well
as the scores and detailed results are available at: http://www.wavelab.at/sources/
Kauba18d/.

3.1 Single Subset Results

Tab. 2 lists the recognition performance in terms of EER (the value in brackets is the 90%
confidence interval), FMR1000 and ZeroFMR for both data sets, the LED and the laser
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scanner one. The DET plots are depicted in Fig. 3. The same settings per recognition sche-
me have been used for both subsets: dorsal/palmar but different ones for laser and LED.
For the LED palmar subset MC performed best, achieving an EER of 0.06%, followed by
PC and SIFT while GF performed worst. For the dorsal subset the situation is different:
This time SIFT performed best with an EER of 0.06%, followed by PC and MC while GF
achieved the worst performance. All schemes perform slightly worse on the laser scanner
data set, with MC achieving the best overall EER of 0.11% on the palmar sub set, except
for GF on laser palmar which is superior to the LED palmar sub set. The table reveals that
only MC performs better for palmar finger-vein images. PC, SIFT and GF perform better
on the dorsal subset. Especially SIFT and GF perform much better on dorsal than palmar
images. The FMR1000 and ZeroFMR results follow the same trend as the EER ones.

Dorsal Palmar
EER FMR1000 ZeroFMR EER FMR1000 ZeroFMR

L
E

D

MC 0.17 (±0.07) 0.19 0.22 0.06 (±0.04) 0.03 0.19
PC 0.11 (±0.06) 0.11 0.11 0.17 (±0.07) 0.19 0.64

SIFT 0.06 (±0.04) 0.06 0.28 0.64 (±0.13) 1.67 3.83
GF 0.25 (±0.08) 0.28 0.75 1.42 (±0.2) 2.36 6.64

L
as

er

MC 0.2 (±0.07) 0.28 0.64 0.11 (±0.06) 0.11 0.33
PC 0.44 (±0.11) 0.53 1.14 0.48 (±0.11) 0.69 0.97

SIFT 0.13 (±0.06) 0.17 0.89 1.25 (±0.19) 3.0 6.44
GF 0.64 (±0.14) 0.81 1.5 1.19 (±0.18) 2.17 3.92

Tab. 2: Recognition performance results, dorsal and palmar for both data sets (LED + laser), best
results per side and scanner are highlighted bold

Fig. 3: DET plots: LED based scanner (left) and laser based scanner (right)

3.2 Dorsal-Palmar Cross-Comparison Results

By applying transillumination only the veins which are close to the finger skin become
visible as discussed in [MNM04] and [Ko00]. As these surface vein patterns on the palmar
and dorsal side of the finger differ [GG74], a cross comparison between palmar and dorsal
images will not be possible. For the sake of completness we performed a cross comparison
between the palmar and flipped dorsal (palmar images have been captured by turning the
finger 180° around its axis) images. The results given in Tab. 3 confirm that that a cross-
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comparison between dorsal and palmar images of the same fingers is not possible (EER
around 50%, FMR1000 and ZeroFMR nearly 100%).

LED Laser
MC PC SIFT GF MC PC SIFT GF

EER 47 50 47 49 49 50 46 48
FMR1000 99 99 99 99 99 99 99 99
ZeroFMR 99 99 100 100 100 100 100 100

Tab. 3: Cross-comparison (palmar vs. dorsal) results for both data sets (LED + laser). The values
indicate that a comparison between dorsal and palmar is not possible

3.3 Finger Texture Analysis

Fig. 4 shows a comparison of the extracted features for MC and GF on palmar and dorsal
LED scanner images, respectively. There is some finger surface texture visible in both,
the palmar and dorsal images, but it is more pronounced in the dorsal ones. Especially
GF does not only extract vein lines, but also the wrinkles and the finger texture. Also
SIFT, as a general purpose key-point descriptor uses the additional information present
due to the finger texture. On the other hand, MC tries to suppress the non-vein texture
and therefore mainly relies on the vein lines. It shows less extracted features that actually
belong to the finger texture instead of vein lines than GF. To quantify the amount of finger
texture and wrinkle information present in the extracted vein features we rely on the three
binarisation type feature extractors (MC, PC and GF) and perform an edge detection based
analysis: Most finger vein lines are apparent as horizontal lines while the finger texture and
wrinkles are usually apparent as vertical lines. Thus, vertical edges correspond to finger
texture information whereas horizontal edges correspond to vein lines, respectively. We
apply a Prewitt filter based edge detection to detect vertical and horizontal edges separately
and quantify the amount of edge information: e = pe

w·h where e is the amount of edge
information in the image, pe are the detected edge pixels and w, h is the image width
and height, respectively. Afterwards, the ratio between vertical and total edges is used to
predict the amount of finger texture information present in the images: f ti = ev

eh
, where ev

and eh is the vertical and horizontal edge information, respectively. Higher values of f ti
correspond to a higher amount of finger texture information present. Tab. 4 shows these
values for MC, PC and GF based on the LED scanner images (SIFT does not produce
binary output images). For all 3 feature extraction schemes the finger texture information
present in the dorsal feature images is higher than in the palmar ones (1.369 times for
MC, 1.281 for PC and 1.752 for GF). This additional features originating from the finger
texture help in discriminating between different fingers and thus increase the recognition
performance. Consequently PC, GF and SIFT perform better for the dorsal images due to
the additional finger texture information compared to the palmar images.

4 Conclusion

We established a new dorsal and palmar finger-vein data set, containing 7200 images from
360 different fingers, captured with two different custom designed scanners, an LED based
one and a laser module based one. Based on this data set we did a direct comparison of
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Fig. 4: Comparison between dorsal (top) and palmar (bottom) extracted features for MC (middle) and
GF (right). The dorsal images show more finger texture (vertical lines) especially for GF compared
to the palmar ones.

Dorsal Palmar Dorsal/Palmar
ev eh f ti ev eh f ti f tiD/ f tiP

MC 0.0134 0.0203 0.6737 0.0104 0.0213 0.4918 1.369
PC 0.0139 0.0174 0.8013 0.0109 0.0176 0.6255 1.281
GF 0.0158 0.0189 0.8627 0.0138 0.0233 0.4571 1.752

Tab. 4: Finger texture information contained in the dorsal and palmar LED scanner images quantified
in terms of horizontal and vertical edges. Higher values of f ti correspond to more finger texture
information present.

palmar and dorsal finger-vein images in terms of recognition performance using several
well-established recognition schemes. The experimental results reveal that the overall best
performance is achieved for palmar images. Although, in general the dorsal images per-
form better than the palmar ones, mainly due to the fact that not only the vein lines are
extracted during feature extraction, but also the finger texture and wrinkles are considered.
The dorsal images show more texture information than the palmar ones and consequently,
most of the tested recognition schemes work better using the dorsal images. Moreover, our
results confirmed that a cross-comparison between palmar and dorsal vein patterns is not
possible.

Our future work will include tests with some more state-of-the-art finger-vein recognition
schemes. Moreover, we are going to design a suitable preprocessing method to suppress
the finger texture information and wrinkles in order to have the extracted features based
on vein lines only and thus to make the results independent from the finger texture infor-
mation. After all, vein recognition should only deal with vascular pattern information and
not the skin surface texture one.
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Longitudinal Finger Rotation - Problems and Effects in
Finger-Vein Recognition

Bernhard Prommegger1, Christof Kauba1and Andreas Uhl1

Abstract: Finger-vein scanners or vein-based biometrics in general are becoming more and mo-
re popular. Commercial off-the-shelf finger-vein scanners usually capture only one finger from the
palmar side using transillumination. Most scanners have a contact area and a finger-shaped support
where the finger has to be placed onto in order to prevent misplacements of the finger including
shifts, planar rotation and tilts. However, this is not able to prevent rotation of the finger along its
longitudinal axis (also called non-planar finger rotation). This kind of finger rotation poses a seve-
re problem in finger-vein recognition as the resulting vein image may represent entirely different
patterns due to the perspective projection. We evaluated the robustness of several finger-vein reco-
gnition schemes against longitudinal finger rotation. Therefore, we established a finger-vein data set
exhibiting longitudinal finger rotation in steps of 1° covering a range of ±90°. Our experimental
results confirm that the performance of most of the simple recognition schemes rapidly decreases
for more than 10° of rotation, while more advanced schemes are able to handle up to 30°.

Keywords: Longitudinal Finger Rotation, Finger-Vein Recognition, Multi-Perspective Finger-Vein
Data Set, Performance Evaluation, Finger Vein Scanner Device

1 Introduction

Vascular pattern based biometrics, commonly denoted as vein biometrics, provide several
advantages over other, well-established biometric recognition systems. Especially hand-
and finger-vein based systems tend to replace fingerprint based ones in some application
areas. Vein based systems rely on the structure of the vascular pattern formed by the blood
vessels inside the human body tissue, which becomes visible in near-infrared (NIR) light
only. This vessel structure is within the human body and thus vein based systems are
insensitive to abrasion and skin surface conditions. Moreover, a liveness detection can be
performed easily [KZ12].

However, finger-vein recognition systems are far from being perfect in terms of accuracy,
reliability and usability. Their recognition performance may suffer from different internal
and external factors which might lead to a lower performance. Internal factors include the
configuration of the scanner itself, the illumination source and the NIR camera. Most of
the internal and external factors impacting the finger-vein recognition performance can be
ruled out by means of adding components to the scanner or tuning the scanner settings.
External factors can be divided into environmental ones, including ambient light, dust or
dirt on the sensor, high humidity, electromagnetic radiation, etc. and factors regarding the
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presentation of the finger to the scanner device. The latter includes finger movement during
acquisition and finger misplacement in general. Some of the environmental factors can be
ruled out by using additional components for the vein scanner, e.g. the influence ambient
light can be reduced by installing an NIR pass-through filter. However, especially tilt and
rotation of the finger along its longitudinal axis (which are a form or finger misplacement)
are hard to tackle. While the tilt can be avoided to a certain extent, as soon as there is only
one finger to be captured, it is hard to avoid rotation of the finger along its longitudinal
axis, especially for touchless finger-vein scanners, but not restricted to touchless operation.
Hence, this is one of the main factors influencing the recognition performance of finger-
vein systems in practical applications and it would be desirable if finger vein recognition
schemes are able to tolerate such a rotation at least to a certain extent. To the best of
our knowledge no systematic investigation of this particular problem has been performed
so far. The analysis of these and other factors impacting the recognition performance of
finger-vein recognition systems can be summarised as robustness analysis.

Some authors state that there is the problem of finger rotation along the longitudinal axis,
which is also called out-plane finger rotation or non-planar rotation, while others claim
that their recognition scheme is able to tolerate this up to a certain degree. Matsuda et al.
[Ma16] claim that their recognition scheme is robust against this kind of finger misplace-
ment. They did experiments and showed that their scheme is robust against these rotations
up to ±30°, but their test data set, which is not publicly available, only consisted of vein
images captured from 5 different people. Chen et al. [Ch18] proposed an approach to
correct different types of finger deformations based on a finger geometric analysis. Their
work includes finger rotation along the longitudinal axis as well (they call it type 3 defor-
mation). They showed that by a non-linear correction of the finger rotation the recognition
performance can be improved. However, they only estimate the amount of deformation,
i.e. the rotation angle, while there is no ground-truth information of the actual rotation
angle available.

The main contribution of our work is a systematic robustness evaluation of several finger
vein recognition schemes against the finger’s longitudinal rotation. In order to investigate
the impact of longitudinal finger rotation a suitable data set is needed. Unfortunately, there
is no such data set available, mainly because a specifically designed finger-vein scanner
device is mandatory to acquire one. Thus, we established a finger rotation data set, exhibi-
ting transillumination finger-vein images captured in different rotation angles in 1° steps
in a range of ±90° starting from the palmar view. This data set was captured using our
custom designed, multi-perspective finger-vein scanner device and will be made public-
ly available in the future. Our experimental results show that longitudinal finger rotation
poses a severe problem for most finger-vein recognition schemes.

The rest of this paper is organised as follows: Section 2 illustrates the problem of the
finger’s longitudinal rotation in detail. Section 3 presents our multi-perspective finger-vein
scanner device and the finger rotation data set. Section 4 describes the experimental set-up
and presents the performance evaluation results together with a results discussion. Section
5 concludes this paper along with an outlook on future work.
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2 The Longitudinal Finger Rotation Problem

Usually, finger-vein scanners are designed to capture only one finger at a time. For these
scanners, finger misplacements are a severe problem. There are different types of mis-
placement: shifts of the finger in x- and y-direction (planar shifts), shifts of the finger in
z-direction, in-plane (planar) rotation of the finger, tilts of the finger and rotation around
the finger’s longitudinal axis. The planar shifts as well as the planar rotations can be redu-
ced by guiding walls alongside the finger, end tips or a finger-shaped support. Shifts of the
finger in z-direction are usually not a problem if the sensor has a surface where the finger
has to be placed onto. Remaining planar shifts and rotations can be compensated in soft-
ware by aligning the images based on the finger outline. Tilts of the finger can be avoided
by using capacitive or pressure-sensitive sensors on the scanner surface which detect if the
finger is placed correctly. However, rotations around the finger’s longitudinal axis cannot
be detected reliably by most available commercial available sensors. This problem could
be avoided if the sensors would not only acquire one finger, but require the subject to place
the full hand or at least more than one finger, as proposed by Kauba et al. in [KPU18], on
the sensor. Fig. 1 shows an example of the longitudinal finger rotation, also called non-
planar rotation or out-plane rotation by some authors, using an off-the-shelf commercial
finger vein scanner. In a supervised acquisition scenario, the supervisor can tell the user to
place his finger correctly. However, if the acquisition is not supervised, such longitudinal
rotations of the finger impose a severe problem. This problem gets worse if the scanner is
designed to operate in a contact-less way and does not have a contact surface.

Fig. 1: Finger rotation example using a commercial scanner (rotation counter-clockwise)

The captured image is a projection of the finger situated in a 3D space onto a 2D plane.
This principle is depicted in Fig. 2. If the finger is rotated around its longitudinal axis,
the vein patterns look different due to the change in the perspective or the projection,
respectively. This projective transformation cannot be reverted using translation or rotation
on the images, but can be compensated to some degree if either the rotation angle is known
or can be estimated. Estimating the rotation from a single image can be a challenging task.
If the angle of rotation increases, some vein lines might merge due to the perspective
projection. In this case, there is no way to revert the effects caused by the longitudinal
finger rotation. Thus, it would be desirable if the recognition scheme is robust against
longitudinal finger rotation, at least to a certain extent. To the best of our knowledge, until
now the robustness against finger rotation has not been systematically evaluated.
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Fig. 2: Finger longitudinal axis rotation principle: a schematic finger cross section showing five veins
(blue dots) rotated from −30° (left) to +30° (right) in 10° steps. The projection (bottom row) of the
vein pattern is different according to the rotation angle following a non-linear transformation

3 PLUSVein-Finger Rotation Data Set

The finger rotation data set has been acquired using our custom designed multi-perspective
finger vein scanner, shown in Fig. 3 right. The image sensor is an NIR enhanced industrial
camera (IDS Imaging UI-1240ML-NIR), equipped with a 9 mm wide-angle-lens (Fujion
HF9HA-1b) and a NIR long-pass filter (Midopt LP780). Five 808 nm NIR laser modules
form the light source, positioned on the opposite side of the camera (transillumination),
including an integrated automatic brightness control to achieve an optimal image contrast.
To capture different perspectives or rotation angles, the camera and the illuminator rotate
around the finger which is placed at the axis of rotation. This rotation principle is depicted
in Fig. 3 left. The finger is stabilised with the help of a finger-tip shaped hole on the finger
end and a height-adjustable finger trunk plate on the finger trunk. All parts except the
camera, lens, filter and the laser modules were designed and manufactured by ourselves.

NIR Illuminatior

Camera

Finger

Height-Adjustable
Finger-Trunk
Stabilizer (Plate)

Axis of Rotation

NIR
Camera

Control ModuleStepper Motor

Gear

Illumination
Module

Finger-Tip
Stabilizer

Fig. 3: Left: Principle of the multi-perspective finger vein scanner, right: the scanner itself (originally
published in [PKU18], © 2018 IEEE)

The data set itself contains a total of 252 unique fingers from 63 different subjects, four
fingers (right and left index and middle finger, respectively) per subject. Video sequences
with a rotation speed adjusted to the frame rate were captured such that frames in 1° steps
can be extracted in a range of ±90° starting from the palmar view, by rotating the scanner
around the finger’s longitudinal axis. This leads to the same output images as if the finger
would rotate itself. The capture process was repeated 5 times per finger. For each degree
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of rotation there are 1260 images, resulting in 228060 images in total. Fig. 4 shows some
example images in 10° steps and the corresponding extracted finger veins using Maximum
Curvature [MNM07]. It becomes clearly visible that the extracted vein patterns are distinct
among the different views (note the highlighted areas in the bottom row of the figure). The
gender distribution of the volunteers is balanced. Among the 63 subjects 36 of the subjects
are male, the remaining 27 are female. The youngest subject was 18, the oldest one 79.
The image resolution is 650×1280 pixels.

Fig. 4: Top: example images in 10° steps, from left to right: -30°, -20°, -10°, 0°, 10°, 20°, 30°,
bottom: corresponding extracted MC features with two highlighted vein paths.

4 Experiments

Recognition Tool-chain: Fig. 5 shows the components of a biometric recognition sys-
tem: The biometric trait is captured by a biometric sensor and afterwards processed in the
recognition tool-chain which consists of preprocessing (ROI (region of interest) extraction
and image enhancement), feature extraction and comparison. The input of our tool-chain
are the videos captured by our mulit-perspecitve finger vein scanner. At first the frames
corresponding to 1° steps are extracted from the video sequences. Afterwards each image
is processed individually: the ROI is extracted and the the finger outline detected by the
help of an edge detection algorithms. Then a straight centre line is fitted into the finger.
Based on this centre line, the finger is aligned (rotated and shifted) such that it is in ho-
rizontal position in the middle of the image. The area outside the finger is masked out
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(pixels set to black) and a rectangular ROI is fit inside the finger area. The ROI images
have a size of 300×1100 pixels. To improve the visibility of the vein pattern we use High
Frequency Emphasis Filtering (HFE), Circular Gabor Filter (CGF) and simple CLA-
HE (local histogram equalisation) as preprocessing. We opted for three well-established
binarisation type feature extraction methods as well as two key-point based method. Maxi-
mum Curvature (MC) [MNM07], Principal Curvature (PC) [Ch09] and Gabor Filter
(GF) [KZ12] aim to extract the vein pattern from the background resulting in a binary
image, followed by a comparison of these binary images. Comparing the binary feature
images is done using a correlation measure, calculated between the input images and in
x- and y-direction shifted and rotated versions of the reference image. In addition, two
key-point based recognition schemes, a SIFT [KRU14] based technique with additional
key-point filtering and Deformation-Tolerant Feature-Point Matching (DTFPM) pro-
posed by Matsuda et al. [Ma16] are used. For more details on the preprocessing methods
please refer to [KRU14].

Data
Acqusition

Pre-
processing

Feature
extraction

Comparison
Result:

GEN / IMP
Biometric

trait (finger)

Recognition tool-chain (software)

Genuine
0.255

Multi-perspective
finger vein scanner

Fig. 5: Basic components of a biometric recognition system

Evaluation Protocol: To quantify the performance, the EER as well as the FMR1000
(the lowest FNMR for FMR ≤ 0.1%) and the ZeroFMR (the lowest FNMR for FMR =
0%) are used. For calculating the genuine scores, all possible genuine comparisons are
performed, which are 63 ·4 ·5 ·5 = 6300 comparisons. For calculating the impostor scores,
only the first image of a finger is compared against the first image of all other fingers,
resulting in 4 ·63 ·63 = 15876 compares, so 22176 compares in total. An implementation
of the complete processing tool-chain as well as the scores and detailed results are available
at: http://www.wavelab.at/sources/Prommegger18b/.

Experimental Results: Table 1 lists the baseline performance results for the different
finger-vein recognition schemes at the palmar view (0°). PC achieves the best recogniti-
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on performance with an EER of 0.48%, followed by MC, DTFPM and SIFT while GF
performs worst.

PC MC DTFPM SIFT GF
EER [%] 0.48 0.59 1.15 1.53 3.14

FMR1000 [%] 0.79 0.83 2.54 4.88 5.40
ZeroFMR[%] 1.51 1.31 3.93 6.43 7.82

Tab. 1: Baseline performance results (palmar view, 0°) for the different recognition schemes

In order to quantify the robustness against longitudinal finger rotations, the images captu-
red in the different angles from −90° to 90° in 1° steps are compared against the palmar
view (rotation of 0°). The trend of the absolute EER is shown in Fig. 6 left column. The
relative performance degradation (RPD)

(
EERrotated−EERpalmar

EERpalmar

)
is depicted in the right co-

lumn. The bottom row shows the area of ±25° from the palmar view in more detail. Note
that the RPD is calculated with respect to its baseline EER of each recognition scheme.
As a result of this, the maximum RPD is limited by RPDmax =

EERmax−EERbaseleine
EERbaseline

where
EERmax is ∼ 50%.

MC (red line with triangular marker) and PC (green line with square marker) show a si-
milar performance: up to a rotation angle of ±10° the EER rises just above 1% which
corresponds to a relative performance decrease about 100%. With increasing rotation an-
gle, the recognition performance diminishes at a higher rate. At ±10° the EER reaches 2%,
between ±20° and ±25° the EER jumps above 10%. Around ±30° the EER exceeds 30%,
at ±45° already 45%, i.e. recognition is no longer meaningful. DTFPM (brown line with
star marker) has a higher baseline EER (1.15%) at the palmar view but its EER increases
most gently, leading to the best robustness against finger rotation. At ±10° the performan-
ce degradation is only 30% (EER: 1.53%). Starting from ±17° DTFPM outperforms all
other schemes. At ±30° its EER is still below 7%. Matsuda et al. [Ma16] reported a ba-
seline EER of 0.152% and a relative performance degradation of 230% (EER: 0.501%) at
±30°. However, neither their data set nor an implementation of their proposed approach is
available. With our full re-implementation we are able to confirm their claimed robustness
against finger rotation, but with a relative performance degradation of 500% instead of
230%. SIFT (blue line with diamond marker) is more robust against finger rotation than
PC and MC, too. However, its baseline EER is higher than the one of DTFPM. GF (black
line with cross marker) has the highest baseline EER (3.18%) and a similar relative per-
formance degradation as MC and PC. Due to its high baseline EER, its RPDmax is lower
than RPDmax for PC and MC. FMR1000 and ZeroFMR, visualized in Fig. 7, follow the
same trend as the EER: first, the increase is relatively small and starts to rise sharply at
±15◦. FMR1000 exhibits values close to 100 from ±45° onwards for all algorithms eva-
luated, ZeroFMR already at ±35°. DTFPM shows the best results for both, FMR1000 and
ZeroFMR. Consequently, a longitudinal finger rotation angle of ±30° poses a severe pro-
blem for all evaluated schemes except DTFPM. A rotation angle of more than ±45°makes
recognition nearly impossible.

To assist the reader in comparing the performance values at different rotation angles, Tab. 2
lists the EER per rotation angle from 0° - ±45°. The best EER for every rotation angle is
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Fig. 6: Trend of performance indicators across the different rotation angles from −90° to 90° (0°
corresponds to the palmar view), left: absolute EER values, right: relative change of EER in %. The
bottom row shows a more detailed view from −25° to 25°.

Fig. 7: Trend of performance indicators across the different rotation angles from −90° to 90° (0°
corresponds to the palmar view), left: FMR1000, right ZeroFMR in %
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highlighted bold. This table confirms that up to a certain rotation, the well established
vein pattern based algorithms show the best performance. It can be seen that if the rota-
tion exceeds a certain angle, key-point based algorithms, especially DTFPM, outperform
traditional approaches.

±0° ±5° ±10° ±15° ±20° ±25° ±30° ±45°
PC 0.48 0.60 1.04 1.96 5.38 13.43 27.14 46.50
MC 0.59 0.62 1.07 2.92 8.88 22.34 37.91 46.82

DTFPM 1.15 1.07 1.53 2.03 2.91 4.49 6.97 19.26
SIFT 1.53 1.53 2.49 3.90 5.59 8.53 12.61 30.15
GF 3.14 3.62 5.36 11.03 22.70 37.86 46.06 50.46

Tab. 2: EER at specific rotation angles [%]

Tab. 3 lists the relative performance degradation for the same rotation angles. With respect
to RPD, DTFPM performs best followed by SIFT. Although GF shows the lowest RPD for
±45°, it has the worst recognition rate of all feature types, with an EER of ∼ 50%. The
low RPD is due to the highest baseline result compared to the other feature types. The two
tables (Tab. 2 and Tab. 3) clearly show that the evaluated key-point based algorithms are
more tolerant against finger rotation than the vein pattern based ones. The key-point based
algorithms match relevant key-points against each other instead of comparing binarised
vein structures. If the detection and matching of theses points is insensitive to changes
in the vein patterns due to longitudinal finger rotation, the results of a comparison in a
biometric recognition system is less sensitive as well.

±0° ±5° ±10° ±15° ±20° ±25° ±30° ±45°
PC 0% 26% 119% 312% 1031% 2727% 5610% 9684%
MC 0% 7% 83% 399% 1416% 3715% 6373% 7894%

DTFPM 0% 0% 33% 76% 153% 290% 505% 1573%
SIFT 0% 0% 63% 155% 266% 459% 726% 1876%
GF 0% 15% 71% 252% 624% 1107% 1369% 1509%

Tab. 3: Relative performance degradation at specific rotation angles [%]

Tab. 4 is the inverse of Tab. 3 and shows rotation angle at which a certain performance drop
is hit. While vein pattern based algorithms (MC, PC, GF) reach 100 performance decrease
around ±10◦, key-point based systems tolerate higher rotation angles, e.g. DTFPM reaches
a RPD of 100% at 14°. The further the finger is rotated, the more pronounced this trend
becomes: the relative performance decrease of SIFT and especially DTFPM is lower than
the one of PC, MC and GF. DTFPM exceeds a RPD of 500% at 28° whereas for PC, MC
and GF this performance decrease is already achieved just above ±15◦.

5 Conclusion

We investigated the problem of finger rotation around its longitudinal axis, also called
non-planar or out-plane rotation of the finger in the scope of finger-vein recognition. This
kind of finger misplacement poses a severe problem for practical applications of finger-
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10% 25% 50% 100% 200% 300% 400% 500%
PC ±1° ±3° ±5° ±8° ±12° ±13° ±15° ±16°
MC ±5° ±6° ±8° ±9° ±12° ±13° ±14° ±15°

DTFPM ±7° ±8° ±11° ±14° ±19° ±23° ±26° ±28°
SIFT ±4° ±4° ±8° ±12° ±16° ±20° ±23° ±25°
GF ±4° ±5° ±7° ±9° ±12° ±14° ±16° ±17°

Tab. 4: Rotation angle at which a certain relative performance degradation is hit

vein scanners, including most of the available off-the-shelf single finger commercial finger
vein scanners, as this rotation cannot be prevented by means of the scanner hardware con-
struction and is hard to be compensated afterwards by image preprocessing (assuming that
the rotation angle is not known). We established a new finger rotation data set comprising
finger-vein images captured in 1° steps of longitudinal rotation in a range of ±90° starting
from the palmar view.

Our performance evaluation results confirm, that longitudinal finger rotation is a severe
problem for the recognition performance of finger-vein systems. All recognition schemes
are able to tolerate up to ±10° of rotation at a relative performance loss of less than 120%.
The key-point based algorithms DTFPM and SIFT are more robust against finger rotation,
but their baseline performance is worse compared to PC and MC. GF generally performs
worst. However, for rotation angles more than 30°, which can occur in practical applicati-
ons of finger-vein scanners, the recognition performance drops dramatically. This problem
gets even worse for touchless finger-vein scanners with more degrees of freedom during
image acquisition.

If only the planar finger-vein images are available, the ability of a recognition scheme to
cope with longitudinal rotation of the finger is very limited due to the perspective map-
ping during imaging. One way to make finger-vein recognition more robust against finger
rotation is by improving the scanner hardware, e.g by mounting an additional finger posi-
tioning support where the whole hand is placed on a kind of shelf such that the rotation of
the finger can be restricted. Another option is using stereo or 3D camera systems, which
is beneficial for touchless scanners anyway, in order to estimate the rotation angle of the
finger and compensate for the rotation by applying a perspective transform. Another way
is trying to estimate the rotation angle and compensate the rotation like Chen et al. [Ch18]
proposed, which will be evaluated in our future work.

For our data set the exact longitudinal finger rotation is known. This information can be
used to perform a systematic evaluation of the approach in [Ch18]. A further approach is
to correct the perspective distortion by applying a non-linear transform using the known
rotation angle. We will evaluate the recognition performance which can be retained at
certain rotation angles for both approaches in order to determine the maximum possible
rotation angle at which a reasonable recognition is still feasible.
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Perspective Multiplication for Multi-Perspective Enrolment
in Finger Vein Recognition

Bernhard Prommegger1, Andreas Uhl1

Abstract: Finger vein recognition deals with the identification of subjects based on their venous
pattern within the fingers. It has been shown that its recognition accuracy heavily depends on a good
alignment of the acquired samples. There are several approaches that try to reduce the impact of
finger misplacement. However, none of this approaches is able to prevent all possible types of fin-
ger misplacements. As finger vein scanners are evolving towards contact-less acquisition, alignment
problems, especially due to longitudinal finger rotation, are becoming even more important. One way
to tackle this problem is capturing the vein structure from different perspectives during enrolment,
but cost and complexity of capturing devices increases with the number of involved cameras. In this
article, a new method to reduce the number of cameras needed for multi-perspective enrolment is
presented. The reduction is achieved by introducing additional pseudo perspectives in-between two
adjacent cameras. The obtained perspectives are used for additional comparisons during authentica-
tion. This way, the complexity of the enrolment devices can be reduced while keeping the recognition
performance at a high level.

Keywords: Finger Vein Recognition, Longitudinal Finger Rotation, Multi-Perspective Enrolment,
Perspective Multiplication.

1 Introduction

Vascular pattern based biometric systems, commonly denoted as vein biometrics, offer
several advantages over other well-established biometric recognition systems. In particu-
lar, hand and finger vein systems have become a serious alternative to fingerprint based
ones for several applications. Vein based systems use the structure of the blood vessels in-
side the human body, which becomes visible under near-infrared (NIR) light. As the vein
structure is located inside the human body, it is resistant to abrasion and external influ-
ences on the skin. Furthermore, a lifeness detection to detect presentation attacks can be
performed easily [KZ12].

The performance of finger vein recognition systems suffers from different internal and
external factors. Internal factors include the design and configuration of the sensor it-
self, especially the NIR light source and the camera module. External factors include
environmental conditions (e.g. temperature and humidity) and deformations due to mis-
placement of the finger, typically including shifts, tilt, bending and longitudinal rotation.
Several publications addressed that such finger misplacements cause degradations in the
performance of recognition systems: The need for a robust finger vein image normalisa-
tion including rotational alignment has already been mentioned by Kumar and Zhou in
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2012 [KZ12]. Chen et al. [Ch18] state that deformation correction can be done either dur-
ing pre-processing, feature extraction or comparison. Moreover, the physical design of the
sensor, e.g. as proposed by Kauba et al. [KPU18], can help to avoid misplacements of
the finger. In [PKU18a] the authors showed, that longitudinal finger rotation has a severe
influence on the recognition performance of a finger vein recognition system. There are
several approaches that try to reduce the influence of these issues during the processing of
the vein patterns, e.g. [Ch18, Hu10, KZ12, LLP09, Ma16, Pr19, Ya17]. Prommegger and
Uhl [PU19] introduced two methods that make finger vein recognition invariant against
longitudinal rotation. Both methods acquire multiple perspectives during enrolment, while
actual authentication is done with traditional single-perspective acquisition. The first ap-
proach, multi-perspective enrolment (MPE), compares the probe image to all acquired en-
rolment perspectives, while the second approach, perspective cumulative finger vein tem-
plates, generates a single template that contains the vein pattern all around the finger. As
finger vein systems evolve towards contact-less operation, problems resulting from finger
misplacements, e.g. longitudinal rotation, will receive more attention in the future.

The main contribution of this work is the proposal of a method, perspective multiplica-
tion for multi-perspective enrolment (PM-MPE), to reduce the complexity and cost of the
capturing device needed for multi-perspective enrolment for finger vein recognition. By
combining MPE with the fixed angle method from [Pr19], the number of perspectives
needed during enrolment of subjects is effectively reduced while the recognition perfor-
mance is kept on a high level. The experiments are carried out using the PLUSVein finger
rotation data set (PLUSVein-FR) [PKU18b]. To show the effectiveness of the proposed
approach, its recognition results are compared to the results of original the MPE approach
in [PU19].

The reminder of this paper is organized as follows: In section 2 the proposed method for
reducing the perspectives acquired during enrolment is described. The experimental set-up
together with its results are described in Section 3. Section 4 concludes the paper along
with an outlook on future work.

2 Perspective Multiplication for Multi-Perspective Enrolment

MPE, as proposed in [PU19], requires the acquisition of multiple perspectives during en-
rolment. The angles of the different perspectives are linearly spaced over the desired ac-
quisition range. For authentication, only a single perspective is acquired and compared to
all enrolment samples together with a maximum rule score level fusion. If enough cameras
are used during enrolment, negative effects of longitudinal finger rotation on the recogni-
tion performance can be inhibited. The invariance against longitudinal rotation is achieved
by increasing the effort during enrolment (acquiring additional perspectives, feature ex-
traction) and comparison (multi-perspective comparison). Additionally to the acquisition
of multiple perspectives also circular pattern normalization (CPN, [PU19]), which essen-
tially corresponds to a rolling of the finger assuming a circular finger shape, is applied.

It has been been shown that rotation compensation can effectively improve the recognition
performance, e.g. [Ch18, Hu10, LLP09, Ma16, Pr19, Ya17]. Prommegger et al. [Pr19] pro-
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posed an approach that rotates the enrolled image by an pre-defined angle and compare the
probe sample against all three versions: the original and the two rotated ones. This method
improves the range, in which well performing vein pattern based recognition schemes
achieve reasonable recognition results, from approximately ±15° to nearly ±30°. Per-
spective multiplication for multi-perspective enrolment (PM-MPE), which is introduced
in this paper, uses this knowledge to reduce the number of perspectives needed for MPE.
During enrolment n perspectives with a rotational distance of α are acquired. PM-MPE
adds two pseudo perspectives between two adjacent cameras by rotating every perspective
with an rotational angle of ±ϕ = 1/3α in both directions, where α is the rotational distance
between two cameras. For authentication, as for traditional single-perspective finger vein
recognition schemes, only a single perspective is acquired and compared to all enrolled
perspectives and the generated pseudo perspectives. This leads to 3 ∗ n comparisons for
each authentication attempt. Fig. 1 shows this principle for a distance of 30° between two
perspectives. On the left side, the MPE approach is visualized. It needs 12 cameras linearly
spaced over the whole circle. On the right side the PM-MPE setup is visualized. It needs
only four cameras (solid blue dots) positioned at 0°, 90°, 180° and 270°. The remaining
perspectives (red circles) are generated by rotating the acquired finger vein images by a
rotation angle of ϕ = 30° in both directions.

0
◦

180
◦

90
◦

270
◦

α

0◦

180◦

90◦270◦

+'

−'

α

Fig. 1: Camera positioning for MPE (left) and PM-MPE (right) for a rotational distance of 30° be-
tween the perspectives. The filled blue dots are cameras, the red circles represent rotated perspec-
tives.

MPE and PM-MPE are evaluated using vein pattern based features in combination with a
correlation based comparison where the score is calculated between the input images and
in horizontal and vertical direction shifted and rotated versions of the reference image as
described in [MNM04]. The number of pixels shifted up and down (vertical shift) during
the comparison depends on the angular range acquired during enrolment Θ (when enrolling
the whole finger Θ = 360°), the number n of cameras involved and the height h of the
extracted ROIs after applying CPN. According to [PU19], a good estimation for the this
shift for MPE is

SMPE = 2 · Θ
n ·360

·h (1)
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The experiments performed in section 3 showed that by introducing pseudo perspectives,
the vertical shift during comparison can be reduced by 50% to

SPM-MPE =
Θ

n ·360
·h (2)

As indicated in [PKU19], a reduction of the shifts during comparison leads to lower scores
in general, whereby the reduction of the impostor scores is higher than the one for genuine
comparisons. This leads to a better separation of genuine and impostor scores, which in
turn results in a better recognition rate.

Fig. 2: Principle of pseudo perspective generation. Middle: cross section of a finger acquired during
enrolment (top row). The blue points depict the veins inside the finger, the red points the veins
projected on the skin surface of the finger. The bar below is the projected vein pattern. Left and right
column: pseudo perspectives generated from the enrolment perspective. Top row: rotated versions
of the finger (ϕ = ±20°). Vein patterns: projection generated from the blue veins (top) and the red
ones (middle), respectively. The bottom pattern is a shifted version of the blue vein pattern.

As mentioned above, the pseudo perspectives are generated by rotating the enrolment im-
ages by a defined angle of ±ϕ . For an accurate rotation of the vein pattern, the position
of the veins in the 2D image as well as the shape of the finger and the depth of the veins
within the finger has to be known. As this information is not available in general, both
need to be estimated. In this work it is assumed that a finger’s cross section is approx-
imately a circle (like Matsuda et al. assumed in [Ma16]) and that the imaged veins are
located near to the skin surface [Hu10] and therefore can be assumed to be located on the
skin surface. Fig. 2 depicts the principle of the generation of the additional perspectives
for ϕ = 20°. The image in the middle shows a schematic cross section of the finger in
its position during enrolment. The blue dots represent the veins within the finger. The bar
below is a projection of the vein pattern onto a 2D plain (representing the acquired vein
pattern), where the black areas correspond to the veins. Before rotating the image for the
perspective generation, the vein pattern is projected back onto the skin of the finger. The
resulting vein position are visualized as red dots in the cross section. The left and right
columns represent the generated pseudo perspectives, rotated by ϕ once to the left and
once to the right. Since the projected veins (red dots) are located on the surface of the skin,
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their position slightly deviates from that of the real veins (blue dots) in their true position
after the rotation. As a result, also the vein patterns are slightly different. This deviation
is illustrated by means of the vein patterns under the cross-section: the first pattern is the
projection of the veins in its real position (blue dots), the second row the one of the ro-
tated veins (red dots), respectively. The visually most noticeable difference between the
two patterns is the horizontal shift. If they are aligned according to the highest correlation
between them (as it is done with the Miura Matcher [MNM04] and visualized in the bot-
tom row), the result is a high match. Please note that, although this explanation is done
using vein patterns (feature space), the generation of the pseudo perspectives for PM-MPE
is executed in the image space.

For the calculation of the pseudo perspectives, the position of a pixel within the ROI ex-
tracted from the enrolment image is defined by its x-coordinate xenrol and the correspond-
ing y-coordinate yenrol , which is calculated by (3)

yenrol =
√

r2 − x2
enrol (3)

where r is the approximated radius of the finger. r is half the finger width, which cor-
responds to half of the height of the extracted finger ROI. The rotation for the pseudo
perspective is calculated by applying the rotation matrix given in (4).

[
xpseudo

ypseudo

]
=

[
cos(−ϕ) −sin(−ϕ)
sin(−ϕ) cos(−ϕ)

]
∗
[

xenrol

yenrol

]
(4)

xpseudo and ypseudo are the coordinates of the vein pixel in the pseudo perspective and ϕ is
the rotation angle. The actual image for the pseudo perspective is calculated from the grey
values at xpseudo using linear interpolation. Fig. 3 shows the ROIs (top row) and extracted
MC features (bottom row) of an enrolled image (middle column) and its generated pseudo
perspectives (left and right column). The pseudo perspectives are rotated versions of the
enrolled image. The part of the pseudo perspectives that contain no information (due to
the transform) is filled wit the average grey level of the image.

Fig. 3: ROI (top row) and extracted MC features (bottom row) of sample images of the
PLUSVein-FR. Middle: enrolment image, left and right: generated pseudo perspectives for
ϕ =±20°.
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3 Experiments

In this section the results of the experiments carried out to evaluate the performance of
the proposed PM-MPE approach are described. The method is analysed for different rota-
tional distances between the acquired perspectives (α = 30°, 45° and 60°). Its results are
compared to the results for MPE without perspective multiplication.

Data Set: The data set in use is the PLUSVein Finger Rotation Data Set (PLUSVein-FR).
It has been acquired using a custom designed multi-perspective finger vein scanner that
acquires finger vein images all around the finger (360°) with a resolution of 1°. It contains
finger images captured from 63 different subjects, 4 fingers per subject, which sums up to
a total of 252 unique fingers. Each finger is acquired 5 times. This results in 1.260 images
per perspective. In this paper a subset containing perspectives in steps of 5°, resulting in 73
different perspectives (0° and 360° are acquired separately), is used. For more details on
the data set the interested reader is referred to the authors previous publications [PKU18b,
PKU18a].

Recognition Tool Chain: The finger vein recognition tool-chain consists of the fol-
lowing components: (1) For finger region detection and finger alignment an implementa-
tion that is based on [Lu13] is used. (2) The ROI extraction differs from [Lu13]: Instead
of cutting out a defined rectangle within the finger, similar to [Hu10], a normalization
of the finger to a fixed width is applied. (3) To improve the visibility of the vein pat-
tern Circular Gabor Filter (CGF) [ZY09] and simple CLAHE (local histogram equalisa-
tion) [Zu94] are used during pre-processing. (4) As feature extraction method the well-
established vein-pattern based Maximum Curvature (MC) method [MNM07] is employed.
(5) The comparison of the binary feature images is done using a correlation measure, cal-
culated between the input images and in x- and y-direction shifted and rotated versions
of the reference image as described in [MNM04]. An implementation of the recognition
tool-chain together with the used configurations and results are available for download on
http://wavelab.at/sources/Prommegger19e.

Experimental Protocol: For the experiments, the data set is split into tow subsets, one
for enrolment and one for authentication. The enrolment subset contains two samples,
the subset for authentication three samples. To quantify the performance, the EER, the
FMR100 (the lowest FNMR for FMR ≤ 1%), the FMR1000 (the lowest FNMR for FMR
≤ 0,1%) as well as the ZeroFMR (the lowest FNMR for FMR = 0%) are used. For the eval-
uation, the experiments follow the test protocol of the FVC2004 [Ma04]: For calculating
the genuine scores, all possible genuine comparisons are performed, which are 63 ·4 ·3 ·2=
1512 matches. For calculating the impostor scores, only the first image of a finger is com-
pared against the first image of all other fingers, resulting in (63 ·4) · (63 ·4−1) = 63252
matches, so together 64764 matches in total.
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In order to have a reference for the quantification of MPE and PM-MPE results, the intra-
perspective performance (IPP) of all 73 perspectives, without applying any rotation com-
pensation methods and by applying CPN [PU19], is evaluated. For this calculations ev-
ery perspective is considered as its own data set, which implies, that every perspective is
its own independent classical single perspective recognition system where enrolment and
probe image are acquired from the same perspective. As a result of this, rotational differ-
ences between the samples due to finger misplacement, i.e. longitudinal finger rotation,
are subject to the same degradations as presented in [PKU18a]. Although the results of the
different perspectives are presented together, they are completely independent from each
other. Therefore, no rotational invariance can be concluded from the presentation of the
intra-perspective results. As MPE and PM-MPE aim to generate rotation invariant recog-
nition results for a single finger vein image acquired from any perspective during authen-
tication, results close to or even better than the intra-perspective results without rotation
correction can be considered as good performance.

Results: The left plot of Fig. 4 depicts the trend of the EER for MPE with rotational
distances of α = 15°, 30°, 45° and 60° and the intra-perspective performance results for
applying no correction and CPN are visualized. Here MPE α means that the cameras for
enrolment are positioned linearly spaced all around the finger (360°) with a rotational dis-
tance of α between two adjacent perspectives. For MPE 15° this results in 360/15 = 24 cam-
eras, for MPE 30° in 360/30 = 12 cameras and so on. The best results for intra-perspective
comparisons without rotation correction or applying CPN are obtained in the palmar re-
gion (0°) followed by the dorsal region (180°). The perspectives in-between show inferior
results, achieving the worst results around 90° and 270°. CPN outperforms the results of
no correction over the whole range in average by a factor of 2. MPE 15° and 30° clearly
outperform the intra-perspective comparisons without rotation correction. This is reason-
able since the PLUSVein-FR data set is, as all finger vein data sets, also subject to finger
misplacements, e.g. longitudinal finger rotation, during its acquisition. By applying rota-
tion correction or compensation methods, e.g. CPN, the negative effect on the recognition
performance can be reduced. The results for MPE 45° are essentially the same as those
of the intra-perspective comparisons without any rotation correction. MPE 60° delivers
the worst results. Especially striking is the prominent performance degradation at 90° and
270°. There are two reasons for the bad performance in this regions: (1) As it can be seen
from the intra-perspective evaluations, the performance in this region is generally infe-
rior and (2) the distance to the acquired enrolment perspectives reaches its maximum. For
MPE 60°, finger vein images are acquired at 0°, 60°, 120°, 180°, 240° and 300°. For 90°
and 270° this results in a rotational distance of 30° to the closest enrolment perspective. In
[Pr19], the authors showed, that EPN, which is similar to the used CPN, cannot compen-
sate such a high rotation. The simultaneous occurrence of both reasons explain the large
performance drop to EERs of up to 20%.

The right plot of Fig. 4 shows the results for PM-MPE with rotational distances of α = 30°,
45° and 60° and the intra-perspective performance results applying no correction and CPN
(note the different scaling compared to the MPE plot). α in PM-MPE α is again the
rotational distance between two adjacent enrolment cameras. As described in section 2,
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Fig. 4: Performance Results (EER) for MPE (left) and PM-MPE (right).

for PM-MPE the number of perspectives is tripled by generating pseudo perspectives of
the acquired enrolment perspectives by rotating them with ±ϕ = 1/3α . PM-MPE 30° and
PM-MPE 45° outperform the intra-perspective results showing a quite stable performance
over the whole range from 0° to 360° with EERs below 2%. PM-MPE 60° exhibits the
worst performance of the PM-MPE settings. The shape of the line shows that the perfor-
mance for the perspectives degrades with the distance to the enrolment perspectives. This
leads to a performance degradation around the perspectives that are farthest away from
the enrolment perspectives, namely 30°, 90°, 150°, 210°, 270° and 330°. As for MPE 60°,
the highest EER values are obtained around 90° and 270°. Except for the regions around
270° and 330°, PM-MPE 60° still outperforms the intra-perspective performance without
correction.

Fig. 5 shows the trend of FMR100 and FMR1000 for both MPE and PM-MPE. FMR100
and FMR1000 follow the same trend as the EER in Fig. 4, just at a higher level.

For the comparison of the performance of MPE vs PM-MPE, the results of the two methods
are shown side by side in Fig. 6. Each of the three subplots depicts the results for one rota-
tional distance of the enrolment perspectives (α = 30°, 45° and 60°). They contain lines for
MPE α , PM-MPE α and MPE (α-15°). Additionally, the results of the intra-perspective
analysis without rotation correction and for applying CPN are added as references. One
can see, that PM-MPE noticeable improves the robustness against longitudinal finger ro-
tation. Multiplying the acquired enrolment perspectives always leads to an increase of
the recognition performance compared to pure MPE with the same α . The experiments
showed, that PM-MPE α even achieves recognition rates that are comparable to the ones
of MPE with a 15° smaller α .

4 Conclusion

In this article, we introduced a method that effectively reduces the number of perspectives
needed to be acquired during enrolment for MPE. The reduction is achieved by generating
pseudo perspectives from the enrolled perspectives, captured in a rotational distance of
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Fig. 5: Performance Results MPE (left) and PM-MPE (right): FMR100 (top) and FMR1000 (bot-
tom).
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α , by rotating them with an angle of ±ϕ = 1/3α . The obtained perspectives are used for
additional comparisons during authentication.

The results showed that by applying PM-MPE, the rotational distance α between two en-
rolment perspectives can be increased by 15° while still getting comparable results. From
MPE 15° to PM-MPE 30° this halves the number of cameras from 24 to 12, for 30° from
12 to 8 (reduction of 1⁄3) and for 45° from 8 to 6 (reduction of 1⁄4), respectively. A rota-
tional distance of α > 60° is neither useful for MPE, nor PM-MPE as currently available
finger vein recognition systems are not able to compensate such high rotations. Reducing
the number of perspectives acquired during enrolment reduces the cost and complexity of
enrolment devices. Using PM-MPE on a limited range of e.g. ±90°, would lead to enrol-
ment devices with 3-4 cameras. Veldhuis et al. already presented a device that is capable
of simultaneously acquiring 3 perspectives in [Ve19].

In our future work, we aim to further improve the performance (PM-)MPE and reduce
the number of perspectives acquired during enrolment. Possible enhancements are a dif-
ferent positioning of the enrolment cameras (e.g. non-linear) or the generation of more
than 2 pseudo perspectives between two adjacent enrolment perspectives. We also plan to
evaluate MPE and PM-MPE for other recognition schemes than MC.
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Abstract: Vascular pattern based biometric recognition is gaining more and more attention, with a
trend towards contactless acquisition. An important requirement for conducting research in vascular
pattern recognition are available datasets. These datasets can be established using a suitable biometric
capturing device. A sophisticated capturing device design is important for good image quality and,
furthermore, at a decent recognition rate. We propose a novel contactless capturing device design,
including technical details of its individual parts. Our capturing device is suitable for finger and
hand vein image acquisition and is able to acquire palmar finger vein images using light transmission
as well as palmar hand vein images using reflected light. An experimental evaluation using several
well-established vein recognition schemes on a dataset acquired with the proposed capturing device
confirms its good image quality and competitive recognition performance. This challenging dataset,
which is one of the first publicly available contactless finger and hand vein datasets, is published as
well.

Keywords: finger vein recognition; hand vein recognition; contact-less acquisition device; public
vascular pattern dataset; biometric recognition performance evaluation

1. Introduction

Biometric authentication is gaining more and more attention and replaces traditional
authentication methods like passwords, signatures and tokens. It offers higher security and increased
user convenience compared to traditional methods. Biometric authentication techniques are based
on so-called biometric traits, which are behavioural or physiological characteristics of a person.
These biometric traits are unique to every person. The most commonly used biometric traits include
fingerprints, face and iris. Recently, vascular pattern based biometrics, especially hand and finger
based vascular patterns (usually denoted as hand and finger vein recognition) have become more
popular as well. Since the first commercial contactless palm vein acquisition device from Fujitsu [1]
became available in 2003, vascular pattern based biometrics have been employed in several application
areas, especially in the banking area [2,3]. Vascular pattern based biometrics have several advantages
over, for example, fingerprints [4]. This biometric trait is based on the patterns formed by the blood
vessels, located underneath the skin, that is, it is an internal biometric trait. While fingerprints are
susceptible to dirt and moisture on the skin, skin damage and abrasion, the vascular patterns are
assumed to be insensitive to these skin conditions. Furthermore, vascular pattern based biometrics
are more resistant to presentation attacks and forgery than are fingerprints and face [4] as the blood
vessels are located beneath the skin and are only visible in near-infrared light.
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1.1. Acquisition Principle and Capturing Devices

To render the patterns formed by the blood vessels visible, special acquisition devices are necessary.
These devices are usually denoted as biometric scanners or sensors. The haemoglobin contained in
the blood, which is flowing through the veins and arteries, has a higher light absorption coefficient in
the near-infrared (NIR) wavelength spectrum (between 700 and 950 nm) than the surrounding tissue.
Hence, the vascular pattern can be rendered visible by applying an NIR light source and capturing
images using an NIR sensitive camera, which resembles the main parts of a finger or hand vein scanner.
There are two distinct configurations depending on the relative positioning of the light source and
the camera—light transmission and reflected light (see Figure 1 for an illustration). In the reflected
light set-up, the camera and the light source are positioned on the same side of the finger/hand,
whereas in the light transmission set-up, both are positioned on opposite sides of the finger/hand. A
further distinction can be made regarding the side of the finger/hand which is captured—palmar or
dorsal. Palmar refers to the bottom side of the finger/hand, while dorsal images are captured from the
top side.

In both finger and hand vein recognition, usually the palmar side is utilised. While reflected
light is the preferred set-up in hand vein recognition, finger vein scanners mainly capture the images
using light transmission or light dispersion [5,6]. These days there are several commercial off-the-shelf
(COTS) solutions for hand as well as finger vein recognition available for a wide range of application
scenarios, from securing a personal computer over additional authentication at an automated teller
machine (ATM) to high security access control systems at industry buildings. However, most of the
COTS solutions have one major drawback for academia and research—the COTS scanners do not
output the raw vein images. Instead, they only provide a template, encoded in a proprietary format
which is defined by the manufacturer. These templates can only be used with the software provided
by the manufacturer, hence limiting the use of those devices in research. Thus, research institutions
began to construct their own, custom capturing devices for finger and hand vein images.

The main contribution of this work is the design of such a capturing device. We propose a fully
contactless, combined finger and hand vein capturing device and the publication of a vascular pattern
dataset, acquired with this device. Contactless acquisition devices have several advantages over touch
based ones. The main advantage is that contactless devices achieve a higher user acceptability, mainly
due to hygienic reasons and easier handling of the devices. Moreover, contactless acquisition preserves
the vascular patterns from distortions [4]. On the other hand, contactless acquisition introduces
some challenges as well—due to the higher degree of freedom in terms of finger/hand movement,
the physical device design as well as the processing of the vascular pattern images has to account for
different types of distortions/artefacts resulting from the image acquisition, including longitudinal
finger rotation [7], finger bending and tilts as well as all kinds of translations and rotations of the
fingers/hand. Besides these types of misplacements, one of the main challenges is to provide a
uniform illumination within the whole range of the allowed relative position of the finger/hand to the
capturing device. In the following we give an overview of related work on finger as well as hand vein
capturing devices.

Near-Infrared
Illumination

Image
Sensor

Veins
Near-Infrared
Illumination

Image Sensor

Veins

Figure 1. Light source and image sensor positioning, left: light transmission, right: reflected light.
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1.2. Related Work

As the proposed capturing device design is a contactless one, we focus on contactless finger and
hand vein capturing devices. While contactless acquisition has become common practice in hand vein
recognition, the majority of the capturing devices in finger vein recognition are still contact based.

Almost all of the widely employed COTS finger vein capturing devices are contact based ones,
capturing the finger from the palmar view using light transmission or light dispersion. The two
major companies providing finger vein authentication solutions are Hitachi Ltd. (Tokyo, Japan) and
Mofiria Ltd (Tokio, Japan). The most commonly used devices include the Hitachi H-1 USB finger vein
scanner [8] and the Mofiria FVA-U3SX [5] as well as the Mofiria FVA-U4ST [6]. As those are commercial
products, not many details about their design have been disclosed, except the recognition performance
according to the manufacturers’ data sheets. Due to the challenges and problems with contactless
acquisition, there are only a few contactless finger vein capturing devices proposed in research. One of
these devices is a mobile finger vein scanner for Android proposed by Sierro et al. [9]. Their prototype
device captures contactless palmar finger vein images using reflected light. The illumination source
consists of 12,850 nm LEDs, organised in 3 groups of 4 LEDs each (wide angle VSMG3700 and SFH4059
LEDs), providing global as well as optimised homogeneous illumination compensation. The power
of each LED group can be adjusted using the Android software. The camera is a low-cost OV7670
colour one, using a CMOS sensor and a wide angle 2.1 mm lens with a maximum resolution of
640 × 480 pixel. They used an additional NIR pass-through filter with a cut-off wavelength of 740
nm. Another contactless finger vein capturing device was proposed by Kim et al. [10]. This device is
based on NIR lasers and uses light transmission. The NIR lasers are manufactured by Lasiris Laser
in StokerYale, Canada. A laser line generator lens (E43-475 from Edmund optics in Singapore) with
a fixed pan angle is added in order to generate a line laser from the spot laser and should enable
a uniform illumination along the finger. The image sensor is a GF 038B NIR CCD (charge coupled
device) Camera from ALLIED Vision Technologies, Germany, which is equipped with an additional
IR-pass filter. No further details about this device are available, the authors do not even include
an image showing their capturing device in the paper. Another contactless device is proposed by
Raghavendra et al. [11]. Their low-cost capturing device is able to acquire palmar finger vein images
using light transmission as well as fingerprint images in a contactless manner and consists of a NIR
light source, a physical structure to achieve a sufficient light intensity, a visible light source and
a camera including a lens. The NIR light source is composed of 40 TSDD5210 NIR LEDs with a
peak wavelength of 870 nm. The physical structure to achieve a sufficient illumination is wrapped
with aluminium foil. The camera is a DMK 22BUC03 monochrome CMOS camera equipped with
a T3Z0312CS 8 mm lens. The maximum resolution is 744 × 480 pixel. Even though the device is a
contactless one, the images of the capturing device in the paper reveal that the range of motion for the
finger is quite limited in every direction (x, y and z) due to the small opening of the device where the
finger has to be placed in. None of the above mentioned capturing devices uses a special NIR enhanced
camera. Thus, the resulting image quality in combination with an NIR light source is limited. A more
recent device was proposed by Matsuda et al. [12]. It is a contactless walk-through style device which
allows to capture multiple fingers at once in real time. It consists of an NIR camera and a depth camera,
arranged below the finger placing part and an adaptive, multi-light source arranged vertically on the
side of the finger placing part. No further technical details about this device are available but there is
an official website from Hitachi [13] showing some images of the sensor prototype.

In the early stage of hand vein recognition, most capturing devices used almost closed box devices
having a glass plate and some kind of pegs to force the hand to be placed in a defined position [14,15].
The users found this way of providing their biometric inconvenient and thus, the capturing devices
developed from semi contactless ones (e.g., only using some hand attachment or guide [16,17] or a
glass plate only [18]) to fully contactless ones. The following review of contactless hand vein capturing
devices is not exhaustive but shall provide an overview over the major types of different device
designs. The most well-known COTS hand vein authentication system is Fujitsu’s PalmSecure™ [19]
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one. Their capturing device [20] is contactless and small sized: 35 × 35 × 27 mm. There are many
non-commercial devices which have been proposed in several research papers as well, for example,
the capturing device originally used to acquire the CASIA Multi-Spectral Palmprint Image Database
V1.0 [21]. This device captures palmar hand images using six different wavelengths. It is a box with an
opening in the front where the data subject has to put the hand inside. The CCD camera is located at
the bottom of the device and the LEDs in different wavelength spectra are located around the camera.
Sierro et al. [9] also proposed two contactless palm vein capturing device prototypes. Both are using
the reflected light set-up and are equipped with ultrasonic sensors to measure the distance between
the camera and the hand. The first prototype uses 20,940 nm LEDs (TSAL6400) as a light source and a
Sony ICX618 CCD camera in combination with a 920 nm long-pass filter. The second prototype is
able to capture multi-spectral images and uses an additional PTFE (Teflon) sheet to achieve a more
uniform illumination. Michael et al. [22] proposed a low-cost contactless capturing device. It has
one NIR and one visible light camera to capture both, palm vein and palm print images. The NIR
camera has a NIR pass-through filter with a cut-off wavelength of 900 nm. The light source consists
of 3 rows of 8 NIR LEDs and 3 yellowish light bulbs to capture the palm prints. The light source is
covered by a diffusor paper. Zhang et al. [23] presented an approach to match hand veins using 3D
point cloud matching. They use a binocular stereoscopic vision device as contactless capturing device.
The hand is place above an NIR light source, consisting of 850 nm LEDs. Dorsal hand vein and knuckle
shape images are captured by two NIR sensitive CCD cameras in a stereoscopic set-up, both having an
additional NIR pass-through filter. Fletcher et al. [24] developed a mobile hand vein biometric system
for health patient identification. They proposed two capturing devices; the first one uses an android
smart phone in combination with a rechargeable 850 nm LED light source. The second one employs
a low-cost webcam (Gearhead WC1100BLU USB) with integrated 940 nm LEDs and an optical filter,
which is powered and controlled by an Android tablet. Both acquire contactless palmar hand vein
images. Debiasi et al. [25] presented an illumination add-on for mobile hand vein image acquisition.
This device can be used in combination with a modified smart phone (NIR blocking filter removed) to
acquire contactless hand vein images from the palmar as well as the dorsal side. They also published a
dataset containing palmar and dorsal hand vein images in the scope of the PROTECT Multimodal
Biometric Database [26].

While most of the above mentioned capturing device designs are based on low-cost modified
cameras, our design is based on a special NIR-enhanced industrial camera in combination with an
optimal lens and an additional NIR pass-through filter to reduce image distortions and achieve the
best possible image quality. Furthermore, in contrast to other existing designs we employ NIR laser
modules instead of LEDs which enable a higher range of finger movement without impacting the image
quality. Our capturing device is the first of its kind, able to use light transmission as well as reflected
light. Moreover, it is the first combined capturing device, able to acquire finger as well as hand vein
images. Finally, we do not only present a new capturing device design including all its technical details,
but we also publish a corresponding dataset together with image quality and baseline recognition
performance evaluation results on that dataset, which makes this work particularly valuable in the
field of finger and hand vein recognition.

1.3. Main Contributions

The main contributions of this paper are:

• Design of a novel fully contactless combined finger and hand vein capturing device featuring
laser modules instead of NIR LEDs, a special NIR enhanced industrial camera with an additional
NIR pass-through filter to achieve the best possible image quality, an optimal lens and distance
between the finger/hand and the camera to allow for minimal image distortions as well as an
automated illumination control to provide a uniform illumination throughout the finger/hand
surface and to arrive at the best possible contrast and image quality.
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• Publication of all major technical details of the capturing device design—in this work we describe
all the major components of the proposed capturing device design. Further technical details are
available on request, which makes it easy to reproduce our design.

• Public finger and hand vein image database established with the proposed capturing
device—together with this paper we publish the finger and hand vein datasets acquired with
the proposed capturing device. These datasets are publicly available free of charge for research
purposes and the finger vein one is the first publicly available contactless finger vein recognition
dataset. Due to the nature of contactless acquisition, these datasets are challenging in terms of the
different types of the finger/hand misplacements they include.

• Evaluation of the acquired database in terms of image quality and biometric recognition
performance—the images acquired with our sensor are evaluated using several image quality
assessment schemes. Furthermore, some well-established vein recognition methods implemented
in our already open source vein recognition framework are utilised to evaluate the finger and
hand vein datasets. This ensures full reproducibility of our published results. The achieved
recognition performance during our evaluation is competitive with other state-of-the-art finger
and hand vein acquisition devices, validate the advantages of our proposed capturing device
design and prove the good image quality and recognition performance of our capturing device.

The remainder of this paper is organised as follows: Section 2 explains our proposed contactless
finger and hand vein capturing device design, introduces the dataset acquired with the help of the
proposed capturing device and it explains the experimental set-up, including the utilised recognition
tool-chain, the evaluation protocol and the processing of the captured vein images. Section 3 lists the
evaluation results of both, the acquired finger and hand vein dataset in terms of image quality and
recognition accuracy, as well as the recognition accuracy of the considered fusion combinations. A
discussion of the evaluation results, including a comparison with recognition performance results
achieved by other capturing devices is provided in Section 4. Section 5 concludes this paper and gives
an outlook on future work.

2. Materials and Methods

As mentioned in the introduction, a typical finger or hand vein capturing device consists of an
NIR sensitive camera and some kind of NIR light source. In the following, the general design of
our proposed contactless finger and hand vein capturing device as well as all the individual parts,
including technical details and the design decisions are given. Afterwards, the acquired dataset and
the utilised biometric recognition tool-chain are described.

2.1. Contactless Finger and Hand Vein Acquisition Device

Figure 2 shows our contactless finger and hand vein capturing device with all its individual parts
annotated. It consists of an NIR enhanced camera together with a suitable lens and an additional NIR
pass-through filter, two NIR illuminators, one laser module based for light transmission as well as one
NIR LED based for reflected light, an illumination control board, a touchscreen display to assist the
user during the acquisition process and its metal frame together with the wooden housing parts. All its
parts are either standard parts which can be easily bought at a local hardware store or custom designed
parts which are either laser cut plywood or 3D printed plastic parts and can easily be reproduced as
well. The 3D models and technical drawings of those parts are provided on request. The following
list summarises the main advantages and differences of our proposed design over the existing ones
presented in Section 1.2.
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Figure 2. Contactless finger and hand vein capturing device, from left to right: device in use during
acquisition, side view with annotated parts, top side view and bottom side detail view, housing
including dimensions.

• Reflected light as well as light transmission—it is the first acquisition device of its kind, able to
acquire reflected light as well as light transmission images. This extends the range of possible
uses of this capturing device and speeds up the acquisition process if both types of illumination
set-ups shall be investigated.

• Suitable for finger as well as hand vein images—it is possible to acquire palmar finger as well as
hand vein images with the same device. Again, this is the first capturing device able to acquire
both using the same device. In the default configuration, finger vein images are captured using
light transmission while hand vein images are captured using reflected light but this can be
changed in the set-up so there is a high flexibility in terms of possible acquisition configurations.

• NIR laser modules for light transmission illumination—the application of NIR laser modules
has not been that common in finger vein recognition so far. In a contactless acquisition set-up,
laser modules exhibit several advantages over LEDs, especially if it comes to increased range of
finger/hand movement as well as an optimal illumination and image contrast [27]. Hence, we
decided to equip our capturing device with NIR laser modules.

• Illumination control board and automated brightness control algorithm—the integrated brightness
control board handles the illumination intensity of both, the light transmission and the reflected
light illuminators. Each of the laser modules in the light transmission illuminator can be brightness
controlled separately and independent from the others. This illumination control in combination
with our automated brightness control algorithm enables an optimal image contrast without
having the operator do any manual settings.

• Special NIR enhanced industrial camera—our capturing device uses a special NIR enhanced
industrial camera. In contrast to modified (NIR blocking filter removed) visible light cameras,
those NIR enhanced camera have an increased quantum efficiency in the NIR spectrum. This
leads to a higher image contrast and quality compared to cheap, modified visible light cameras.

• Optimal lens set-up and distance between camera and finger/hand—in contrast to many other,
mainly smaller devices (in terms of physical size of the device), we decided to use a lens with a
focal length of 9 mm. This allows for minimal image distortions all over the image area, especially
at the image borders at the cost of an increased distance between the camera and the finger/hand.
Hence, our capturing device is rather big compared to others.

• Easy to reproduce design—in contrast to most other proposed capturing devices, for which only
very few details are available, we provide references to the data sheets and technical details
of all of the capturing device’s parts. Furthermore, we provide the 3D models and technical
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drawings for the frame parts and the 3D printed parts on request. Hence, it is easy to reproduce
our proposed capturing device design.

• Fast data acquisition—due to the automated brightness control and the automated acquisition
process, sample data acquisition is fast. Capturing a hand vein image only takes less than a
second and capturing a finger vein images takes between 2–4 s once the data subject placed their
finger/hand.

• Ease of use during data acquisition—in contrast to other available vein capturing devices, for our
proposed device the data subjects do not need to align their fingers/hands with some contact
surface or pegs. This is one of the main advantages of our contactless design, making the data
acquisition easier for the data subjects as well as for the operators. The automated illumination
control algorithm and the intuitive graphical capturing software further contribute to a smooth
and easy data acquisition process. Moreover, the integrated touchscreen display assists the data
subjects by indicating which finger/hand to place at the sensor, how to place it and indicates
potential misplacements.

• Biometric fusion can be employed to increase the recognition performance—our proposed
capturing device acquires finger vein images as well as hand vein images using two different
wavelengths of illumination. Hence, it is easily possible to increase the recognition performance
by applying biometric fusion at sensor level with different fusion combinations. An evaluation of
selected combinations is done in Section 3.3.

After this general overview of our capturing device we now describe its individual parts.

2.1.1. Camera, Lens and Filter

The camera is an IDS Imaging UI-ML3240-NIR [28] with a maximum resolution of 1280 × 1024
pixels and a maximum frame rate of 60 fps. It is based on the EV76C661ABT CMOS monochrome
image sensor, having a colour depth of 8 bit, a maximum resolution of 1.31 Megapixels, with a pixel
size of 5.3 µm and a sensor diagonal of 1/1.84 inches. The main advantage of this camera compared
to modified webcams and other visible light cameras is that it is an NIR enhanced industrial camera,
which is specifically designed to achieve a high quantum efficiency within the NIR spectrum. Due
to its increased NIR sensitivity, an NIR enhanced camera achieves a higher image contrast in the
NIR spectrum than a visible wavelength one, which is shown in Figure 3 left, depicting its quantum
efficiency chart. The peak wavelengths of our NIR LEDs (850 nm + 950 nm) and NIR laser modules
(808 nm) are within the increased sensitivity range of the image sensor.

The camera is equipped with a Fujifilm HF9HA-1B 9 mm fixed focal lens [29]. A lens with an
increased focal length has less image distortions but requires a larger distance from the finger, thus
increasing the overall size of the scanner. A shorter focal length reduces the minimum distance to the
finger but increases the image distortions, especially at the image boundaries. Thus, we decided to use
a 9 mm focal length as the best trade-off between the distance to the finger, that is, the overall scanner
dimensions and the image distortions introduced due to the lens. A MIDOPT FIL LP780/27 [30] NIR
pass-through filter is mounted on top of the lens to further suppress the negative influence of ambient
light. The filter transmission chart is depicted in Figure 3 on the right.

2.1.2. Light Sources—Reflected Light and Light Transmission

The capturing device uses two different light sources—a light transmission and a reflected
light one. The light transmission illuminator consists of 5 laser diodes [31] including an adjustable
constant-current laser diode driver printed circuit board (PCB) [32] and a TO-18 housing with a focus
adjustable lens [33] for each of the laser modules (the combination of laser diode + control PCB +
housing is denoted as laser module or laser). The laser diodes have a peak wavelength of 808 nm and
an optical output power of 300 mW. Each laser module can be brightness controlled separately. The
main advantages of the laser modules over LEDs is their higher optical output power and their narrow
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radiation half angle. This enables a higher degree of vertical finger movement without degrading the
image quality [27].
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Figure 3. (Left) IDS UI-ML-3240-NIR quantum efficiency chart, (right) LP780 transmission chart.

The reflected light illuminator consists of 2 individual illuminators, one at each side of the camera
(left and right). Each illuminator is composed of two rows of 8 LEDs each. The first row consists of
850 nm LEDs (Osram SFH 4550 [34] with a radiation half angle of ±3° and a max. radiant intensity of
700 mW/sr). The second row consists of 950 nm LEDs (Vishay Semiconductors CQY 99 [35] with a
radiation half angle of ±22° and a maximum radiant intensity of 35 mW/sr). These two types of LEDs
have peak wavelengths that are within the recommended spectrum for vascular pattern recognition.
Each row can be brightness controlled as well, however only the whole row instead of each individual
LED can be set to a certain brightness level. The emission spectra of the 850nm LEDs and the NIR laser
modules can be seen in Figure 4, left and right, respectively.

Figure 4. Emission spectrum of the 850nm near infrared (NIR) LEDs (left) and the NIR laser modules
(right), taken from the data sheet [34].

2.1.3. Illumination Control Board and Brightness Control Algorithm

The schematic structure of the control board is depicted in Figure 5. The two main components of
the illumination control board are an Arduino Nano board [36] and a Texas Instruments TLC59401 [37].
The Arduino Nano is a complete, breadboard-friendly microcontroller development board based on
the Microchip ATmega328P microcontroller [38,39]. The Texas Instruments TLC59401 is an integrated
16-channel LED driver with dot correction and greyscale pulse width modulation (PWM) control
enabling a convenient brightness control of LEDs without the need for external components like
dropping resistors. Each output can be controlled separately (4096 steps) and has a drive capability of
120 mA. It operates as a constant-current sink and the desired current can be set using one external
resistor only. In addition there are external PNP transistors (BC808-25 [40]) to drive the laser modules as
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their operating current exceeds the maximum current of the TLC59401. The reflected light illuminators
are connected to one of the PWM outputs on the Arduino Nano using some external n-channel
MOSFET transistors (AO3418 [41]) to drive them. The whole control board is interfaced using a simple,
fixed-length, text-based serial protocol to control each of the individual LEDs/laser modules as well as
the reflected light illuminators, to set a whole stripe at once and to turn off all illuminators again. On
the PC side there is a graphical user interface based capturing control software which facilitates an
easy and straight forward data acquisition. At the moment, the capturing process is initiated manually
once the data subject placed their hand/finger in the sensor. This process will be automated in the
future as well.

The brightness control algorithm controls each of the single light transmission illuminator’s laser
modules as well as the reflected light illuminators as a whole. We decided to implement a simple,
iterative algorithm based on a comparison against a target grey level, which works as follows—at
first the laser centres have to be configured, including the determination of the area of influence for
each laser, which is the area in the image a single laser illuminates. Then all lasers are set to an initial
intensity level/brightness value which is half of their maximum intensity (Imax). The live image of
the camera is analysed and the current grey level in the circle of influence of each laser is determined
(GLcurrent) and compared against the set target grey level (GLtarget). The new brightness value is then
set according to: In+1 = In + Icorr, where In+1 is the new intensity level, In is the current intensity
level and Icorr =

GLtarget−GLcurrent
GLmax

· Imax
2·n , where GLmax is the maximum grey value and n is the current

iteration. The iteration stops if either the target grey level GLtarget has been reached or if no more
intensity changes are possible. The algorithm finishes in at most log2(Imax) iterations. Both, the
Arduino Nano firmware as well as the capturing software, including our brightness control algorithm
are available on request as well.
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USB-
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TLC59401

Light Transmission
Illuminator

AO3418
MOSFETs
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Laser1 ...
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Figure 5. Schematic structure of the illumination control board.

2.1.4. Frame, Housing and Touchscreen

The outer frame is assembled using Coaxis® [42] aluminium profiles. The Coaxis® system is
easy to use with several different profiles and connectors, which can be put together in many different
ways. Another advantage is that this system provides a good stability and durability. On top of the
aluminium frame there are laser cut plywood (4 mm beech wood) boards as side walls/cover. Figure 2
right shows the outside of the housing including its dimensions. A Waveshare 7inch HDMI LCD (C)
touchscreen [43] is located the top front part of the capturing device. This touchscreen is connected to
the acquisition PC and displays the live image stream from the camera, including an overlay of the
optimal finger/hand position in order to help the data subjects in positioning their fingers/hand and
also displays other information about the data acquisition, for example, which finger/hand to place
next. The next revision of the capturing device will be a fully embedded one, that is, there is no need
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for an external PC and the whole data acquisition can be controlled using the device itself with the
help of the integrated touchscreen display.

2.2. PLUSVein-Contactless Finger and Hand Vein Data Set

To validate our proposed capturing device design and to show the good recognition performance
that can be achieved, we established a data set with the help of this device. Due to the contactless
acquisition, these datasets are challenging in terms of finger/hand normalisation to compensate for
the different types of finger/hand misplacements contained in the data (tilts, bending, in-planar and
non-planar rotations). The dataset will be publicly available for research purposes together with
the publication of this paper (http://www.wavelab.at/sources/PLUSVein-Contactless/). It contains
two subsets—a palmar finger and a palmar hand vein one, including 42 subjects, 6 fingers/2 hands
per subject and 5 images per finger/hand in one session. Hence, the finger vein subset contains
1260 images and the hand vein one contains 840 images (2 illumination configurations, 850 and 950 nm,
420 images each) in total. The raw images have a resolution of 1280× 1024 pixels and are stored in 8 bit
greyscale png format. The visible area of the finger in the images is 600 × 180 pixels and for the hand
750 × 750 pixels on average. Some example images are shown in Figure 6. The age and information
about the handedness of the data subjects was recorded as well. Besides this information, no other
sensitive private information about the subjects was collected. All subjects gave their informed consent
for inclusion before they participated in the study. The study was conducted in accordance with the
Declaration of Helsinki, and the protocol was approved by the Ethics Committee of the University of
Salzburg (PLUSVein Contactless Data Acquisition 2019).

Figure 6. Example images of the PLUSVein-Contactless finger (left) and hand (right) vein dataset.

2.3. Finger and Hand Vein Recognition Tool-Chain

The recognition tool-chain includes all steps of a biometric recognition system starting with
the extraction of the region of interest (ROI) to pre-processing, feature extraction and comparison,
which are depicted in Figure 7 and described in the following. In addition, the utilised image quality
assessment methods and biometric fusion, especially score level fusion, are explained as well. All
of the utilised methods are implemented within our open source vein recognition framework PLUS
OpenVein Toolkit (http://www.wavelab.at/sources/OpenVein-Toolkit/).

ROI Extraction

The key aim of the region of interest (ROI) extraction is to select the best suitable image part for
the subsequent feature extraction and to automatically normalise the used finger/hand region in a
way to avoid shifts, rotations and to account for scale changes. The ROI extraction and finger/hand
normalisation is a crucial step, especially in contactless acquisition, to account for the higher degree of
freedom and to compensate the different types of finger/hand misplacements. Different ROI extraction
methods have been utilised for finger and hand vein images.
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For the finger vein images, the finger is aligned and normalised according to a modified version
of the method proposed by Lu et al. [44]. This alignment places the finger in the same position in every
image, having the same finger width (different scales due to different finger positions). At first the
finger outlines (edge between finger and the background of the image) are detected and the centre
line (in the middle of the two finger lines) is determined. Afterwards, the centre line of the finger
is rotated and translated in a way that it is placed in the middle of the image and the image region
outside of the finger is masked out by setting the pixels to black. Then the finger outline is normalised
to a pre-defined width. The final step is the actual extraction of a rectangular ROI of a fixed size
(450 × 150 pixels) with its top border located at the fingertip. These steps are visualised in Figure 8.

Data
Acqusition

Pre-
processing

Feature
extraction

Comparison
Thres-
holding

Biometric
trait

Biometric sensor Recognition tool-chain (software)

Sensor-
level
fusion

Image-
level
fusion

Feature-
level
fusion

Score-
level
fusion

Decision-
level
fusion

Accept/
Reject

Figure 7. Biometric recognition tool-chain and different levels of biometric fusion.

The ROI method for hand vein images is a modified and extended version of the approach
proposed by Zhou and Kumar [45]. At first the hand region is segmented by binarising the image
using a local adaptive thresholding technique. Then the local minima and maxima points in the image
are found. The local maxima correspond to the finger tips while the local minima correspond to the
finger valleys. For the palmar view and the left hand, the second and fourth minima corresponds to
the valley between the index and middle finger and the ring and the pinky finger, respectively. A line
is fitted between those two valley points and then the image is rotated such that this line becomes
horizontal. Afterwards, a square ROI is fitted inside the hand area, with its centre at the centre of mass
of the hand (foreground in the segmented image). The size of the square ROI is adjusted such that its
size is the maximum square without including any background pixels. The hand ROI extraction steps
are shown in Figure 9. As a last step, the ROI image is scaled to a size of 384 × 384 pixels.

Figure 8. Finger vein region of interest (ROI) extraction process, from left to right: input image, finger
outline and centre line detection, finger aligned, masked and normalised ROI boundary, final ROI.

Pre-Processing

Pre-processing approaches try to enhance the low contrast and improve the image quality.
Simple Contrast Limited Adaptive Histogram Equalisation (CLAHE) [46] or other local

histogram equalisation techniques are most prevalent for this purpose. Global contrast equalisation
techniques tend to over-amplify bright areas in the image while some other dark areas are not
sufficiently enhanced. A localised contrast enhancement technique like CLAHE is a suitable baseline
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tool to enhance the vein images as they exhibit unevenly distributed contrast. CLAHE has an integrated
contrast limitation (clip limit) which should avoid the amplification of noise.

High Frequency Emphasis Filtering (HFEF) [47] tries to enhance the vein images in the frequency
domain. At first the discrete Fourier transform of the image is computed, followed by the application
of a Butterworth high-pass filter in the frequency domain. Afterwards the inverse Furier transform is
computed to give prominence to the vein texture. In order to improve the image contrast the authors
also apply a global histogram equalisation as a final step. We applied CLAHE instead of the global
histogram equalisation.

Circular Gabor Filter (CGF) as proposed by Zhang and Yang [48] is another finger vein image
enhancement technique which is rotation invariant and achieves an optimal joint localisation in both
the spatial and the frequency domain. The authors originally suggested using grey level grouping for
contrast enhancement and to reduce illumination fluctuations. Afterwards an even symmetric circular
Gabor filter is applied to further attenuate the vein ridges in the image. Gabor filters are widely used
to enhance images containing a high amount of texture and to analyse image texture information. In
contrast to usual Gabor filters, a CGF does not have a direction, thus it amplifies the vein ridges in
each direction. The bandwidth and the sigma of the CGF has to be tuned according to the visible vein
information in the images (vein width in pixels).

Figure 9. Hand vein ROI extraction process, from left to right: Segmented hand including outline and
minima/maxima points, appropriate finger valleys and centre of mass selected, rotationally aligned
hand image with maximum possible ROI fitted, final extracted ROI.

Furthermore, the images were resized to half of their original size, which not only speeded up the
comparison process but also improved the results. For more details on the preprocessing methods
the interested reader is referred to the authors’ original publications. Each of the above mentioned
pre-processing techniques is at least used for one of the feature extraction methods, but not necessarily
with the same parameters for each method. The actual methods and parameters used for each feature
extraction method are stated in the settings files (cf. Section 2.4).

Feature Extraction

Three vein pattern based techniques, which aim to extract the vein pattern from the background
resulting in a binary image (vein pattern based methods) followed by a comparison of these binary
images using a correlation measure and a general purpose key-point based technique were used,
which are all algorithms well-established finger vein recognition algorithms.

Maximum Curvature (MC [49]) is a curvature based approach which is insensitive to varying
vein widths as it aims to emphasise only the centre lines of the veins. At first the centre positions of the
veins are extracted by determining the local maximum curvature in cross-sectional profiles obtained
by calculating the first and second derivatives in four directions—horizontal, vertical and the two
oblique directions. Each profile is classified as either being concave or convex. Vein lines are indicated
by local maxima in concave profiles, hence only the concave ones are used. A score is assigned to each
centre position which corresponds to the width and curvature of the maxima region. Afterwards, the
centre positions of the veins are connected using a filtering operation in all four directions taking the
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8-neighbourhood of pixels into account to account for misclassifications at the first step due to noise
and other imperfections in the images. The output feature vector is essentially a binary image which is
obtained by thresholding the recorded score values using the median of all scores as a threshold.

Principal Curvature (PC [50]) is another curvature based approach, which is not based on the
derivates but on the gradient field of the image. Hence, the first step is the calculation of the gradient
field. Hard thresholding to filter out small gradients by setting their values to zero is performed to
prevent amplification of small noise components. Afterwards the normalised gradient field is obtained
by normalising the magnitude to 1 at each pixel, which is then smoothed by applying a Gaussian
filter. The actual principal curvature calculation is then done based on this smoothed normalised
gradient field by computing the Eigenvalues of the Hessian matrix at each pixel. The two Eigenvalues
are the principal curvatures and the corresponding Eigenvectors of the Hessian matrix represent
the directions of the maximum and minimum curvature. The bigger Eigenvalue corresponds to the
maximum curvature among all directions and is recorded and further used. The final step is again
a threshold-based binarisation of the principal curvature values to obtain the output feature vector
which is essentially a binary vein image.

Gabor Filter (GF [4]) is a Gaussian kernel function modulated by a sinusoidal plane wave. Gabor
filters are inspired by the human visual system’s multichannel processing of visual information.
Several 2D even symmetric Gabor filters with different orientations (in π

k steps where k is the number
of orientations) form a filter bank. The image is filtered using this filter band to extract k different
feature vectors. The single feature vectors from the previous step are fused and thresholded to get a
resulting feature vector. To remove small noise components, this vector is further post-processed using
morphological operations, resulting in the final output feature vector, which is again a binary image.

Scale Invariant Feature Transform (SIFT [51]) is a key-point based technique. In contrast to the
three vein pattern based ones, key-point based techniques use information from the most discriminative
points as well as consider the neighbourhood and context information around these points. This is
achieved by extracting key-point locations at stable and distinct points in the image and then assigning
a descriptor to each detected key-point location. The approach we used is based on the general purpose
SIFT descriptor in combination with additional key-point filtering along the finger boundaries. This
filtering is done to suppress information originating from the finger shape (outside boundary) instead
of the vascular pattern. We originally presented this additional key-point filtering in Reference [52].

Comparison

The three vein pattern based features (MC, PC and GF) are compared using an extended version of
the approach proposed by Miura et al. [49]. The input features (binary vein images) are not registered
to each and only coarsely aligned (by the preceding ROI extraction). To account for small shifts and
rotations, the correlations between the input feature vector and in x- and y-direction shifted as well as
rotated versions of the reference feature vector are calculated. The final output score is the maximum
among those individual correlation values, representing the best possible overlay/match between the
two feature vectors. For the SIFT feature vectors a typical approach for key-point based features is
utilised. At first the nearest neighbour for each key-point is found by simply calculating the distance
between this key-point and all key-points in the reference feature vector. The nearest neighbours/best
correspondences is the one with the highest similarity score. If this score is below a set threshold,
the key-point does not have a matching one in the reference feature vector. The final comparison score
is the ratio of the matched points and the maximum number of detected key-points in both images
(which is the maximum number of possible matches).

Vein Specific Image Quality Assessment

In contrast to fingerprint recognition where there are standardised quality metrics like the NIST
Fingerprint Image Quality (NFIQ) [53] and the newer version NFIQ 2.0, there are no standardised
metrics in finger- and hand-vein recognition yet. Thus, the finger- and hand-vein images were analysed
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using GCF [54] as it is a general image contrast metric and hence, independent of the image content.
With the help of GCF the image contrast can be quantified exclusively disregarding the actual image
content. As we aim to quantify the image quality of vein images, of course two vein specific NIR
image quality metrics, namely the approach proposed by Wang et al. [55] (Wang17) and the approach
proposed by Ma et al. [56] (HSNR) were included as well. The first approach evaluates the vein image
quality fusing a brightness uniformity and a clarity criterion, which is obtained by analysing the
local pixel neighbourhoods. The HSNR approach, which is especially tailored for non-contact finger
vein recognition, simulates the human visual system by calculating an HSNR index and integrates an
effective area index, a finger shifting index and a contrast index to arrive at the final image quality value.

Score Level Fusion

According to the ISO/IEC TR 24722:2015 standard [57], biometric fusion can be regarded as a
combination of information from multiple sources, that is, sensors, characteristic types, algorithms,
instances or presentations in order to improve the overall system’s performance and to increase the
systems robustness. Biometric fusion can be categorised according to the level of fusion and the
origin of input data. The different levels of fusion correspond to the components of a biometric
recognition system—sensor-level, image-level, feature-level, score-level and decision-level fusion,
which are indicated in Figure 7. Sensor-level fusion is also called multisensorial fusion and describes
using multiple sensors for capturing samples of one biometric instance [57]. This can either be done by
the sensor itself or during the biometric processing chain. Hence, we perform sensor-level fusion as
our capturing device acquires finger as well as two different kinds of hand vein images. The actual
fusion is done during the biometric processing chain at score level (fusing the output scores of the
individual modalities—finger veins, hand veins 850nm and hand veins 950nm).

The following combinations of different acquired modalities are evaluated:

1. Hand veins 850 nm + hand veins 950 nm
2. Hand veins 850 nm + finger veins
3. Hand veins 950 nm + finger veins
4. Hand veins 850 nm + hand veins 950 nm + finger veins

Note that, for the combinations including finger veins, only one finger is included in the fusion.
We evaluated the combinations including a finger for all fingers of the respective hand and used
the best performing finger, which turned out to be the middle finger for both hands. Acquiring
images of several, distinct fingers takes more time as only one finger is captured at a time, the same
applies to acquiring both hands. Thus, we restricted to the evaluated combinations to the above
listed ones which do not considerably increase the acquisition time. The actual score level fusion
is performed using the BOSARIS tool-kit [58], which provides a MATLAB based framework for
calibrating, fusing and evaluating scores from binary classifiers and has originally been developed for
automatic speaker recognition. A 5 fold random split of training and test data with 20 runs was used
to train and fuse the scores using BOSARIS. The reported performance results are the average values
of the 20 individual runs.

2.4. Experimental Setup and Evaluation Protocol

The evaluation is split into three parts—image quality assessment, baseline recognition
performance evaluation for the individual subsets and recognition performance evaluation of the fusion
combinations. The image quality assessment and the baseline recognition performance evaluation is
done separately for the finger dataset and the two hand vein datasets (850 nm and 950 nm illuminator).
The three image quality assessment schemes are evaluated for each individual image per dataset.
The results are the average values over the whole dataset, that is, there is a single value for the finger
vein and the hand vein 850 nm as well as the hand vein 950 nm dataset for each image quality metric.
For the recognition performance DET plots as well as the EER (the point where the FMR equals the
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FNMR), the FMR1000 (the lowest FNMR for FMR = 0.1%) and the ZeroFMR (the lowest FNMR for
FMR = 0%) are provided. At first the parameters for the pre-processing and feature extraction are
optimised on a training dataset. Each dataset is divided into two roughly equal sized subsets, based
on the contained subjects, that is, all fingers/hands of the same person are in one subset. The best
parameters are determined on each subset and then applied to the other subset for determining
the comparison scores. This ensures a full separation of the training and test set. The final results
are based on the combined scores of both test runs. The FVC2004 [59] test protocol is applied for
calculating the comparison scores in order to determine the FMR/FNMR: for the genuine scores,
all possible genuine comparisons are evaluated, resulting in ngen = 5·(5−1)

2 · (42 · 6) = 2520 and

ngen = 5·(5−1)
2 · (42 · 2) = 840 genuine scores for the finger and hand vein subset, respectively. For

the impostor scores only the first template of a finger/hand is compared against the first template
of all other fingers/hands, resulting in nimp = (42·6)·(42·6−1)

2 = 31,626 impostor comparisons for the

finger vein subset as well as nimp = (42·2)·(42·2−1)
2 = 3486 impostor comparisons for the hand vein ones.

The EER/FMR1000/ZeroFMR values are given in percentage terms, for example, 0.47 means 0.47%.
The full results including the image quality values for each single image, the comparison scores and
plots as well as the settings and script files to reproduce the experiments can be downloaded here:
http://www.wavelab.at/sources/Kauba19c/.

3. Results

This section presents the results of the image quality assessment as well as the recognition
performance evaluation on the acquired datasets and the score level fusion combination of the data sets.

3.1. Image Quality Assessment

Table 1 lists the image quality assessment results for the three tested metrics, namely GCF,
Wang17 and HSNR. The GCF values range from 0 to 8, the Wang17 values from 0 to 1 and the HSNR
values from 0 to 100. Higher values correspond to higher image quality. Note that a cross-modality
comparison (finger vs. hand veins) using those metrics does not lead to meaningful results as the
underlying input data (images) are fundamentally different. To enable a meaningful quality assessment
and a comparison with other, available finger and hand vein dataset, we evaluated several other
finger and hand vein datasets by using the same quality metrics. The evaluated finger vein datasets
include SDUMLA-HMT [60], HKPU-FID [4], UTFVP [61], MMCBNU_6000 [44], FV-USM [62] and
PLUSVein-FV3 [27]. The image quality was evaluated for the following hand vein datasets—Bosphorus
Hand Vein [63], Tecnocampus Hand Image [64], Vera Palm Vein [65] and PROTECT HandVein [66].
The discussion of the image quality assessment results is done in Section 4.

Table 1. Image quality assessment results for the proposed datasets (bold face) and several available
finger- and hand vein datasets. Best results per quality metric and modality are highlighted bold face.

dataset GCF Wang17 HSNR

Fi
ng

er
Ve

in

Finger Vein 1.72 0.256 92.16
SDUMLA-HMT [60] 0.986 0.165 80.32

HKPU-FID [4] 1.46 0.166 88.13
UTFVP [61] 1.47 0.356 87.15

MMCBNU_6000 [44] 1.52 0.121 87.39
FV-USM [62] 0.69 0.136 83.35

PLUSVein-FV3 [27] 1.48 0.306 89.78

H
an

d
Ve

in

Hand Vein 850 nm 1.42 0.682 90.43
Hand Vein 950 nm 1.87 0.656 91.76

Bosphorus Hand Vein [63] 2.69 0.329 86.12
Tecnocampus Hand Image [64] 2.31 0.373 54.33

Vera Palm Vein [65] 1.31 0.43 85.09
PROTECT HandVein [66] 2.8 0.563 82.43

Chapter 3. Publications

108



Sensors 2019, 19, 5 16 of 24

3.2. Recognition Performance

The recognition performance results should serve as a baseline for further experiments/research
conducted on these contactless finger and hand vein datasets. Table 2 lists the performance results
in terms of EER, FMR1000 and ZeroFMR where the best results per subset (finger vein, hand vein
850 nm and hand vein 950 nm) are highlighted bold face. The corresponding DET plots are shown in
Figure 10.

It is evident that MC performed best on all subsets in terms of EER, FMR1000 as well as ZeroFMR
except for the finger vein one where it performed second best in terms of EER (but still best in terms
of FMR1000 and ZeroFMR). The overall best performance was achieved on the hand vein 850 nm
subset using MC and resulting in an EER of 0.35%. In terms of EER, on the finger vein subset SIFT
performed best, followed by MC and GF while PC performed worst. On the hand vein 850 nm subset,
PC performed second best, followed by SIFT and GF performed worst, while on the 950 nm subset
SIFT performed second best, followed by PC and again, GF performed worst.

Table 2. Single modality recognition performance results.

Modality MC PC GF SIFT

Finger Vein
EER [%] 5.61 8.22 6.63 3.66

FMR1000 [%] 13.12 23.99 18.39 16.61
ZeroFMR [%] 18.75 42.19 28.76 36.11

Hand Vein 850 nm
EER [%] 0.35 0.95 1.55 0.95

FMR1000 [%] 0.95 1.67 2.26 1.9
ZeroFMR [%] 1.67 2.26 2.74 2.74

Hand Vein 950 nm
EER [%] 0.38 0.83 0.72 0.82

FMR1000 [%] 0.59 1.43 1.19 1.67
ZeroFMR [%] 1.07 1.67 1.67 2.02
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Figure 10. DET plots for finger vein (left), hand vein 850 nm (middle) and hand vein 950 nm (right).

3.3. Biometric Fusion Results

Table 3 shows the results for the tested fusion combination together with the relative performance
increase of the combination. The relative performance increase (RPI) refers to the best performing
single modality included in the fusion combination (usually the hand vein 850 or hand vein 950 nm
result). Each fusion combination improved the results over the respective baseline ones. The overall
best results of the tested fusion combinations was the combination of hand vein 850 nm + middle
finger achieving an EER of 0.03% which corresponds to a relative performance increase of 1183%.
The average improvement in terms of EER (over all feature types) compared to the best baseline
(hand veins 850 nm) result for combination 1 is 148%, for combination 2 it is 373%, for combination 3
the average improvement is 140% and for combination 4 it is 365%.
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Table 3. Score level fusion recognition performance results and improvement over baseline results.
Best EER result (combination 2 for MC, combination 1 for PC, 3 for GF and 4 for SIFT) per feature type
is highlighted bold face.

Combination MC RPI PC RPI GF RPI SIFT RPI

1 Hand 850
Hand 950

EER [%] 0.24 44% 0.16 405% 0.60 19% 0.37 123%
FMR1000 [%] 0.36 162% 0.21 586% 0.77 54% 0.65 155%
ZeroFMR [%] 0.70 139% 4.90 −66% 0.92 82% 1.49 35%

2 Hand 850
Middle Finger

EER [%] 0.03 1183% 0.57 65% 0.64 144% 0.48 98%
FMR1000 [%] 0.01 7862% 0.97 71% 1.19 90% 0.52 268%
ZeroFMR [%] 0.14 1112% 1.32 72% 1.70 61% 0.79 246%

3 Hand 950
Middle Finger

EER [%] 0.14 171% 0.37 122% 0.48 50% 0.26 218%
FMR1000 [%] 0.14 333% 0.71 102% 0.74 61% 0.37 352%
ZeroFMR [%] 0.28 289% 1.28 30% 1.11 51% 2.35 -14%

4
Hand 850
Hand 950

Middle Finger

EER [%] 0.04 849% 0.22 272% 0.57 26% 0.20 311%
FMR1000 [%] 0.00 - 0.36 298% 0.62 91% 0.30 449%
ZeroFMR [%] 0.17 861% 11.47 -85% 0.74 127% 2.08 -3%

4. Discussion

At first, we discuss the image quality of our datasets in comparison with other publicly available
finger- and hand-vein datasets. The evaluation results are listed in Table 1. Considering finger veins,
our dataset achieved the best results for GCF and HSNR while it is ranked third for Wang17. These
results confirm decent image quality in terms of contrast and also a good image quality in terms of
vein specific properties. Considering hand veins our 850 nm data set achieved the best results for
Wang17 and the second best ones for HSNR, while the 950 nm dataset achieved the best results for
HSNR and second best for Wang17. In terms of GCF, both hand vein data sets are only ranked second
and third to last, indicating that the general image contrast is lower than for other datasets. However,
the vein specific quality metrics still indicate good image quality, despite the inferior image contrast
compared to the other datasets. There are several works in the literature [67–70] that confirm that
quality metric results do not necessarily have to correlate with recognition accuracy. The recognition
accuracy is the most important aspect of a sensor design and dataset, thus we decided to focus on the
recognition accuracy evaluation instead of evaluating only the image quality only. Also note that other
data set and sensor papers do not report the image quality, thus a direct comparison is not possible
based on the image quality.

In the following, we compare our recognition performance evaluation results to other results
reported in the literature. Matsuda et al. [12] reported an EER of 0.19% for their walk through style
finger vein recognition system. [11] et al. reported an EER of 1.74% for their systems in case of
finger veins only. Kim et al. [10] arrived at an EER of 3.6% for their NIR laser based contactless
acquisition set-up. Sierro et al. [9] did not present any performance evaluation of their dataset. None
of the mentioned authors disclosed their dataset, so their results are not reproducible. As we aim for
reproducibility, all the results listed in Tables 4 and 5 are evaluated on publicly available finger and
hand vein datasets and we base our discussion on those results only.

Table 4 lists performance results (in terms of the EER unless indicated otherwise) achieved on
various finger vein datasets, ordered by the year of publication, where the last row corresponds to
the results presented in this work. The listed results are the best reported ones from the original
dataset authors given that they were available and indicated by “-” if they were not available. Note
that all of the listed datasets, except the one presented in this work, have been acquired in a non
contactless way. Especially compared to the PLUSVein-FV3 dataset, which has been acquired using
the same type of NIR enhanced camera and NIR laser modules, the results on our proposed dataset
are clearly inferior (5.61% EER vs. 0.06% EER). However, given the increased level of difficulty and
challenges of this new, contactless finger vein dataset, the results are still in an acceptable range.
The proposed acquisition device design and thus, the acquired dataset, allows for more degrees of
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freedom in terms of finger/hand movement and thus, more unrestricted finger/hand positioning.
This introduces different kinds of finger/hand misplacements, including tilts, bending, in-planar
and non-planar rotations. Prommegger et al. showed, that especially those kinds of misplacements
cause severe performance degradations for other publicly available datasets [7,71], especially for the
SDUMLA-HMT finger vein dataset [60]. Also note that our results should only serve as a baseline
and allow room for further improvements. We did not apply any special kind of finger misplacement
corrections. If advanced correction schemes are applied, the results can of course be improved.

Table 4. Performance results of other publicly available finger vein datasets, ordered by publication
year, ”-” means that this information is not available. The “cla” column indicates contactless acquisition.

Name and Reference Images/Subjects cla Feature Type Performance (EER) Year

PKU [72] 50,700/5208 no WLD [72] 0.87% 2008
THU-FVFDT [73] 6540/610 no MLD [73] 98.3% ident. rate 2009

SDUMLA-HMT [60] 3816/106 no Minutia [74] 98.5% recogn. rate 2010
HKPU-FID [4] 6264/156 no Gabor Filter [4] 0.43% (veins only) 2011

UTFVP [61] 1440/60 no MC [49] 0.4% 2013
MMCBNU_6000 [44] 6000/100 no - - 2013

CFVD [75] 1345/13 - - - 2013
FV-USM [62] 5940/123 no POC and CD [62] 3.05% 2013

VERA FV-Spoof [76,77] 440/110 no MC [49] 6.2% 2014
PMMDB-FV [26] 240/20 no MC [49] 9.75% 2017

PLUSVein-FV3 [27] 3600/60 no MC [49] 0.06% 2018
Contactless FingerVein 840/42 yes MC [49] 3.66% 2019

Regarding contactless hand vein recognition, Michael et al. [22] report an EER of 0.71% using
palm veins only. Zhang et al. [23] only evaluate the KC value as measure of the registration
between two feature vectors and thus, as an indicator for the recognition performance but they
did not evaluate the actual recognition performance. The highest KC value they achieved was 1.1039.
Fletcher et al. [24] reported an EER of 6.3% for their fully contactless hand vein based system for
health patient identification. Table 5 summarises the achieved recognition performance for several
publicly available hand vein recognition datasets, where the last row corresponds to the best results
we achieved on our proposed contactless one so far. Note that, except for our proposed dataset and
the PROTECT Mobile HandVein [25] dataset, all datasets have been acquired in a non contactless
way. In the light of that and taking into account that we used only simple but well-established vein
recognition schemes, the achieved recognition performance on our dataset is clearly competitive with
other results reported in the literature. It is more than ten times better than the results published for
the PROTECT Mobile HandVein [25] dataset and the results published by Fletcher et al. [24], and
still twice as good as the results reported by Michael et al. [22], even though the only kind of hand
normalisation we applied was the adaptive ROI extraction, correcting different scales, that is, different
distances between the camera and the hand. No further tilt or non-planar rotation correction was
applied. Again, note that our performance results should only serve as a baseline and can of course
be improved.
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Table 5. Related performance results of publicly available hand vein recognition datasets, ordered by
publication year. The “cla” column indicates contactless acquisition.

Name and Reference Images/Subjects cla Feature Type Performance (EER) Year

CIE [18] 2400/50 no Thresholding [78] 1.1% 2011
Bosphorus Hand Vein [63] 1575/100 no Geometry [79] 2.25% 2011
CASIA Multispectral [21] 7200/100 no LBP/LDP [80] 0.09% 2011

Tecnocampus Hand Image [64] 6000/100 no BDM [64] 98% recogn. rate 2013
Vera Palm Vein [65] 2200/110 no LBP [81] 3.75% 2015

PROTECT HandVein [66] 2400/40 no SIFT [51] 0.093% 2018
PROTECT Mobile HandVein [25] 920/31 yes MC [49] 4.13% 2018

Contactless HandVein 420/42 yes MC [49] 0.35% 2019

While the achieved baseline results for the contactless hand vein dataset are quite competitive
compared to the contact-based hand vein datasets, the results for the contactless finger vein datasets are
clearly inferior to the ones that can be achieved for contact-based finger vein recognition. Contactless
finger vein recognition is more challenging than contactless hand vein one for several reason. One
reason is that the finger has a much smaller area than the palm of the hand. Thus, small misplacements
can lead to a reduced visibility of the vein patterns and a reduced image quality in general, making
the recognition more difficult. Moreover, the vascular pattern structure within the finger is more
fine-grained than within the palm of the hand. Hence, tilts, rotation and bending of the finger have a
more severe effect on the acquired images in terms of the resulting distortions present in the image,
again leading to complications during the recognition process. These challenges have to be tackled by
suitable normalisation and correction schemes in order to improve the recognition performance for the
contactless finger vein data.

The sensor level fusion results clearly indicate that by combining different acquisition modes
(finger vein, hand vein 850nm and hand vein 950 nm) the recognition performance can be considerably
improved. By combining the hand vein images in the two different wavelengths, the average
performance improvement over the best baseline one is 148%. By combining one finger and one
hand sample, the best results (MC) are improved by 1183% and 171% over the baseline results for 850
nm and 950 nm hand veins, respectively. By combining all three modes the results were improved as
well and are more than 8 times better than the best baseline one (MC). Hence, applying sensor level
fusion is an easy way to further enhance the recognition performance of our capturing device.

5. Conclusions

We proposed a new capturing device, which is able to acquire finger as well as hand vein images
in a fully contactless way. Contactless acquisition has many advantages in terms of hygiene and user
acceptance. In addition to the design and technical details of the acquisition device, we also provide a
novel, contactless finger and hand vein dataset available for research purposes (can be downloaded
here: http://www.wavelab.at/sources/PLUSVein-Contactless/). This dataset is the first available
contactless finger vein dataset and one of the first available contactless hand vein datasets. It is a
challenging dataset due to the contactless acquisition allowing for more unrestricted finger/hand
movement and the resulting finger/hand misplacements. An image quality assessment using three
vein tailored metrics has been conducted and confirmed the decent image quality which can be
achieved using our proposed capturing device. Moreover, a recognition performance evaluation using
several well-established vein recognition schemes has been carried out on this dataset in order to
provide baseline results for further research. Those baseline results are competitive for the hand vein
data (EER of 0.35%) and within range of other biometric technologies for the finger vein data (EER of
3.66%). Furthermore, biometric sensor level fusion experiments have been conducted to show the
additional improvement in the recognition performance which can be achieved by combining finger
vein and hand vein data (resulting in an overall best EER of 0.03%).
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Our future work includes some improvements on the capturing device itself. The next version of
the device should be an embedded device, eliminating the need for an additional PC to control the
acquisition process. The capturing device has a built-in touch screen display already which can be used
to control it via the graphical user interface. The only thing which is currently missing is the porting of
the capturing software to an embedded platform like the Raspberry Pi and the automated start of the
capturing process once the data subjects placed their finger/hand. Furthermore, we will extend our
contactless finger and hand vein dataset. We are currently acquiring additional subjects and plan to
enlarge the dataset to include a total of at least 100 subjects by the end of 2019. Moreover, we aim to do
a thorough analysis on which types of finger/hand misplacements are present in the dataset, similar
to the work has been done for other finger vein datasets [71]. Based on this analysis we will be able to
apply different correction and normalisation schemes in order to improve the recognition performance.
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Chapter 3
OpenVein—An Open-Source Modular
Multipurpose Finger Vein Scanner
Design

Christof Kauba, Bernhard Prommegger and Andreas Uhl

Abstract One of the main prerequisites in finger vein research is the availability
of comprehensive, available finger vein datasets. In order to capture such datasets,
a biometric scanner device tailored to capture the vascular patterns is essential. A
sophisticated scanner design is the key to achieve a good image quality, robustness
against external influences and finally to arrive at a competitive recognition perfor-
mance. In this chapter, a fully open-source, modular and multipurpose finger vein
scanner design is proposed. Two novel finger vein scanners are derived from this
basic design. Both are able to capture reflected light and light transmission illumi-
nated images from the dorsal as well as the palmar side. Three fingers are captured at
once. The first scanner is based onwidely used near-infrared LEDs as its light source,
the second one on near-infrared laser modules. Despite their advantages in touchless
operation, near-infrared laser modules have hardly been used in finger vein recog-
nition so far. Our scanner design has proven to accomplish an excellent recognition
performance using common finger vein recognition schemes. All details regarding
the two scanner devices, including technical drawings of all parts, models of the 3D
printed parts, control board schematics, the microcontroller firmware, the capturing
software, parts list as well as assembly and setup instructions, are available free of
charge for research purposes. This should facilitate interested researchers to rebuild
such a scanner device for capturing finger vein data on their own.
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3.1 Introduction

Vascular pattern based biometrics, as a new and emerging biometric trait, deals with
the patterns formed by the blood vessels located inside the human body, i.e. it is
an internal biometric trait. These vascular patterns are not visible to the naked eye,
thus a specifically designed capturing device, usually denoted as biometric scan-
ner or biometric sensor, is necessary to sample this biometric [16]. The haemoglobin
contained in the blood flowing through the vessels has a higher light absorption coef-
ficient within the near-infrared (NIR) spectrum than the surrounding tissue. Hence,
the vascular patterns can be rendered visible as dark lines in the captured images with
the help of NIR illumination and NIR-sensitive cameras but not by using commodity
off-the-shelf digital cameras as they usually have a built-in NIR blocking filter. The
most common body parts considered include fingers [7, 27, 28, 32, 39], hands [6,
8, 36, 37, 42] and also wrists [21]. In the following, we will focus on the recogni-
tion of vascular patterns inside the human fingers, commonly denoted as finger vein
recognition.

Finger vein scanner devices are already equipped in commercial products, like
automated teller machines (ATMs) in Japan [10], for authentication of bank cus-
tomers in Poland [9], for securing online banking transactions at home in the UK
[29] and as an alternative to fingerprint-based authentication systems in general.
Almost all commercial-off-the-shelf (COTS) finger vein scanner devices do not per-
mit access to the captured finger vein images. Instead, they only provide a biometric
template, encoded in a proprietary format defined by the manufacturer of the scan-
ner device, which can only be used within the software framework provided by
the manufacturer. This situation leads to a vendor lock-in, which is not desired for
the operator. Moreover, it makes recognition performance evaluations possible, but
these biometric templates do neither allow for the development of biometric template
protection and biometric workload reduction schemes (see Chap. 12) nor enable a
systematic evaluation of the template’s properties in regards to external influences
and changes in the vein pattern (robustness evaluation). Hence, these templates and
the COTS scanners are only of little use in biometric research.

An important requirement for doing research on any biometric trait is the availabil-
ity of comprehensive datasets. However, the number of finger vein datasets available
to the research community is limited and there is still a lack of large, available finger
vein databases. In order to establish a dataset that is of value for research purposes, a
finger vein scanner that provides access to the rawvein images is essential. The design
of such a scanner device is a crucial point if it comes to image quality, robustness
against external influences, user convenience and consequently to a good recogni-
tion performance. Only a specifically designed finger vein scanner is able to provide
high-quality vein images enabling a competitive recognition performance. The main
contribution of this chapter is our proposed design of two open-source, multipurpose
finger vein scanners. Both scanners are based on the same modular design. They are
one of the first finger vein scanners (besides the scanner proposed by Raghavendra
et al. in [26]) that are able to capture three fingers at once in order to speed up the
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data acquisition process and to minimise longitudinal pose variations (see [23] for
an in-depth discussion of the problems due to longitudinal finger rotation). Both
are equipped with a light transmission (also called transillumination) as well as a
reflected light illuminator allowing to capture light transmission and reflected light
images. Hence, these scanners are the first ones that are able to capture both reflected
light and light transmission images. Both scanners capture high-resolution and high-
quality finger vein images providing a high recognition performance. Furthermore,
both of the mainly used views of the finger, dorsal and palmar, can be captured.
The two scanners only differ in the type of transillumination light source: the first
scanner utilises NIR light-emitting diodes (LEDs) while the second one is based on
NIR laser modules. NIR laser modules are not common in finger vein recognition
despite the advantages they offer. They enable an increased range of vertical finger
movement while preserving a good image contrast and quality compared to LEDs
which is especially important if touchless operation is desired.

Our proposed scanner design is fully open source. All of the housing parts and
mounting brackets are either 3D-printed or laser-cut plywood parts and can be repro-
duced with low expenditure. While this chapter covers all the important design key
points and describes each of the scanner parts, all technical details of the scanner
together with detailed assembly and setup instructions are available in a public repos-
itory. This includes part lists, data sheets of the individual parts, technical drawings
of the housing parts, models of the 3D printed parts, the schematics and board layout
of the illumination controller, the firmware of the illumination controller and the
capturing software. By open sourcing all details of our proposed scanner design,
other researchers working in the field of finger vein biometrics can benefit from our
design. They can get and/or make all the parts needed to construct a finger vein scan-
ner based on our design, follow the instructions and assemble the scanner on their
own which enables them to capture high-quality finger vein images and facilitate
their own research. The use of our proposed scanner design and the reproduction of
the finger vein scanner itself is free of charge for research purposes. The modular
design of the scanner allows to exchange, modify and improve the individual parts
easily. With the help of other researchers we are confident that our scanner design
will continue to improve over time.

The second advantage that comes with a fully open-source scanner design is the
ability to establish a large, publicly available finger vein dataset. We already estab-
lished a finger vein dataset captured using the two scanners based on our designwhich
is available for research purposes [34]. This dataset confirms the decent recognition
performance that can be achieved using a scanner based on our design. For more
details, see [12, 13]. Together with other researchers and research institutions, we
plan to extend this dataset in order to establish a comprehensive, publicly available
finger vein dataset for research purposes. Researchers already owning a scanner
based on our design and interested in a collaboration can contribute to the dataset
by providing us their captured finger vein samples. Such an extensive, collaborative
dataset will stimulate the research on finger vein biometrics. Moreover, large finger
vein datasets are vital in order to develop and test finger vein indexing schemes,
template protection schemes and runtime efficient identification schemes.
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The rest of this chapter is organised as follows: Sect. 3.2 gives an overview on the
basic design principles of finger vein scanners, followed by a review of commercial
finger vein scanners and related research on finger vein scanners as well as datasets.
Section3.3 discusses all important details and individual parts of our proposed finger
vein scanner design. Section3.4 presents our open finger vein dataset captured using
the scanners built according to our design. Section3.5 concludes this chapter together
with an outlook on future work, especially on further improving the scanner design
and extending our open finger vein dataset.

3.2 Finger Vein Scanners

Finger vein recognition belongs to vascular pattern based biometrics. As the name
suggests, these biometrics are based on the vascular pattern, formed by the blood ves-
sel structure inside the human body. Finger vein recognition deals with the vascular
pattern inside the human fingers. This pattern has to be made visible and captured by
a suitable biometric scanner device in order to enable biometric recognition. The de-
oxinated haemoglobin in the blood flowing through the blood vessels absorbs light
within the NIR spectrumwhile the surrounding tissue has a much lower light absorp-
tion coefficient within that spectrum. Thus, the vascular pattern can be rendered visi-
ble with the help of an NIR light source in combination with an NIR-sensitive image
sensor.

Consequently, the most important parts of a finger vein scanner are an NIR light
source and an NIR-sensitive image sensor or camera. The NIR light source usually
consists of NIR LEDs (light-emitting diodes) with a light emission peak wavelength
between 750 and 950 nm. In addition to the NIR camera and the NIR light source,
either an NIR pass-through filter or an optically opaque box to reduce the influence
of ambient light is beneficial. To assist the capture subject in positioning of the finger,
most finger vein scanners contain some kind of finger positioning support or finger
guide unless they are meant for fully touchless operation.

3.2.1 Light Source Positioning

Two types of illumination are distinguished, based on the relative positioning of the
image sensor, the finger and the illuminator: light transmission, also called transil-
lumination and reflected light. Figure3.1 shows both variants.

Light transmission: the image sensor and the illuminator are placed on opposite
sides of the finger. The light penetrates the skin on the side of the finger next to the
illuminator, runs through thefinger tissue,where it gets reflected, refracted, dispersed,
scattered and absorbed. A fraction of the emitted light emerges on the opposite side
of the finger and gets captured by the image sensor. As the light has to travel through
the whole finger, higher light intensities are needed compared to reflected light, thus
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Fig. 3.1 Light source and image sensor positioning, left: light transmission, right: reflected light.
Reflected light enables smaller scanner devices while light transmission renders more details of the
vascular pattern visible due to the higher penetration depth inside the finger tissue

leading to higher power consumption. Due to the placement of the illuminator and
the image sensor opposite to each other, the scanner devices are bigger compared to
reflected light ones. Note that the positioning of the image sensor and the illuminator
perpendicular to each other (in an angle of 90◦) is sometimes called light dispersion.
We consider this still as light transmission as it is just a kind of light transmission
caused due to scattering and refraction. The light travels sideways through the finger
and the fraction of the light which is emitted on the image sensor side of the finger
gets captured.

Reflected light: the image sensor and the illuminator are placed on the same side
of the finger, either dorsal or palmar. The light originates from the illuminator, a
small part gets reflected directly at the finger’s surface, the remaining part penetrates
the skin and tissue and gets reflected, refracted and scattered there. The fraction of
the light emerging at the same side of the finger is captured by the image sensor.
Reflected light based scanners need less light intensity. Thus, they have a lower
power consumption and can be built in a smaller manner as the light source and
image sensor are positioned next to each other. However, the penetration depth of
the light is lower than for light transmission, and thus less details of the vascular
patterns become visible. Nevertheless, in finger vein recognition, light transmission
is used almost exclusively.

3.2.2 Two Main Perspectives of the Finger—Dorsal and
Palmar

The main perspectives or views from which the finger is captured are dorsal and
palmar (also called ventral). Dorsal images are taken from the back or dorsal side
of the hand while palmar images are taken from the palm or bottom side of the
hand. Figure3.2 shows both capturing perspectives. Of course there are several more
views around the finger that could be captured like the side views, but finger vein
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Fig. 3.2 Two main perspectives on the finger. Left: palmar view, right: dorsal view

recognitionmainly deals with palmar images, with some exceptions where the dorsal
view is used.

3.2.3 Commercial Finger Vein Scanners

Here we present some common COTS finger vein scanners. As in finger vein recog-
nition, light transmission in combination with palmar images is used almost exclu-
sively, so all COTS scanners are based on this set-up as well (some COTS scanners
have the light source and the camera arranged perpendicular to each other which
the manufacturers call light dispersion). As motivated in the introduction, the COTS
scanners do not provide access to the captured vein images but only output a tem-
plate encoded in a proprietary format. Figure3.3 shows some widely used COTS
finger vein scanners. The major two companies providing finger vein authentica-
tion solutions are Hitachi Ltd. and Mofiria Ltd. Their technologies are patented and
non-disclosed. Hence, not many details are known about these scanners, except that
they are based on the light transmission principle and capture palmar images. The
M2-FingerVein™ reader [52] is basically a rebranded version of the original Hitachi
H-1 (or PCT-KCUA011) USB finger vein scanner [51]. According to the M2SYS
website, it “scans the inner surface of the finger”, is “resistant to criminal temper-

Fig. 3.3 COTS finger vein scanners, from left to right: M2SYS M2-FingerVein™ reader, Mofiria
FVA-U4ST, Mofiria FVA-U3SX
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ing”, achieves a “high accuracy”, “less than 0.01% for the FRR, less than 0.0001%
for the FAR and 0% for the FTE”, uses a “unique and constant” biometric trait
and provides “fast authentication speed”. However, the scanner design and details
are undisclosed making it hard to verify those claims. The scanner provides “fast
authentication speed” indeed but especially bearing in mind that this scanner is not
able to prevent longitudinal finger rotation [23], the claimed FRR and FAR values
are doubtful. Moreover, it has been shown that commercial scanners are susceptible
to presentation attacks [30], hence the claim “resistant to criminal tempering” might
only refer to tempering with the scanner hardware and authentication software. The
Mofiria FVA-U3SX [57] and the FVA-U4ST [58] are based on Mofiria’s “unique
reflective dispersion method” and an “automatic finger position adjustment ensures
both comfortable usability and high accuracy authentication without firmly fixing the
finger position on the unit” according to their respective data sheets. Both are small,
fast and comfortable USB-powered finger vein scanners that provide two enrolment
methods. The FVA-U3SX has an electrostatic sensor to detect the presence of the
finger on the scanner. Note the compact size of all the commercial scanners and the
semi- or full-open scanner housing. Scanners built in an open manner have been
shown to increase the capture subjects’ acceptance and convenience.

3.2.4 Finger Vein Prototype Scanners and Datasets
in Research

Due to the fact that almost all COTS finger vein scanners do not provide access to the
raw finger vein images and that the datasets established by the commercial compa-
nies are non-disclosed, researchers began to construct their own finger vein scanners
and established several finger vein datasets. Table3.1 gives an overview of several
available as well as unpublished finger vein datasets in chronological order. It lists
the number of subjects and fingers per subject that were captured, the total number
of images contained in the dataset, the number of capturing sessions, the image reso-
lution and the scanner used to capture the images. The first publicly available finger
vein dataset was established by the Peking University (PKU) [11] in 2008 using
their own prototype scanner (PKU Proto). The Seoul National University (SNU)
[15] established the first non-contact finger vein dataset in 2009. They built their
own touchless prototype scanner (SNU Proto). The dataset was captured using two
different scanners, anLEDand a laser-based one. TheNorwegianBiometrics Labora-
tory collected the GUC45 [5], a multi-modal database comprising finger vein, finger
knuckle and fingerprint images using their two prototype scanners (GUC Proto 1
and GUC Proto 2) in 2009. This database is only available semi-publicly, i.e. that
visitors at the Norwegian Biometrics Laboratory can access and use the database.
The second database established in 2009 is the THU-FVFDT [40] provided by
the University of Tsinghua, captured using their self-designed prototype scanner
(Tsinghua Proto). It contains finger vein as well as finger dorsal texture images. In
2010, the SDUMLA-HMT [41], a multi-modal biometric database including finger
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Table 3.1 Finger vein datasets acquired for research purposes
Name Dors/palm Avail. Subjects Fingers Images Sessions Year Scanner

PKU [11] Palmar Yes 5208 4 50,700 1 2008 PKU Proto

SNU-LP-FV [15] Palmar No 10 1 200 1 2009 SNU Proto

GUC45 [5] Palmar Semi 45 10 10080 12 2009 GUC Proto
1/2

THU-FVFDT [40] Palmar Yes 610 2 6540 2 2009 Tsinghua
Proto

SDUMLA-HMT
[41]

Palmar Yes 106 6 3816 1 2010 Wuhan
Proto

HKPU-FID [16] Palmar Yes 156 4 6264 2 2011 HKPU
Proto

KTDeaduk-FV
[17]

Palmar No 30 8 2400 1 2011 KTDeaduk
Proto

S-EMB-Laser-FV
[18]

Palmar No 100 6 6000 1 2012 Shandong
EL Proto

UTFVP [32] Palmar Yes 60 6 1440 2 2013 Twente
Proto

MMCBNU_6000
[19]

Palmar Yes 100 6 6000 1 2013 Chonbuk
Proto

CFVD [43] Palmar Yes 13 6 1345 2 2013 Shandong
Proto

Shandong. Univ
[38]

Palmar No 34 6 4080 2 2013 Wuhan
Proto

FV-USM [1] Palmar Yes 123 4 5940 2 2013 Sains Proto

VERA FV-Spoof
[30]

Palmar Yes 110 2 440 2 2014 Twente
Proto

GUC-FPFV-DB
[25]

Palmar No 41 6* 1500 1 2014 GUC-
FPFV
Proto

GUC-Dors-FV-
DB [24]

Dorsal Semi 125 4 5000 1 2015 GUC-Dors
Proto

PMMDB-FV [33] Dorsal Yes 20 4 240 1 2017 PLUSVein-
V2

PLUSVein-FV3
[12]

Dorsal Yes 60 6 3600 1 2018 PLUS
OpenVein

vein images, was released by the University of Shandong. They utilised a custom
prototype scanner provided by the University of Wuhan (Wuhan Proto) during their
finger vein data collection. In 2011, the HKPU finger vein database [16] captured
using their own prototype scanner (HKPU Proto) was released by the Hong Kong
Polytechnical University. TheKTDeaduk-FV finger vein database [17] was collected
by the KT Daeduk Research Center in Korea in cooperation with the Korea Science
Academy of KAIST in 2011 too. This database was captured with their own pro-
totype scanner (KTDeaduk Proto). It has not been published so far. The Shandong
University acquired a finger vein dataset using their prototype embedded finger vein
scanner (Shandong EL Proto). This dataset has not been published though. In 2013,
several finger vein databases have been established. The University of Twente pub-
lished the UTFVP finger vein database [32], captured with the help of their prototype
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scanner (Twente Proto). The Chonbuk University in South Korea used their proto-
type scanner (Chonbuk Proto) to establish theMMCBNU_6000 finger vein database
[19]. The Shandon University released the CFVD [43], the first reflected light finger
vein database acquired using their prototype scanner (Shandong Proto). The Shan-
dong University established a second finger vein database [38] using a prototype
scanner provided by the University of Wuhan (Wuhan Proto) but did not make this
database available. The FV-USMdatabase [1] published by the University of Sains in
Malaysia was acquired using their custom-designed scanner (Sains Proto) and also
released in 2013. In 2014, the Idiap Research Institute in Switzerland established the
first finger vein spoofing attack database, VERA Finger Vein Spoofing [30] using
the same scanner design as it has been used to capture the UTFVP (Twente Proto).
The Norwegian Biometrics Laboratory designed another finger vein scanner proto-
type (GUC-FPFV Proto), able to capture fingerprint and finger vein images at the
same time. In 2014, they captured the GUC-FPFV-DB [25] but they did not make
it available * in Table 3.1 indicates that for most but not for all subjects 6 fingers
have been captured as there are subjects with less than 6 captured fingers. In 2015,
the Norwegian Biometrics Laboratory designed another finger vein scanner which
captures dorsal images (GUC-Dors Proto) and created the first dorsal finger vein
database [24]. Again they did not fully release this database for the research com-
munity. It is only semi-public, i.e. available for visitors at the Norwegian Biometrics
Laboratory. In 2017, together with our partners from the PROTECT project the team
at PLUS (Paris Lodron University of Salzburg) established a multi-modal biometric
database PMMDB [33]. Among other biometric traits, this database contains dorsal
finger vein images captured with the predecessor of our proposed scanner design
(PLUSVein-V2), and is publicly available. Our most recent finger vein database is
the PLUSVein-FV3 [12], captured using the scanner design presented in this chapter
(PLUS OpenVein). This database is publicly available as well. Note that except the
GUC-Dors-FV-DB [24] established by the Norwegian Biometrics Laboratory, the
PMMDB-FV [33] and the PLUSVein-FV3 dataset [12], which have been captured
bymembers of PLUS, all finger vein datasets are palmar ones. Figure3.4 shows some
example images for the available finger vein datasets (except for PKU and CFVD).
Wewill not go into further details about the databases but focus on the corresponding
scanner devices in the following.

Table3.2 gives some details about the scanners that were used to acquire the
finger vein databases listed in Table3.1, including the equipped camera, focal length
of the lens (column: lens), additional filter, the illuminator peak wavelength (column:
illumin., note that all illuminators except the one of the SNU Proto, the Shandong
EL Proto and the PLUS OpenVein are LED based) as well as if the illuminator is
a reflected light or light transmission type (column: r/t) as far as the information is
available for the respective finger vein scanner device (– in the table indicates that
this information is not available). All of the listed finger vein scanners except the
Shandong Proto and our proposed scanner PLUS OpenVein (which is able to use
both reflected light as well as light transmission) use light transmission to capture
the images. The PKU Proto scanner consists of a 1/3-in. greyscale CMOS camera
and an advanced illumination control system using an LED-based illuminator. Apart
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Fig. 3.4 Example images from several available finger vein datasets, left-to-right, top-to-bottom
row (all images have been rotated such that the finger is in vertical position pointing upwards):
PMMDB-FV, UTFVP, MMCBNU_6000, FV-USM, THU-FVFDT, VERA FV-Spoofing, HKPU-
FID, SDUMLA-HMT, PLUSVein-FV3 dorsal, PLUSVein-FV3 palmar

from those details there is no additional information about the camera, the LEDs or
the equipped infrared filter available. There are two variants of the touchless scanner
prototype developed by the Seoul National University, SNU Proto. This touchless
scanner should prevent the cross-contamination of skin diseases. The first one is
based on conventional 850nm LEDs as light source, the second one is based on an
830nm NIR laser. The NIR lasers are manufactured by Lasiris Laser in StokerYale,
Canada. A laser line generator lens (E43-475 from Edmund optics in Singapore)
with a fixed pan angle is added in order to generate a line laser from the spot laser.
This should enable a uniform illumination along the finger. Both scanners are based
on light transmission and use a GF 038B NIR CCD Camera from ALLIED Vision
Technologies, Germany. The camera is equipped with an additional IR-pass filter.
The first two scanner prototypes developed by the Norwegian Biometrics Laboratory
in 2009, GUC Proto 1 and GUC Proto 2 both use a CCD camera in combination
with an NIR-pass filter. 850nm LEDs and 940nm LEDs are used in the first and
second scanners, respectively. Besides this basic information, also the arrangement
of the LEDs, their view range and the physical design of the scanners are described
in the respective papers. The Tsinghua Proto uses two arrays of 890nm LEDs, one
mounted above the top-left and the other one above the top-right of the finger. It has
two cameras, one located at the bottomof the device (below the finger), equippedwith
an IR filter with a cut-off wavelength of 1000nm to capture the finger vein images
and another camera situated on the top of the device (above the finger) to capture
the dorsal texture images. The Wuhan Proto scanner is based on a near-infrared
CCD camera including an additional NIR-pass filter with a wavelength of 900nm.
The light source consists of 790nm LEDs. The scanner device has a groove in the
shell of the device used to guide the finger’s orientation. No detailed information
about the camera and the illumination control is available. The HKU Proto scanner
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Table 3.2 Finger vein scanners that were used to acquire the datasets in Table3.1—means that the
information was not available

Name Camera Resolution Lens (mm) Filter Illumin. r/t

PKU Proto 1/3–in. CMOS
cam

512 × 384 – IR filter – t

SNU Proto GF 038B NIR,
AVT

768 × 492 – IR-pass filter 830/850 t

GUC Proto 1 CCD camera 512 × 240 – NIR-pass
filter

850nm t

GUC Proto 2 CCD camera 512 × 240 – NIR-pass
filter

940nm t

Tsinghua Proto industrial camera 720 × 576 – IR filter
1000nm

890nm t

Wuhan Proto NIR CCD
camera

320 × 240 – NIR-pass
900nm

790nm t

HKPU Proto NIR camera 512 × 256 – NIR-pass
filter

850nm t

KTDeaduk Proto – 640 × 480 – NIR-pass
750nm

850nm t

Shandong EL
Proto

NIR camera 580 × 600 – NIR-pass
800nm

808nm t

Twente Proto C-Cam BCi5 1280 × 1024 12 B+W 093
930nm

850nm t

Chonbuk Proto cam w. NIR filter
rem.

640 × 480 – NIR-pass
filter

850nm t

Shandong Proto – 640 × 480 – NIR-pass
850nm

850nm r

Sains Proto Sony PSEye cam 640 × 480 – IR-pass filter 850nm t

GUC-FPFV
Proto

DMK 22BUC03
CMOS

744 × 480 8 none 870nm t

GUC-Dors Proto monochrome
CMOS

744 × 480 8 none 920nm t

PLUSVein-V2 IDS UI-
ML1240-NIR

1280 × 1024 9 none 850nm t

PLUS OpenVein IDS UI-
ML1240-NIR

1280 × 1024 9 NIR-pass
850nm

multiple t+r

exposes the dorsal side to NIR frontal illuminators consisting of LEDs with a peak
wavelength of 850nm. It has two cameras, an NIR camera in combination with an
NIR filter to capture the vein images and one webcam to capture the finger texture.
It does neither use a finger guide nor pegs to align the finger, so it can be regarded as
semi-touchless device. Again, there are no details about the specific type of camera,
LEDs or NIR filter available. The KTDaeduk Proto scanner is equipped with a CCD
camera, including an additional NIR passing filter with a cut-off wavelength of
750nm, located at the bottom of the device. A hot mirror is used to be able to
mount the camera horizontally, and thus to reduce the height of the device. The NIR
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illuminator is located at the top of the device, above the dorsal side of the finger,
and based on 850nm LEDs. In addition, the scanner has a finger guidance to assist
the capture subject in positioning his finger correctly. The Shandong EL Proto is
the main part of an embedded finger vein recognition system. It is based on the
light transmission principle but uses three NIR laser diodes with a peak wavelength
of 808nm instead of LEDs due to their stronger permeability and higher optical
output power compared to LEDs. The scanner is equipped with a monochromatic
NIR camera and an additional NIR-pass filter with a cut-off frequency of 800nm
to block daylight. A plate of 10mm thick, transparent acryl is located above the
NIR laser diodes to serve as a platform for positioning the finger and to remove
uneven illumination. The whole scanner/finger vein recognition system is controlled
by a DSP based mainboard. The Twente Proto is the best documented scanner so
far. Its light source consists of 8 Osram SFH4550 LEDs (the same type we use for
the reflected light illuminator) with a peak wavelength of 850nm, situated on top
of the dorsal side of the finger. Each LED is intensity controlled individually by a
simple control loop to achieve a uniform illumination intensity along the finger. The
camera is a C-Cam BCi5 monochrome CMOS camera, fitted with a Pentax H1214-
M machine vision lens having a focal length of 12mm. An additional infrared filter
with a cut-off wavelength of 930nm (type B+W 093) is mounted on the lens. The
scanner device uses an Edmund Optics NT41-405 first surface mirror to minimise
the height of the scanner. However, this scanner device is still quite bulky. Detailed
information about the scanner design can be found in theMaster’s thesis of Ton [31];
however, based solely on the published details it is not possible to construct a ready-
to-use scanner in a straightforward way. The Twente Proto scanner is described in
Chap. 5 [35] of this book. Section 6 of Chap. 5 [35] also presents a novel finger vein
acquisition device proposed by the University of Twente. This new version of the
scanner is much more compact compared to the Twente Proto one. It is based on a
Raspberry Pi as processing board and three Raspberry Pi camera modules as image
sensors. It consists of threeNIRLED strips that can be positioned in a semicircle from
0–180◦. Thus, this scanner is able to capture multi-perspective finger vein images
(cgf. Chap. 13 [22]) and allows for 3D finger vein reconstruction. The team at the
University of Twente is currently investigating the optimal illumination and settings
for the 3D finger vein reconstruction. The Chonbuk Proto scanner is equipped with
a camera including an additional infrared light passing filter and an array of 850nm
infrared LEDs located above the finger. The camera is a modified COTS camera
where the NIR blocking filter was replaced by an NIR pass-through filter. It has a
finger holder with a hole in the backside of the scanner serving as a finger placement
unit. This prototype scanner is quite small with a size of 68 × 54 × 101 mm. The
Shandong Proto is the only scanner prototype besides out PLUS OpenVein scanner
that is based on reflected light. It consists of a camera, anNIR pass-through filter with
a cut-off wavelength of 850nm and an NIR light source based on 850 nm LEDs. This
is the only information that is available for this prototype scanner. The Sains Proto
scanner has three units of 850nm NIR LEDs, placed in a row on the top section
of the scanner, serving as light source. A Sony PSEye camera is mounted at the
bottom section of the scanner. It does not use any pegs or finger guides. The capture
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subject has to touch the back wall of the scanner with their finger only. The GUC-
FPFV Proto scanner is able to capture finger vein and fingerprint images at once. It
is designed to be a low-cost device, consisting of a DMK 22BUC03 monochrome
CMOS camera, fitted with a T3Z0312CS 8mm lens and an LED-based illuminator
made of 40 Vishey Semiconductors TSSF5210 870nm NIR LEDs. The scanners
have additional physical structures made of aluminium foil to channel and focus the
luminous flux in order to provide enough light intensity to penetrate the whole finger.
The scanner device has a size of 180 × 110 × 70 mm. TheGUC-Dors Proto scanner
is designed to capture dorsal finger vein images. It uses the same camera and lens as
the GUC-FPFV Proto (DMK 22BUC03 monochrome CMOS camera, fitted with a
T3Z0312CS 8mm lens) but 920nm LEDs instead of 850nm ones. The light source
is placed 10 mm away from the finger placement holder and the camera is placed 100
mm away from the finger. This is the only information available about that scanner,
not even an image is depicted in the paper. ThePLUSVein-V2 scanner is also designed
to capture dorsal finger vein images but could be easily used to capture palmar images
as well. It is based on an IDS Imaging UI-ML-1240NIR NIR-enhanced industrial
camera fitted with a Fujifilm HF9HA-1B 9mm lens (the same as in our design of
the PLUS OpenVein scanner). No additional NIR pass-through filter is used, instead
the scanner is embedded in a wooden box to block the ambient light. The light
transmission illuminator consists of 8 Osram SFH 4253-Z 850nm LEDs. Each LED
is brightness controlled individually by an automatic brightness control algorithm in
order to achieve an optimal illumination along the finger.

Formost of the above-mentionedfinger vein scanner prototypes, except theTwente
Proto, only very few details are available. Thus, it is not possible to reproduce those
scanners in a straightforward manner. Our PLUS OpenVein scanner is the first finger
vein scanner that is able to capture both reflected light and light transmission images.
Moreover, it is designed to capture dorsal as well as palmar images. Most important
though: its design is fully open source. Our scanner design is explained in detail in
the following section.

3.3 PLUS OpenVein Finger Vein Scanner

This section presents our proposed, fully open-source finger vein scanner design,
called PLUS OpenVein. At first, the advantages of our scanner design and the dif-
ferences to existing finger vein scanners are discussed, followed by a detailed expla-
nation of the individual scanner parts. The finger vein scanner design consists of the
following main components: an NIR-enhanced camera together with a lens and an
NIR pass-through filter, an NIR light transmission illuminator including an illumina-
tor bracket, an NIR reflected light illuminator, an illuminator control board, a finger
placement unit and a modular wooden housing. The functional interaction of each of
the individual scanner parts, specified by the scanner design, is as important as the
choice of each of the individual parts in order to achieve a good finger vein image
quality, and consequently a high recognition performance.
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3.3.1 Advantages and Differences to Existing Designs

The following list summarises the main advantages and differences of the proposed
design over the existing ones presented in Sect. 3.2.4:

• Modular and easy to reproduce design: Most finger vein scanners in research do
not place any importance on enabling changes of their individual parts. The PLUS
OpenVein is a modular finger vein scanner design, i.e. its individual parts can be
replaced, modified and improved easily. All of the housing parts and mounting
brackets are either 3D-printed or laser-cut plywood parts. One the one hand, this
enables each researcher owning a 3D printer to reproduce the scanner (the laser-
cut parts can also be reproduced using a jigsaw). On the other hand, it is easy to
modify and improve those parts to individual needs as only the 3D models have
to be edited.

• Dorsal/palmar images as well as light transmission/reflected light: although it is
easy to capture dorsal images using a scanner meant to capture palmar ones by
simply turning the finger around, it is hard to maintain the same longitudinal
rotation angle at each capture. Moreover, all exisiting finger vein scanner designs
exhibit either light transmission or reflected light only. Our finger vein scanner
design is a multipurpose one as it is able to capture dorsal as well as palmar (by
rotating the hand 180◦ around its longitudinal axis), with the finger placement unit
especially shaped to prevent unwanted longitudinal finger rotation [23] and achieve
a defined finger position for each image capture. Furthermore, it is equipped with
two types of illuminators, a light transmission as well as a reflected light one, to
acquire palmar and dorsal finger vein images during a single acquisition.

• Three fingers are captured simultaneously: All COTS scanners as well as all
research prototype scanners listed in Table3.2 capture only one finger at a time.
The PLUS OpenVein scanner design is the first proposed finger vein scanner that
is designed to capture three fingers (index, middle and ring finger) at once to speed
up the data acquisition process.

• NIR laser module based scanner version: NIR laser modules exhibit several
advantages over NIR LEDs, especially in contactless operation as described in
Sect. 3.3.3.2. However, all COTS finger vein scanners as well as the majority of
scanners used in research are based on NIR LEDs. We derived two versions of
our PLUS OpenVein finger vein scanner design, one is based on a standard NIR
LED light transmission illuminator while the second one is based on an NIR laser
module illuminator. Both scanners are derived from the same basic structure and
differ only in their illuminator, the illuminator control board and the illuminator
bracket.

• Finger placement unit to prevent finger misplacement: In [23], we showed that
longitudinal finger rotation can easily occurwithmost types of finger vein scanners
and has a severe impact on the recognition performance too. Bearing that in mind,
we designed our finger placement unit to prevent most possible kinds of finger
misplacements, especially longitudinal finger rotation. This finger placement unit
is described in Sect. 3.3.6.

OpenVein—An Open-Source Modular Multipurpose Finger Vein Scanner Design

131



3 OpenVein—An Open-Source Modular Multipurpose Finger Vein Scanner Design 91

• Open-source scanner design: As mentioned in Sect. 3.2.4, not many details are
available for most of the finger vein scanner designs in research, apart from a
few exceptions (e.g. the design of Ton [31]). Our scanner design is the first true
open-source one. All technical details of the scanner parts, the data sheets, the
software aswell asmore detailed descriptions and instructions for constructing and
setting up the scanner can be found in our public repository: http://www.wavelab.
at/sources/PLUS-OpenVein, making it a fully open-source scanner design. Our
license agreement permits the free of charge use, modifications and reproduction
finger vein scanners based on our design for research and non-profit purposes.

• The main disadvantage of our scanner design is its higher price compared to other
designs which are based on low-cost camera modules, like the new Twente Proto
[35], the GUC-FPFV Proto [25], the GUC-Dors Proto [24] and the one proposed
in [26]. On the one hand, the high-quality industrial NIR enhanced camera allows
for a higher image quality and contrast compared to the low-cost cameras. On
the other hand, the camera module can be easily replaced by any other suitable
camera module thanks to our modular design, effectively reducing the total costs
of the scanner device to the same level as other low-cost scanner devices. Hence,
in practice, this is not really a disadvantage.

Figure3.5 shows both of the scanners fully assembled and with the right and front
side of the scanner half open including labelled parts. The outside dimensions of
the LED version and the laser module based scanner are 146 × 175 × 258 mm and
146 × 175 × 306 mm, respectively. Each individual scanner part together with its
advantages over similar designs and thedesigndecisions is explained in the following.
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Fig. 3.5 PLUS OpenVein finger vein scanner, left: LED version, right: laser module version
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3.3.2 Image Sensor, Lens and Additional Filter

The IDS Imaging UI-ML1240-NIR camera [60] was chosen as image sensor. It
has a max. resolution of 1280 × 1024 pixels and a max. frame rate of 25 fps. It is
based on the EV76C661ABT CMOS monochrome image sensor, having a colour
depth of 8 bit, a max. resolution of 1.31 megapixels, with a pixel size of 5.3 µm
and a sensor diagonal of 1/1.84 in. The main advantage of this camera compared
to modified webcams and other visible light cameras is that it is an NIR-enhanced
industrial camera. It is specifically designed to achieve a high quantum efficiency
within the NIR spectrum. Note the higher quantum efficiency within 800–900 nm of
theNIR version compared to themonochrome one, both depicted in Fig. 3.6 left. This
wavelength range includes the peakwavelengths of our NIRLEDs (850 nm) andNIR
laser modules (808nm) equipped in the light transmission illuminator. Most COTS
and consumer cameras that are designed for the visible wavelength spectrum are
sensitive in the NIR spectrum too, but they are equipped with NIR blocking filters in
order to avoid unwanted colour effects caused by NIR light (the sunlight contains an
NIR wavelength spectrum part too which would stain the images blue to violet). The
NIR blocking filter can be removed, enabling the camera to capture NIR images, but
those modified cameras are less sensitive than a special NIR-enhanced camera. Due
to its increased NIR sensitivity, an NIR-enhanced camera achieves a higher image
contrast in the NIR spectrum than a visible wavelength one. On the contrary, a special
NIR-enhanced industrial camera is several orders of magnitude more expensive than
a modified webcam solution, posing a disadvantage for this type of camera in terms
of costs. However, advantages in terms of image quality predominated, and thus the
use of an NIR-enhanced camera was the preferred option for our finger vein scanner
design. Note that the camera holder bracket can be modified for the use of different
camera models easily.

The camera is equipped with a Fujifilm HF9HA-1B 9mm fixed focal lens [50].
The lens has amanual iris and is C-Mount compatible. The short focal length of 9mm
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Fig. 3.6 Left: quantum efficiency charts for the UI-ML-1240-NIR (black line) and the UI-ML-
1240-M(purple line), taken from the data sheet [60], right: filter chart for theMIDOPTFILLP780/27
(solid red line) and LP830/27 (dashed blue line) NIR pass-through filter
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is necessary to maintain a short distance between the camera and the finger which
is desired in order to reduce the overall size of the scanner device. A lens with an
increased focal lengthhas less imagedistortions but requires a larger distance from the
finger, thus increasing the overall size of the scanner. A shorter focal length reduces
the minimum distance to the finger but increases the image distortions, especially
at the image boundaries. Thus, we decided to use a 9mm focal length as the best
trade-off between the distance to the finger, i.e. the overall scanner dimensions, and
the image distortions introduced by the lens itself. A MIDOPT FIL LP830/27 [56]
and a MIDOPT FIL LP780/27 [55] NIR pass-through filter for the LED and the
laser-based version of the scanner, respectively, are mounted on top of the lens. The
filter chart of the LP830, depicted in Fig. 3.6 right as dashed blue line, fits well with
the emission spectrum (cf. Fig. 3.9) of the NIR LEDs (peak wavelength of 860nm)
and the filter chart of the LP780 (solid red line in Fig. 3.6) fits well with the NIR
laser modules (peak wavelength of 808nm). This additional NIR pass-through filter
helps to reduce the influence of ambient light and further improves the quality of
the vein images. Currently, the wooden scanner housing is still needed for stability
reasons, to comply with safety regulations for the laser-based version of the scanner
and to further reduce the influence of the ambient light in case of direct sunlight
shining on the scanner. For the next, slightly improved version of the scanner design,
the NIR pass-through filters will be replaced by the MIDOPT BN850 Narrow Near-
IR Bandpass Filter [54] and the MIDOPT BN810 Narrow Near-IR Bandpass Filter
[53] for the LED version of the scanner and the laser module version of the scanner,
respectively. These filters are more effective in reducing the ambient light’s influence
and enable the removal of the wooden scanner housing without impacting the image
quality for indoor use of the scanner and at least a reduction of the housing’s side
plates dimensions if outdoor use is desired. On the other hand, the NIR pass-through
filter increases the total costs of the scanner, especially the narrow bandpass filter.
If the scanner is used in indoor environments only, where the influence of ambient
light can be controlled, it is possible to refrain from using and NIR pass-through
filter for cost reasons. To achieve an optimal image quality, we recommend to use
the additional NIR pass-through filter though.

The last part of the camera assembly is the camera holder bracket, depicted in
Fig. 3.7 together with the camera, the lens and the NIR pass-through filter, which is
mounted on the very top of the scanner. The camera holder bracket is again a custom-
developed, 3D-printed part which can be easily modified for mounting different
cameras.

3.3.3 Light Transmission Illuminator

There are two different versions of the light transmission illuminator: one based on
NIR LEDs and the other one based on NIR laser modules. The scanner equipped
with the laser modules is bigger due to the larger size of the laser module based
illuminator compared to the LED-based one and due to the minimal distance of
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Fig. 3.7 Camera holder bracket (left), IDS NIR-enhanced camera + Fujifilm 9mm lens and NIR
pass-through filter (right)

about 30 mm between the laser modules and the finger surface which is necessary
to adjust the optimal focal length of the laser modules. Both illuminators consist of
three stripes, one stripe underneath each finger. These stripes are mounted with the
help of a custom-developed, 3D-printed, illuminator bracket, depicted in Fig. 3.8 top
for the LED version (the two parts are then screwed together to hold the LEDs in
place) and Fig. 3.8 bottom for the laser module based version. This bracket is located
underneath the finger placement unit.

3.3.3.1 LED-Based Version

The LED-based light transmission illuminator has three stripes consisting of 8Osram
SFH-4253-Z SMD LEDs [65] each. The stripes are depicted in Fig. 3.8 top-right.
The LEDs have a radiation half-angle of ±60◦, a peak wavelength of 860 nm and a
max. radiant intensity of 13 mW/sr. The emission spectrum of the LEDs is depicted
in Fig. 3.9 left. These LEDs were chosen as their peak wavelength is within the
recommendedwavelength band for vascular pattern recognition and because they are
standard, low-cost electronic components. They are placed in a distance of 7.5 mm
next to each other, which has been determined to be the optimal distance during our
tests in order to provide a sufficient and uniform illumination along the finger. Each
LED can be brightness controlled separately and independently from the other LEDs
in order to achieve an optimal image contrast. The health and safety requirements for
NIRLEDs are defined in the IEC-62471 standard on “Photobiological safety of lamps
and lamp systems” [3]. The standard defines limits in terms of radiation intensity and
duration to prevent Corneal Hazard as well as Retinal Thermal Hazard. The Renesas
Electronics application note AN1737 [67] shows an example calculation for an LED
similar to the ones equipped in our scanner design, a distance of the LED and eyes
of 200mm and a radiation duration of 10 s. In this case, the safety factor for the
Corneal and the Retinal Thermal Hazard is 4 × 106 and 2 × 105, respectively, i.e.
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Fig. 3.8 Illuminator mounting bracket, top: LED version (two parts) + single LED stripes, bottom:
laser version including the laser modules

the radiation level is at least 105 times below the critical limit. Moreover, our scanner
housing prevents any direct exposure of the eye to the LED radiation. Hence, our
scanner complies with the health and safety regulations.

3.3.3.2 Laser Module Based Version

The second version of the light transmission illuminator is based on laser modules
instead of LEDs and consists of three stripes of five laser diodes [46] including an
adjustable constant-current laser diode driver PCB [45] and a TO-18 housing with
a focus adjustable lens [44] for each of the laser modules (the combination of laser
diode + control PCB + housing is denoted as laser module or laser). The laser diodes
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Fig. 3.9 Emission spectrum of the light transmission illuminator NIR LEDs (left) and the NIR
laser modules (right), taken from the data sheet [65]

are TO-18 type (diameter 5.6 mm), and have a peak wavelength of 808 nm and an
optical output power of 300 mW. These laser diodes belong to Class 3B according
to the IEC 60825-1 standard [4]. The guidelines on laser health and safety require
that any direct exposure to the laser beam has to be avoided for this laser class. To be
compliant with these regulations, the housing of the scanner design is built in a way
to ensure that no exposure of the eyes to the laser beam is possible. The emission
spectrum of the laser diodes can be seen in Fig. 3.9 right. Note that their emission
spectrum is narrower than the spectrum of the LEDs facilitating the use of narrow
bandpass filters instead of NIR longpass filters, leading to further attenuation of the
ambient light. The main advantages of the laser diodes/laser modules over the LEDs
are their higher optical output power and their narrow radiation half-angle. This
enables a higher degree of vertical finger movement without degrading the image
quality, which is especially important if a full touchless operation is desired. The
broad radiation half-angle of the LEDs leads to over-illuminated areas at the finger
outline while the contrast in the vein regions is decreased as soon as the finger is
not placed directly on top of the illuminator. Due to the narrow radiation half-angle
of the laser modules (note that the laser diodes itself do not have such a narrow
radiation angle, instead the focus adjustable lens included in the housing makes such
a narrow angle possible), the main part of the luminous flux stays inside the centre
regions of the finger (where most of the veins are) and thus the contrast in these
regions remains stable if the finger is moved upwards (away from the illuminator).
Figure3.10 shows a comparison between the LED (left) and the laser module (right)
based scanner. It can be clearly seen that for the LED version the contrast gets lower
the further away the finger is from the illuminator while it remains high for the laser
module based version. The disadvantage of using laser modules instead of LEDs is
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0 mm 20 mm 40 mm 0 mm 20 mm 40 mm

LED laser

Fig. 3.10 Finger vein images capturedwith our scanners showing illumination issues due to vertical
finger movement (0, 20 and 40mm away from the scanner surface): note the bright areas along the
finger boundaries and the reduced contrast of the vein region the further away the finger gets from
the scanner surface for the LED scanner images (left) compared to the laser scanner ones (right)
(image originally published in [12], c©2018 IEEE)

their high price. A single laser module is about 15–20 times more expensive than a
single LED. In non-contactless operation, the image quality of the laser modules is
only slightly better compared to LEDs. Hence, for the current version of the scanner,
we recommend the LED-based version to cut down costs. If the scanner design is
adopted towards a touchless version, laser modules are the preferred option.

3.3.4 Reflected Light Illuminator

The reflected light illuminator is composed of three different types of LEDs, 850nm
(Osram SFH 4550 LEDs [66] with a radiation half-angle of ±3◦ and a max. radiant
intensity of 700 mW/sr), 950nm (Vishay Semiconductors CQY 99 [69] with a radi-
ation half-angle of ±22◦ and a max. radiant intensity of 35 mW/sr) and warm white
daylight ones (Luckylight 504WC2E-W6-3PC [61] with a radiation half-angle of
±15◦ and a typical luminous intensity of 23000 mcd), eight pieces each. These three
types of LEDs are all standard, low-cost electronic parts. The two NIR types have
peak wavelengths that are within the recommended spectrum for vascular pattern
recognition and the warm white daylight one is commonly used in many different
applications. The LEDs are mounted in a circle on the reflected light illuminator
bracket (depictedn in Fig. 3.11), situated on top of the scanner device around the
camera lens. The LEDs are arranged in an alternating manner, i.e. each 850nm LED
is followed by a 950nm one, then a warm white one, then a 850nm one and so on.
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Fig. 3.11 Reflected light illuminator: 850, 950 nm and warm white daylight LEDs are arranged
in an alternating manner around a circle. The camera lens is put through the circular hole in the
middle of the bracket

This design turned out to be optimal in terms of uniform illumination regardless
which of the three illuminators is turned on. Each of the 850nm and the 950nm
eight tuples of LEDs can be brightness controlled separately, but not each individual
LED. The warm white daylight LEDs can only be turned on at a fixed intensity (no
brightness control). The reflected light illuminator enables the capturing of reflected
light finger vein images. The warm white daylight LEDs are mainly meant for use
during adjusting and testing and not during finger vein image acquisition. However,
they can be utilised to capture additional finger texture images.

Fig. 3.12 Illuminator brightness control board prototype, left: LED version, right: laser module
version
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3.3.5 Illuminator Brightness Control Board

Figure3.12 (left: LED version, right: laser module version) shows an image of
the first prototype brightness control PCB board built using THT (through-hole-
technology) parts. The final version is based on SMD (surface-mounted device) parts.
Its two main components are an Arduino Nano board [48] and a Texas Instruments
TLC59401/TLC5940PWP [68] (the THT version of the board uses the old version,
the TLC5940). The Arduino Nano is a complete, breadboard-friendly microcon-
troller development board based on the Microchip ATmega328P microcontroller
[63], including an integrated USB to UART converter and several external compo-
nents necessary to operate the ATmega328P. The ATmega328P offers several built-in
components, like analog and digital outputs, timers, UART, I2C, SPI Interface, etc.
Most important for our application are the six PWM outputs and the UART inter-
face. More details on the ATmega328P can be found in the data sheet [62]. The Texas
Instruments TLC5940 is an integrated 16-channel LED driver with dot correction
and greyscale PWM control enabling a convenient brightness control of LEDs with-
out the need for external components like dropping resistors. Each output can be
controlled separately (4096 steps) and has a drive capability of 120 mA. It operates
as a constant-current sink and the desired current can be set using only one external
resistor. It is controlled using a serial data interface. As every single LED of the three
stripes of eight LEDs each (24 LEDs in total) is desired to be controlled individually,
two of these TLC5940 are equipped on the LED version of the control board as each
TLC5940 has 16 outputs. In Fig. 3.13, a schematic overview of the control board
is depicted. The control board is connected to the PC over the USB interface. The
data sent over USB is converted to UART compatible data, received by the Arduino
Nano (or the ATmega328P to be precise) which controls the 2 TLC5940s. Each
output of the TLC5940 is directly connected to an LED. The LED and the laser
module version differ. The laser modules exhibit a higher current consumption than

Arduino Nano

ATmega
328P

USB-
UART

Converter

TLC59401

LED1 ... LEDn

Light Transmission
Illuminator

IRF510
MOSFETs

LED Ring 1-3:
850 nm
950 nm
Daylight

Reflected Light
Illuminators

PWM

PC (USB)

Laser1 ...
Lasern

PNP
Transistors

PWM

PWM

LED Version Laser Version

Fig. 3.13 Schematic structure of the control PCB

Chapter 3. Publications

140



100 C. Kauba et al.

the LEDs that would exceed the maximum of 120 mA provided by the TLC5940.
Thus, external PNP transistors (CDIL BC327-25 [49] for the THT version of the
board and ON Semiconductor BC808-25 SMD [64] for the final SMD version) in
combination with suitable base dropping resistors are added. The laser modules are
not directly connected to the TLC5940 but to the PNP transistors. The laser module
version has only one TLC5940 as there are 15 laser modules in total (compared to the
LED version with 24 LEDs). Furthermore, two of the PWM outputs on the Arduino
Nano board are used to brightness control the reflected light illuminator. One digital
output is utilised to turn the warm white daylight reflected light illuminator on and
off. There are additional N-Channel MOSFETs (International Rectifier IRF510 [70]
for the THT version and Alpha&Omega Semiconductor AO3418 [47] for the final
SMD version) and dropping resistors on both versions of the control board for the
reflected light illuminators. The complete schematic and board layout as well as all
data sheets for the final SMD version can be found in our public repository.

3.3.5.1 Arduino Firmware

The Arduino Nano or to be more precise the ATmega328P microcontroller on which
it is based can be programmed in several different programming languages and
development environments. We decided to use C++ together with the Arduino IDE
to be able to utilise all the convenient Arduino libraries. There is a library for the
TLC5940 included in the Arduino framework. Using this library the TLC5940 can
be easily interfaced and controlled. It handles the serial protocol of the TLC5940 and
setting/receiving of the brightness level values. It uses two out of the three internal
timers of the ATmega328P, so if the TLC5940 library is utilised, only two of the
six available PWM outputs on the Arduino Nano remain available for use (thus, we
went on without being able to brightness control the warm white daylight reflected
light in order to avoid adding another external hardware part). We implemented a
simple protocol to interface each of the individual LEDs/laser modules as well as the
reflected light illuminators, to set awhole stripe at once and to turn off all illuminators
again. The Arduino Nano is recognised as USB serial port on the PC and a fixed-
length text-based serial protocol, allowing for easy debugging, is used to send the
command to the brightness control board. Details about the protocol as well as the
brightness control board firmware can be found in our repository.

3.3.6 Finger Placement Unit

To provide an intuitive interaction with the scanner device and to help the capture
subject at positioning their fingers correctly, the scanner has a finger guide or a
finger placement unit. As the scanner captures the index, middle and ring fingers
simultaneously, it is important that all three fingers are aligned with the underneath
illumination stripes. This is especially important for the LED version of the scanner
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in order to avoid overexposed areas along the finger outline (refer to Sect. 3.3.3.2 for
details on the advantages of the lasers over the LEDs). The finger placement unit,
depicted in Fig. 3.14, is a custom-developed, 3D-printed part with three elliptically
shaped grooves, each with a rectangular hole in the centre of the groove which
is situated above the location where the LEDs or laser modules are placed. These
grooves guide the capture subject at placing their fingers correctly and enable a natural
and comfortable finger placement position during the capturing process, regardless if
the fingers are placed in palmar or dorsal direction. Moreover, the finger placement
unit was designed to prevent most kinds of finger misplacement, including tilts,
planar finger rotation, horizontal shifts and especially longitudinal finger rotation
by requiring the capture subject to place their finger flat on the placement unit with
the fingers aligned to the grooves. In addition, the placement unit has two walls in
between the index and middle and the middle and ring finger, respectively. These
walls in combination with the shape of the grooves lead to a slightly spread position
of the fingers, which makes an easy segmentation of the single fingers possible.
Moreover, they block the diffuse light emitted sideways from the fingerswhichwould
otherwise lead to overexposed areas along the finger boundaries. In order to arrive
at an optimal size and shape of the finger positioning support we performed several
tests with male and female subjects, different age groups and different ethnicities
(European,Asian,African). The current design is suitable for a broad range of people,
especially for the average European and also for most adult Asian people. However,
there might be some modifications necessary for younger Asian people with small
hands/fingers. As it is a 3D-printed part, these adjustments to better suit different
groups of people can be done easily. Note that adjustments have to be made to the
LED/laser mounting brackets (see Sect. 3.3.3) too if the finger placement unit is
changed.

3.3.7 Housing Parts

The housing for the PLUS OpenVein finger vein scanner was designed for two
reasons. The first version of the scanner did not include an NIR pass-through filter,
thus the housing was necessary to shield the scanner from the ambient light and
improve the image contrast. Second, the wooden housing serves as a frame for
mounting all the brackets and parts and putting the whole scanner assembly together.
The housing consists of four wooden parts: two side panels, one front panel and one
back panel which are connected using 3D-printed mounting brackets. The parts for
the LED-based version are shown in Fig. 3.15. The laser module based version ones
are not shown but only differ in their height (which are larger than the LED ones).
There is an additional 3D-printed housing to accommodate the brightness control
PCB which is mounted on the backplane (depicted in Fig. 3.5). The wooden parts
are cut out of 4mm plywood using a laser cutter. The current version of the scanner
includes an NIR pass-through filter, so the wooden housing is mainly for stability
and mounting reasons (except if the scanner is exposed to direct sunlight, then the
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Fig. 3.14 Finger placement unit: the finger-shaped grooves guide the capture subject in placing
their fingers correctly. The walls are blocking diffuse emitted light from adjacent fingers, the light
transmission illuminators are placed underneath the rectangular holes

Fig. 3.15 Housing parts of the LED-based scanner

housing is necessary to reduce the influence of the ambient light too). As studies
showed that the capture subjects’ acceptance and convenience is higher for scanner
devices built in a semi-open or fully openmanner, we are planning to design a second
version of the housing which has smaller side and front panels (semi-open design).
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3.3.8 Capturing Software

So far, all the hardware parts of the scanner including the brightness controller
firmware have been described. There is still one important thing missing, the scan-
ner control software for capturing actual finger vein images. Our control software is
based on the IDS Imaging uEye Software Suite [59] as the image sensor is an IDS
camera. Their framework is available for Windows- and Linux-based operating sys-
tems. We implemented our capturing software for Windows using C# and Microsoft
Visual Studio 2015. A screenshot of the capturing software can be seen in Fig. 3.16.
Its functionality can be divided into four main parts:

1. Initial scanner calibration: During initial scanner calibration the LED/laser mod-
ule centres are set with the help of 3D-printed calibration sticks. This is essential
for the automated brightness control algorithm to work correctly.

2. Setting camera parameters: Here several camera parameters, e.g. frame rate, white
balance, gain, pixel clock, exposure time, etc. can be set.

3. Controlling the illumination sources: the light sources (light transmission and
reflected light) can be either be controlled manually and individually or automat-
ically. The manual control is only meant for troubleshooting purposes and tests
while usually the automatic brightness control is applied.

4. Image capturing: The image capturing process is designed to be semi-automated
and convenient for a typical finger vein data collection. Some general settings, e.g.
the directory to save the captured images, which kind of images (dorsal/palmar,
left/right hand, light transmission/reflected light), howmany images per kind and
the desired average grey level can be set in advance. Then the session ID and the
subject ID are set. Afterwards a single image can be captured or a fully automatic
capturing run can be started. During the fully automatic capturing run, the desired
number of images is captured and the software prompts to pull the hand out of
the scanner and put it in again after each image. After all images per hand/side
are captured, the software prompts to insert the next hand or change the side of
the hand until all images for the current subject are captured. The illuminator
brightness is adjusted automatically before each captured image according to the
algorithm described in the following.

3.3.8.1 Automated Brightness Control Algorithm

In order to achieve an optimal image contrast especially in the vein regions, an auto-
matic brightness control algorithm was developed. This algorithm controls each of
the single light transmission illuminator LEDs/laser modules as well as the reflected
light illuminators as a whole. After several tests with different image qualities and
image contrastmetrics, we opted for a simple, iterative algorithmbased on a compari-
son against a target grey level. This algorithmworks as follows: at first, the LED/laser
centres have to be configured once as described below. This includes the determi-
nation of the area of influence for each LED/laser, which is the area in the image
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a single LED/laser illuminates (defined by a circle with a certain radius). Then all
LEDs/lasers are set to an initial intensity level/brightness value which is half of their
maximum intensity (Imax ). The live image of the camera is analysed and the current
grey level within the area of influence of each LED/laser is determined (GLcurrent )
and compared against the set target grey level (GLtarget ). The new brightness value
is then set according to In+1 = In + Icorr , where In+1 is the new intensity level, In
is the current intensity level and Icorr = GLtarget−GLcurrent

GLmax
· Imax

2·n , where GLmax is the
maximum grey value and n is the current iteration. The iteration stops if either the
target grey level GLtarget has been reached or if no more intensity change is possi-
ble. The algorithm finishes in at most log2(Imax ) iterations. Thus, it is fast enough
for real-time applications while preserving a good performance in terms of uniform
image contrast.

3.4 PLUSVein-FV3 Finger Vein Dataset

To demonstrate the high recognition performance that can be achieved by using our
proposed scanner design, we established a dataset using both of our scanners, the
LED-based version and the laser-based one. This dataset has already been published
[12] and is available at: http://www.wavelab.at/sources/PLUSVein-FV3/. The first
version contained dorsal finger vein images captured from 60 subjects, 6 fingers

Fig. 3.16 Main window of the PLUS OpenVein finger vein capturing software
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Fig. 3.17 PLUSVein-FV3 example images, top: laser module based scanner, bottom: LED-based
scanner

per subject and 5 images per finger in one session, summing up to a total of 3600
images from 360 individual fingers (1800 per scanner). Our scanners capture three
fingers at once, so the 3600 images are actually extracted from 1200 raw finger vein
images which were separated into three images corresponding to each individual
finger. Those single finger images have a resolution of 420 × 1024 pixels and are
stored in 8-bit greyscale png format. Some example images are shown in Fig. 3.17.
In our previous work [12], we reported the recognition performance numbers that
can be achieved using the dorsal images of our dataset, and thus our scanner design.
We arrived at EERs as low as 0.028% and 0.111% for MC [20]/PC [2] and a SIFT-
based approach [14], respectively, with these simple but well-established finger vein
recognition schemes. In the meanwhile, we extended the dataset to contain palmar
finger vein images captured from the same subjects too. Thus, it now includes a total
of 7200 images, 1800 per scanner and per view (palmar/dorsal). In another recently
published work [13], we compared the performance of palmar versus dorsal images.
We showed that the best view in terms of recognition accuracy depends on the feature
extraction algorithm, resulting in EER of 0.08% for the palmar images using MC
and an EER of 0.08% for the dorsal images using SIFT. These performance figures
approve the sophisticated and deliberate design of our finger vein scanners.

We are still extending our dataset in-house. The most recent version consists of
about 100 subjects so far. The main reason for open sourcing our finger vein scanner
design was to help other researchers working in the field of finger vein biometrics by
sharing our custom-developed scanner design with them. The secondmost important
reason is that we are interested in collaborations to extend our dataset and evolve it
to an extensive, open finger vein dataset available for research purposes. If there are
several reproductions of the scanner based on our design out there, every researcher
having such a scanner device at hand and interested in participating could just provide
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the captured vein images and we will then include them in a new release of the open
finger vein dataset.

We are currently discussing options for a suitable online platform to handle such
a collaboration efficiently as well as trying to clarify the legal aspects (the consent
forms have to include the right to merge the single datasets together which of course
includes sharing the finger vein data with other partners in different countries and
under different legislations) of sharing the finger vein images. We are confident that
these two issues can be resolved soon.

3.5 Conclusion

This chapter proposes a new finger vein scanner design. After the introduction, the
basic principle of a finger vein scanner is outlined, followed by a review on commer-
cial finger vein scanners, available researchfinger vein datasets and the corresponding
finger vein scanners used to establish these datasets. The main contribution of this
chapter are the details about our fully open-source, modular, multipurpose finger vein
scanner design. Our finger vein scanner design is based on commercial-off-the-shelf
parts, a custom-developed brightness control board and custom-designed 3D-printed
parts as well as laser-cut plywood parts. It is modular as each individual part can be
replaced, modified and improved easily. This scanner is the first finger vein scanner
that is able to capture reflected light as well as light transmission images.Moreover, it
is able to capture three fingers at once (index, middle and ring finger) from the dorsal
and palmar view (by rotating the hand around 180◦). Thus, we call it a multipurpose
finger vein scanner. Two different versions of the basic design are presented, one
based on a conventional NIR LED illuminator, the second one based on NIR laser
modules. Laser modules have not gotten much attention in finger vein recognition
so far, despite their advantages especially if it comes to touchless operation. All
the individual parts are described together with their design decisions. Our scanner
design is fully open source: all technical details of the scanner design, including data
sheets, parts lists, technical drawings and 3D models of the housing parts, firmware
and software together with detailed assembly and setup instructions can be found
in a public repository: http://www.wavelab.at/sources/PLUS-OpenVein. The use of
our scanner design and the reproduction of the finger vein scanner according to our
design is free of charge for research purposes. Thanks to our fully open-source design,
other researchers can easily reproduce our scanner and utilise this scanner for their
own finger vein data collection, meaning they are no longer dependent from publicly
available datasets. Moreover, they can contribute their modifications and improve-
ments to our scanner design as well. To confirm the decent recognition performance
that can be achieved using our scanner design, we established a dataset using our two
scanners. This dataset currently contains 7200 images from 360 individual fingers
and is publicly available for research purposes at: http://www.wavelab.at/sources/
PLUSVein-FV3.
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3.5.1 Future Work

Although the current scanner design has been proven to be competitive in terms of
recognition accuracy and usability, we still strive to improve it. The first improvement
will be a rather small one. We will replace the NIR pass-through filter with an NIR
bandpass filter for both versions of the scanner. This helps in further reducing the
influenceof the ambient light and is advantageous if it comes to the next improvement.
The next change to the scanner designwill include a removal of the side plates and the
front plate to arrive at a more open or at least semi-open design. Scanners designed
in an open manner have been shown to increase the capture subjects’ acceptability
and convenience. Instead of removing the side plates completely we are thinking of
making them only half of their current width such that the scanner becomes semi-
open while still retaining its mechanical stability. The second improvement we are
currently working on is the integration of the capturing software on a Raspberry
Pi microcomputer as a first step towards a stand-alone, embedded finger vein scan-
ner device which only requires an external power source but no additional PC for
acquiring the images. The next step towards this stand-alone design is an additional
touchscreen display, mounted at the front plate of the scanner device, connected to
the Raspberry Pi and used to control the whole data acquisition process. Thanks to
our fully open-source design, other researchers can contribute their modifications
and improvements to our scanner design too.

Furthermore, we plan to establish a comprehensive, publicly available finger vein
dataset for research purposes. Researchers who are interested in a contribution to
this new finger vein dataset can simply build a scanner based on our open-source
design, acquire finger vein images on their own and then contribute to the dataset
by providing us their captured finger vein data. Such an extensive, available, col-
laborative finger vein dataset will be beneficial for the whole finger vein research
community and is vital in order to achieve further progress in finger vein recognition.
We are currently also extending the first version of our already available finger vein
dataset in-house. Together with our partners and other researchers who are willing
to contribute and build a scanner based on our design, we are confident that we will
establish a comprehensive, open finger vein dataset fromwhich the whole finger vein
research community will benefit.
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Longitudinal Finger Rotation—Deformation
Detection and Correction

Bernhard Prommegger , Christof Kauba, Michael Linortner, and Andreas Uhl

Abstract—Finger vein biometrics is becoming more and more
popular. However, longitudinal finger rotation, which can easily
occur in practical applications, causes severe problems as the
resulting vein structure is deformed in a non-linear way. These
problems will become even more important in the future, as fin-
ger vein scanners are evolving toward contact-less acquisition.
This paper provides a systematic evaluation regarding the influ-
ence of longitudinal rotation on the performance of finger vein
recognition systems and the degree to which the deformations
can be corrected. It presents two novel approaches to correct the
longitudinal rotation, one based on the known rotation angle. The
second one compensates the rotational deformation by applying
a rotation correction in both directions using a pre-defined angle
combined with score level fusion and works without any knowl-
edge of the actual rotation angle. During the experiments, the
aforementioned approaches and two additional are applied: one
correcting the deformations based on an analysis of the geomet-
ric shape of the finger and the second one applying an elliptic
pattern normalization of the region of interest. The experimental
results confirm the negative impact of longitudinal rotation on the
recognition performance and prove that its correction noticeably
improves the performance again.

Index Terms—Finger vein recognition, longitudinal finger
rotation, finger rotation detection, finger rotation correction,
biometric fusion.

I. INTRODUCTION

VASCULAR pattern based biometric systems, commonly
denoted as vein biometrics, offer several advantages over

other well-established biometric recognition systems. In par-
ticular, hand and finger vein systems have become a serious
alternative to fingerprint based ones for several applications.
Vein based systems use the structure of the blood vessels inside
the human body, which becomes visible under near-infrared
(NIR) light. As the vein structure is located inside the human
body, it is resistant to abrasion and external influences on the
skin. Furthermore, a lifeness detection to detect presentation
attacks can be performed easily [1].
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The performance of finger vein recognition systems suffers
from different internal and external factors. Internal factors
include the design and configuration of the sensor itself, espe-
cially the NIR light source and the camera module. External
factors include environmental conditions (e.g., temperature and
humidity) and deformations due to misplacement of the fin-
ger, typically including shifts, tilt, bending and longitudinal
rotation which will be further examined in this work.

Performance degradations caused by various types of fin-
ger misplacement are not new and have been addressed in
several publications. The need for a robust finger vein image
normalisation including rotational alignment has already been
mentioned by Kumar and Zhou in 2012 [1]. Chen et al. [2]
state that deformation correction can be done either during
pre-processing, feature extraction or comparison. Moreover,
the physical design of the sensor can help to avoid mis-
placements of the finger. Prommegger et al. [3] showed,
that longitudinal finger rotation has a severe influence on the
recognition performance of a finger vein recognition system.
There are several approaches that try to reduce the influence
of these issues during the processing of the vein patterns.
Kumar and Zhou [1] introduced a finger alignment based
on the finger boundary to overcome finger translation and
rotation. Lee et al. [4] proposed a system utilizing a minu-
tia based alignment together with local binary patterns as
feature extraction method. Huang et al. [5] improved the
resistance against longitudinal rotation by applying an elliptic
pattern normalization to the input images. Matsuda et al. [6]
proposed a feature-point based recognition system introducing
a finger-shape model and a non-rigid registration method. They
achieved robustness against longitudinal rotation up to ±30◦.
Yang et al. [7] introduced a finger vein recognition framework
including an anatomy structure analysis based vein extraction
algorithm and integration matching strategy. Chen et al. [2]
introduced an approach that detects different types of fin-
ger deformation by analysing the shape of the finger, e.g.,
around the longitudinal axis, and corrects them using linear
and non-linear transformations. Besides these software based
solutions, there are some hardware-based ones which aim to
prevent finger misplacements in the first place, during acqui-
sition, rather than correcting them afterwards. Kauba et al. [8]
presented a finger vein scanner that captures three fingers
at once and requires the subject to place the fingers in a
flat, aligned position on a finger shaped guiding surface. This
reduces longitudinal finger rotation, planar finger rotation as
well as finger shifts to a minimum. To the best of our knowl-
edge, there is no method that satisfactory solves the problem

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

Longitudinal Finger Rotation—Deformation Detection and Correction

153



124 IEEE TRANSACTIONS ON BIOMETRICS, BEHAVIOR, AND IDENTITY SCIENCE, VOL. 1, NO. 2, APRIL 2019

of longitudinal finger rotation. Problems resulting from finger
misplacements, e.g., longitudinal rotation, will receive more
attention in the future as finger vein systems evolve towards
contact-less operation.

The main contribution of our work is the systematic anal-
ysis to which extent a longitudinal finger rotation can be
compensated and which impact such a correction has on the
recognition accuracy of the finger vein recognition system.
This analysis extends the authors previous work [3], [9].
Therefore, we evaluate four different methods to correct the
longitudinal rotaion, where the first and the last on are
proposed in this work:

1) A correction using the actual rotation angle provided
by the data set and a circular projective correction. This
approach has not been applied in finger vein recognition
and serves as a reference for the effectiveness of the
other rotation compensation methods.

2) A method proposed by Chen et al. [2] that analy-
ses the geometric shape of the finger and corrects the
deformations based on the results.

3) Elliptic pattern normalization of the region of interest as
proposed by Huang et al. [5].

4) A new method proposed in this article that compensates
the rotational deformations without the knowledge of the
actual rotation angle by applying a rotation correction in
both directions using a pre-defined angle combined with
score level fusion.

To verify the effectiveness of the proposed approach (4), it
is also applied on two commonly used finger vein data sets,
namely UTFVP [10] and SDUMLA-HMT [11].

The rest of this paper is organized as follows: Longitudinal
finger rotation and its problems caused for finger vein recog-
nition systems are described in more detail in Section II.
Section III explains all details of the used rotation compen-
sation methods. Section IV explains the processing tool-chain
and the used data set together with the experimental set-up.
Furthermore it includes the experimental results together with
a discussion. Section V concludes the paper along with an
outlook on future work.

II. LONGITUDINAL FINGER ROTATION

While capturing finger vein images, the finger’s placement
on the scanner is not necessarily done in an optimal way. Such
misplacements result in deformations of the vein structure,
affecting the performance of a finger vein recognition system.
Fig. 1 shows the orientations of the x, y and z axis with respect
to the finger. The different types of misplacements include:

• shifts of the finger in x- and y-direction (planar shifts)
• shifts of the finger in z-direction (distance to the camera,

scaling)
• planar rotation of the finger (in the xy-plane)
• tilts of the finger (finger tip and finger root are not in the

same xy-plane)
• finger bending and
• rotation around the longitudinal axis of the finger (y-axis).

As described in the authors’ previous work [3], some of the
problematic misplacements can be reduced or even completely

Fig. 1. Definition of the axes of a finger in a three-dimensional space.

Fig. 2. Finger rotation example using a commercial off-the-shelf scanner
(rotation counter-clockwise, originally published in [3]).

prevented during acquisition by adding simple support struc-
tures on the scanner, e.g., guiding walls to prevent planar
shifts. Moreover, they can be corrected by the biometric pro-
cessing chain during pre-processing (finger alignment during
ROI extraction) or feature extraction and comparison (using x-
and y-direction shifted and rotated versions of the extracted
templates). Almost all currently available commercial off-
the-shelf (COTS) sensors are equipped with such support
structures, but most of them are still not able to prevent
a rotation around the y-axis (longitudinal finger rotation).
Thus, longitudinal finger rotation cannot be ruled out and
poses a severe problem to finger vein recognition systems.
Fig. 2 shows an example of the longitudinal finger rotation
while using a COTS scanner. In a supervised acquisition sce-
nario, the user can be guided to place the finger correctly.
However, in unsupervised operation of the scanner, such lon-
gitudinal rotations are highly likely to occur. As finger vein
scanner development tends towards contact-less operation, the
problem of finger misplacement is getting more serious due the
increased degrees of freedom and the inability to use guiding
structures.

The captured vein structure is a projection of the vessel
structure in the 3D space onto a 2D plane. If the finger is
rotated along its longitudinal axis, the vein pattern is deformed
according to a non-linear transformation. Fig. 3. shows the
effect of longitudinal finger rotation on the vein pattern. The
finger cross section (top row) is rotated from −30◦ to +30◦. As
a result of this rotation, the projected pattern of the veins (bot-
tom row) changes as well. Depending on the relative position
of the veins to each other and the rotation angle, some of the
captured veins might merge into a single one. The vein struc-
tures of −30◦ (left), 0◦ (middle) and 30◦ (right) are completely
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Fig. 3. Longtitudinal finger rotation principle: A schematic finger cross section showing five veins (blue dots) rotated from −30◦ (left) to +30◦ (right) in 10◦
steps. The projection (bottom row) of the vein pattern is different according to the rotation angle following a non-linear transformation (originally published
in [3]).

different. Widely used vein recognition schemes can handle
such deformations only to a certain extent [3]. If the defor-
mations caused by the longitudinal rotation are corrected, the
negative impact can be reduced, but not completely mitigated.

III. FINGER ROTATION COMPENSATION

As longitudinal finger rotation decreases the performance
of a finger vein recognition system, it is beneficial to compen-
sate the deformations caused by this rotation. In this study,
four different approaches to tackle this problem are discussed
and analysed. The first approach which has not been applied
in finger vein recognition sp far assumes that the longitudi-
nal rotation angle is known and compensates the deformation
by applying a non-linear transformation in the opposite direc-
tion. This kind of analysis was only possible because the
PLUSVein Finger Rotation data set (PLUSVein-FR) provides
the actual angle of the longitudinal finger rotation. The results
of this method can be used as a reference for the evaluation
of the effectiveness of the other rotation correction methods
as the results of this method will be close to the possible
best achievable results. The second approach, proposed by
Chen et al. [2], tries to detect the finger rotation by analysing
the finger shape and again correcting it using a non-linear
transformation. The third method applies an elliptic pattern
normalization (EPN) [5] of the acquired image to reduce the
deformations. The last approach is a novel approach proposed
by the authors. It applies a rotation compensation in both direc-
tions using a fixed angle together with a maximum rule score
level fusion. Its main advantage is that no prior knowledge of
the actual rotation angle is required.

A. Rotation Compensation for Known Rotation Angle

For an accurate correction of the vein pattern the position
of the veins in the 2D image as well as the shape of the finger
and the depth of the veins within the finger has to be known.
As this information is not available in general, both need to be
estimated. We approximate the shape of the finger as a circle
like Matsuda et al. did in [6]. We further assume, that the
veins are located on the skin surface instead of underneath the
skin. Therefore, the vein pattern is projected back on the outer
circle of the finger. Fig. 4 depicts this principle. The left image
shows a schematic cross section of a finger acquired with a
longitudinal rotation ϕrotate = 25◦. The blue dots represent
the veins in their proper position, the red ones those that are
projected onto the skin. The bar below is a visualization of the

Fig. 4. Principle of rotation correction with known rotation angle. Left: fin-
ger rotated with 25◦. The blue points depict the veins inside the finger, the
red points the veins projected on the finger shape. The bar below is the pro-
jected vein pattern. Middle: the finger rotated into the palmar view. The bar
below is the rotation corrected vein pattern, which corresponds to the veins
estimated on the finger surface. On the right side the vein patterns are visu-
alized below each other. From top to bottom: rotated vein pattern, corrected
vein pattern, corrected pattern shifted for the highest correlation to the palmar
pattern (bottom row).

vein pattern, where the black areas correspond to the veins.
In the middle image, the finger is rotated back into the ideal
palmar position (ϕrotate = 0◦). It is clearly visible that the blue
and red dots are not perfectly aligned with each other. From
top to bottom, the right side shows the vein patterns of the
acquired image (same as on the left side), the rotated pattern
(same as in the middle), a shifted version of the rotated pattern
and the original pattern that would have been acquired without
the presence of longitudinal rotation. The rotation corrected
pattern is clearly more similar to the original pattern than the
acquired one. The additional shift is applied to achieve a higher
correlation between the corrected patterns and the original one.

The position of a pixel within the vein pattern is defined
by its x-coordinate xr and the corresponding y-coordinate yr,
which is calculated by (1)

yr =
√

r2 − x2
r (1)

where r is the approximated radius of the finger. r is half the
finger width, which corresponds to half of the height of the
extracted finger ROI. The rotation back into the palmar view
is calculated by applying the rotation matrix given in (2).

[
xp

yp

]
=

[
cos(−ϕrotate) −sin(−ϕrotate)

sin(−ϕrotate) cos(−ϕrotate)

]
∗

[
xr

yr

]
(2)

xp and yp are the corrected coordinates of the vein pixel in
the palmar view and ϕrotate is the rotation angle. If the veins
are located on the skin surface and the finger radius is known
exactly, this method is accurate. In practice, the blood vessels
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are inside the finger and the finger outline detection my not
be completely accurate, thus there remains a small deviation.

B. Geometric Shape Analysis Based Finger Rotation
Deformation Detection and Correction

Chen et al. [2] proposed a method to detect and cor-
rect finger deformations based on a geometric shape analysis
(GADC). They distinguished three types of finger defor-
mations: finger tilt, finger bending and longitudinal finger
rotation. In this work only longitudinal finger rotation, which
Chen et al. called a type 3 deformation, is discussed. For the
shape analysis they defined several parameters, on the basis of
which they calculated statistical measures of the finger. These
parameters are described in Section II of the original paper.
The detection of a type 3 deformation is based on the bending
at the proximal inter-phalangeal joint. If the absolute differ-
ence of the upper and lower angle of the finger outline at
the joint, αupp_joint1 and αdown_joint1, is larger than a defined
threshold t3rotate, a deformation of type 3 is present and the
image has to be corrected. The rotation correction is applied
either in the one or the other direction using a fixed sampling
scheme. Thus, the same fixed correction is applied indepen-
dent of the actual rotation angle. A detailed description of the
rotation detection and correction scheme can be found in [2].

C. Elliptic Pattern Normalization

Huang et al. [5] proposed a normalization of the vein pattern
in the feature space. The method is based on the hypothesis,
that the cross section of a finger approximately resembles an
ellipsis and that the veins which are captured by the finger
vein scanner are located close to the finger surface. Their nor-
malization essentially corresponds to a rolling of the finger,
which reduces the non-linear deformation of the vein struc-
ture across the entire width of the finger. After this correction
is applied, a horizontal shift of the images during compari-
son corresponds to a rotation of the finger. They applied the
elliptic normalization in the feature space using a vein pattern
based feature extraction. As this paper also investigates algo-
rithms that are not vein pattern based, an elliptic correction in
the feature space is not feasible for all of them. Therefore, the
correction is applied in the image space. This way the normal-
ization can be used for all algorithms under investigation. For
more details on this method, the interested reader is referred
to the original work [5].

D. Rotation Compensation Using a Fixed Angle

In real world scenarios, the longitudinal rotation angle is
unknown and its estimation is a difficult task. Hence, a method
that does not require the rotation angle to correct the images
would be beneficial. As shown in [3], commonly used recog-
nition schemes tolerate rotations of at least ±10◦. Thus, a
system that is able to keep the deformations caused by the
longitudinal rotation within this range is desirable.

The proposed method for correcting longitudinal finger rota-
tion is based on rotations of the image in both directions using
a fixed compensation angle. The final score is calculated using

Fig. 5. Deviation of the rotated finger to the palmar view with an correction
angle ϕcorr = 20◦.

a maximum rule score level fusion of the three comparisons
(original, non-rotated image and the two rotated versions).

It is assumed that the enrolment data is acquired in a
constrained environment. Thus, the longitudinal rotation of
the enrolment data should be close to 0◦. During the image
acquisition, the finger can be positioned either correctly (no
rotation) or rotated to the left or to right side. In order to reduce
the rotational deviation between the two samples, comparisons
using the captured sample itself with respect to the unmodi-
fied enrolled sample and its rotated versions in both directions
are applied. The angle of the applied rotation ϕcorr is defined
in advance. The applied rotation compensation is the same as
explained in Section III-A: the finger is approximated as a cir-
cle and the image is projected on this circle prior to applying
the rotation correction.

Fig. 5 illustrates how this approach reduces the rotational
deviation with ϕcorr = 20◦. The dashed cyan line shows the
deviation of the rotation for the original data. The dotted
grey lines represent the deviation of the data corrected with
±ϕcorr. The red line corresponds to the minimum deviation
of all images to the enrolled one. It can be seen that the
rotational angle of the sample compared to the original devi-
ation is reduced. For example, if the probe sample is rotated
ϕ = 30◦ from the enrolled sample, the following comparisons
are done:

1) The probe sample against the unmodified enrolled sam-
ple: rotation angle between the compared images: 30◦.

2) The probe sample against the enrolled image rotated
with ϕcorr: rotation angle of −ϕ+ϕcorr = −30◦+20◦ =
10◦.

3) The probe sample against the enrolled image rotated
with −ϕcorr: rotation angle of −ϕ − ϕcorr = −30◦ −
20◦ = 50◦.

If ϕcorr = 20◦, the deviation does not exceed 10◦ if the rotation
angle stays within a range of ±30◦. This deviation can be
handled by commonly used recognition schemes and thus, the
performance degradation can be kept at an acceptable level.
The best choice for ϕcorr depends on the actual application
and the scanner device. The useful range of ϕcorr is in the
range of 5◦ to 25◦ for most applications.
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Fig. 6. Basic principle of the multi-perspective finger vein scanner used to
acquire the PLUSVein-FR data set (originally published in [9], c© 2018 IEEE).

IV. EXPERIMENTS

During the experiments, the four rotation compensation
approaches described in Section III are applied on the
PLUSVein finger rotation data set, which is described in
the following subsection. Furthermore, to verify effective-
ness of the proposed fixed angle method, it is applied on
the publicly available finger vein data sets UTFVP [10] und
SDUMLA-HMT [11].

A. PLUSVein Finger Rotation Data Set

The PLUSVein Finger rotation data set (PLUSVein-FR) has
been acquired using a custom designed multi-perspective fin-
ger vein scanner as depicted in Fig. 6. It provides finger vein
images all around the finger (360◦) with a resolution of 1◦. The
finger is placed in the center of the scanner (axis of rotation),
whereas the NIR camera (right side) and the NIR illumina-
tion unit (left side) are placed on opposite sides of the finger
(light transmission). The different projections of the finger are
acquired by rotating the camera and the illumination module
around the finger.

The data set contains finger images captured from 63 dif-
ferent subjects, 4 fingers per subject, which sums up to a
total of 252 unique fingers. Each finger is acquired 5 times.
This results in 1.260 images per perspective. In this work,
we use the perspectives in the range of ±45◦ around the pal-
mar view in steps of 1◦. For more details on the data set
and the multi-perspective finger vein scanner, the interested
reader is referred to the authors previous publications [3], [9].
The data set is publicly available for research purposes at
http://wavelab.at/sources/PLUSVein-FingerRotationDataSet.

B. Recognition Tool-Chain

The components of the recognition tool-chain are visual-
ized in Fig. 7, which are the same as in the authors previous
work [9]: First, the biometric trait is acquired by the multi-
perspective finger vein scanner as a video sequence. The
subsequent tool-chain consists of pre-processing (ROI (region

Fig. 7. Basic components of a biometric recognition system (originally
published in [3]).

of interest) extraction and image enhancement), feature extrac-
tion and comparison. At first the frames corresponding to 1◦
steps are extracted from the video sequences. Afterwards each
image is processed individually: the ROI is extracted and
the finger outline is detected using an edge detection algo-
rithm. Then a straight line is fitted to the center of the finger.
Based on this line, the finger is aligned (rotated and verti-
cally shifted) such that it is in horizontal position and the
center line of the finger is in the middle of the image. The
area outside of the finger lines is masked out (pixels set to
black). Afterwards, the image is cut to a pre-defined length
of 1100 pixels. The height of the finger is normalized to
a height of 300 pixels throughout the whole length of the
finger image. To avoid artifacts at the image borders, 10 pix-
els are cut off on each side. The resulting ROI has a size
of 280×1080 pixels. Fig. 8 visualizes this process. The top
image shows the finger with the center and finger lines, the
bottom image shows the final ROI. Furthermore, to improve
the visibility of the vein patterns High Frequency Emphasis
Filtering (HFE) [12], Circular Gabor Filter (CGF) [13] and
simple CLAHE (local histogram equalisation) [14] are used
as pre-processing techniques. For more details on the pre-
processing methods refer to [15]. This study compares four
simple and one advanced vein pattern based feature extraction
methods which is based on the analysis of the anatomy struc-
ture of the veins. Maximum Curvature (MC) [16], Principal
Curvature (PC) [17], Wide Line Detector (WLD) [5] and
Gabor Filter (GF) [1] aim to extract the vein pattern from
the background resulting in a binary image, followed by a
comparison of these binary images. Comparing the binary fea-
ture images is done using a correlation measure, calculated
between the input images and in x- and y-direction shifted
and rotated versions of the reference image. The more sophis-
ticated vein pattern based method, Finger Vein Recognition
With Anatomy Structure Analysis (ASAVE), proposed by
Yang et al. [7], is a finger vein recognition framework which
includes an anatomy structure analysis based vein extraction
algorithm and an integration matching strategy. In addition,
two keypoint based recognition schemes, a SIFT [15] based
technique with additional keypoint filtering and Deformation-
Tolerant Feature-Point Matching (DTFPM) proposed by
Matsuda et al. [6] are evaluated.
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Fig. 8. ROI extraction - top: finger line detection. The straight line in the
middle represents the center of the finger at which it is horizontally aligned.
The top and bottom lines are the detected finger outlines which separate the
finger from the background. The region between the lines is regarded as finger
region. Bottom: the finger region is transformed to a fixed height. Afterwards
the ROI, visualized as white square, of a fixed size is cut out.

TABLE I
NUMBER OF COMPARISONS FOR EACH SUBSETS

C. Evaluation Protocol

To quantify the performance, the EER, the FMR100 (the
lowest FNMR for FMR ≤ 1%), the FMR1000 (the lowest
FNMR for FMR ≤ 0,1%) as well as the ZeroFMR (the low-
est FNMR for FMR = 0%) are used. The data set is divided
into two roughly equal sized subsets. The division is based on
the contained subjects, i.e., all fingers of the same person are
in one subset. Each subset is used to determine the parame-
ters which are then applied to the other subset. This ensures a
100% separation of the data used for determining the optimal
parameters and the actual test set. The evaluation within the
subsets follows the test protocol of the FVC2004 [18]: for cal-
culating the genuine scores, all possible genuine comparisons
are performed. For calculating the impostor scores, only the
first image of each finger is compared to the first image of all
other fingers. The resulting number of comparisons for both
subsets are listed in Table I. The final results are evaluated
based on the combined scores (genuine and impostor) of both
test runs. The parameter optimization is executed only for the
original, unmodified data set. The same parameter settings are
applied for all experiments on the modified versions of the
data sets too.

To quantify the decrease in performance for the rotated fin-
ger vein images, the relative performance degradation (RPD),
which is calculated as stated in equation (3), is used:

RPD = EERx − EERref

EERref
. (3)

EERref is the EER of the reference data set and EERx the
EER of the evaluated data set. A RPD of 0 means no change
in performance, a RPD of 1 corresponds to an EER increase

TABLE II
BASELINE PERFORMANCE RESULTS AT THE PALMAR VIEW FOR THE

DIFFERENT RECOGNITION SCHEMES ORDERED BY

RECOGNITION PERFORMANCE

to its doubled value. For a negative RPD, the performance
increased. For the evaluation of the performance increase due
to rotation correction, the relative performance increase (RPI)
as in equation (4) is calculated:

RPI = EERref − EERx

EERx
. (4)

Again, EERref is the EER of the reference data set and EERx

the EER of the evaluated data set. A RPI of 0 means no change
in the performance, a RPI of 1 corresponds to a drop in the
EER to half of its value. For a negative RPI, the performance
decreased. All values are given in percentage terms, e.g., 2.35
means 2.35%.

An implementation of the complete tool-chain as well
as the used configuration files and results (EER, FMR100,
FMR1000 and ZeroFMR) are available for download at:
http://www.wavelab.at/sources/Prommegger19a.

D. Baseline Results

In order to quantify the change of the recognition
performance due to rotation correction, the results of the
unmodified PLUSVein-FR are calculated. In finger vein recog-
nition usually the palmar perspective is used [10], [11],
[19]–[22]. The performance of the data set achieved at this
view is stated in Table II. The results are comparable to other
publicly available finger vein data sets: MC achieves the best
recognition rate with an EER of 0.37%, followed by PC,
DTFPM, WLD, GF and SIFT while ASAVE, with an EER
of 2.96%, performs worst.

The images captured at the different rotation angles from
−45◦ to 45◦ are compared to the palmar view (no rotation, 0◦).
The trend of the absolute EER is shown in Fig. 9. MC, PC
and WLD follow the same trend: They start at an EER < 1%
and keep quite a stable performance up to ±15◦, where their
EER is still < 1.5%. Higher rotations lead to a fast drop
of the performance. At a rotation of ±45◦, their EER is
> 40%. The trend of GF, the fourth of the simple vein pattern
based methods, is similar, but its performance degradation is
more prominent. Both keypoint based methods are more robust
against longitudinal rotation. DTFPM shows the overall best
performance and outperforms all vein pattern based methods
for rotation angles higher than ±30◦. At ±45◦ its EER is still
< 20%. SIFT outperforms the other methods starting at ±35◦
and achieves an EER of < 30% at ±45◦. The more sophisti-
cated ASAVE framework shows no advantage over the simple
vein pattern based methods: It starts at a higher baseline EER

Chapter 3. Publications

158



PROMMEGGER et al.: LONGITUDINAL FINGER ROTATION—DEFORMATION DETECTION AND CORRECTION 129

Fig. 9. Trend of the EER across the different rotation angles (0◦ corresponds
to the palmar view) for the original, unmodified data set from −45◦ to 45◦.

Fig. 10. ROI (left) and extracted MC features (right) of sample images of
the PLUSVein-FR. First row: palmar view (0◦), second row: 25◦ rotated view,
bottom row: rotation corrected version of the 25◦ rotated image.

of 3% and its performance degrades towards higher rotation
angles too, arriving at an EER of about 40% at ±45◦ as well.

As already shown in [3], all recognition schemes are able to
tolerate a longitudinal finger rotation up to ±10◦, while still
achieving an acceptable performance. The EER values as well
as the RPD for selected perspectives are stated in Table III.
This table lists the performance indicators for all applied rota-
tion correction methods and recognition schemes. The RPD
is always calculated with respect to the palmar view (0◦) of
the same recognition scheme and rotation correction method.
This allows a direct comparison of the different methods.
Since the recognition results for rotations in both directions are
almost symmetrical, the table only contains values for positive
rotation angles.

E. Rotation Compensation for Known Rotation Angle

As mentioned in Section IV-A, for the PLUSVein-FR the
exact angle of the longitudinal finger rotation is known. This
fact can be exploited to apply an actual correction of the lon-
gitudinal finger rotation as described in Section III-A. Fig. 10

Fig. 11. Trend of the EER across the different rotation angles applying
an exact longitudinal finger rotation compensation (0◦ corresponds to the
reference, palmar view) from −45◦ to 45◦.

depicts the ROI (left side) and the extracted MC features (right
side) for different views. The images in the top row are from
the palmar view, the middle shows the ones from a 25◦ rotated
finger and the bottom row its corrected version. It is clearly
visible that the vein structure of the rotated image (middle row)
is a deformed version of the palmar one (top row). The vein
structures of the rotation corrected images in the bottom row
are more similar to the palmar images than the uncorrected
ones. The part of the corrected ROI image that contains no
information (due to the transform) is filled with the average
grey level of the image.

Fig. 11 depicts the trend of the EER for the cor-
rected images. For all methods, the drop in the recognition
performance is less pronounced than without rotation com-
pensation. Again, MC, PC and WLD show a similar trend:
Up to a rotation angle of ±30◦ the EER stays below 3%.
Even for a rotation of ±45◦ their EER is still below 9%. The
performance of keypoint based algorithms increases as well,
but not to the same extent as for MC, PC and WLD. These
algorithms are already tolerant against longitudinal rotation,
and thus, the potential for improvement due to rotation cor-
rection is smaller. Neither DTFPM, nor SIFT outperform the
three simple vein pattern based methods. ASAVE benefits most
from this correction: With a maximum RPD of < 300% over
the whole range of ±45◦, it exhibits the lowest performance
degradation. Although, due to its low baseline performance, all
methods except SIFT and GF still outperform ASAVE in terms
of absolute EER. Again, GF shows the fastest performance
degradation among all algorithms. These results indicate, that
especially simple vein pattern based methods get the most
out of the longitudinal rotation compensation. They are even
able to outperform more sophisticated methods like DTFPM.
Keypoint based methods, which are robust against rotation to
some level, do only benefit from the correction to a small
extent.
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TABLE III
PERFORMANCE RESULTS IN TERMS OF EER AND RPD OF ALL CORRECTION METHODS AND RECOGNITION SCHEMES. THE RPD IS ALWAYS

CALCULATED WITH RESPECT TO THE PALMAR VIEW (0◦) OF THE SAME RECOGNITION SCHEME AND ROTATION CORRECTION METHOD. THE

HIGHLIGHTED RESULTS (BOLD FACE) REPRESENT THE BEST RECOGNITION RATES FOR A RECOGNITION SCHEME AT THE SPECIFIED ROTATION ANGLE

F. Rotation Compensation Using Geometric Shape Analysis
In this experiment, the performance of the method proposed

in [2] is analysed as described in Section III-B. As neither an

implementation nor the data set on which the shape analysis is
based are available, the results on the original data cannot be
reproduced. The main task of this approach is the detection of

Chapter 3. Publications

160



PROMMEGGER et al.: LONGITUDINAL FINGER ROTATION—DEFORMATION DETECTION AND CORRECTION 131

TABLE IV
ACCURACY OF JOINT DETECTION USING A SLIDING WINDOW APPROACH

AS PROPOSED IN [23]. THE PERCENTAGE IS THE DEVIATION OF THE

DETECTED JOINT RELATIVE TO THE GROUND TRUTH WITH

RESPECT TO THE LENGTH OF THE FINGER

TABLE V
STATISTICAL DATA OF THE FINGER GEOMETRY ON THE PLUSVEIN-FR

DATA SET AS DEFINED IN TABLE 2 OF [2]

the finger lines and joints. For the joint detection, Chen et al.
used a sliding window approach presented in [23]. As this
algorithm did not provide satisfactory results for our data set,
the joints as well as the roots and tips of the finger were
marked manually. When comparing the manually determined
values with those of the sliding window approach, large devi-
ations are noticeable. Table IV states the results in detail. For
joint 1 (proximal inter-phalangeal joint), 75% of the detected
joints are within a range of 5% of the length of the finger
(distance between finger root and -tip), for joint 2 (distal inter-
phalangeal joint) only 52% are within this range. For joint 1
and joint 2, around 9% and nearly 8% of the detected joint
positions are more than 20% off from the manually selected
position, respectively.

The statistical measures obtained for the PLUSVein-FR are
depicted in Table V. The values differ from the ones by
Chen et al., especially the angle α at the proximal inter-
phalangeal joint is larger. The standard deviations differ as
well: For the distance and diameter ratio values (rroot−tip,
rjoints, rjoint1−tip and rroot−joint1), the obtained one is 10 times
higher, for α it is more than 10 times lower. These differences
might result from the difference in the number of subjects and
the subjects’ ethnicity. Their data set consists of 12 Asian sub-
jects (6 female and 6 male) only, whereas the PLUSVein-FR
consists of 63 (27 female, 36 men) mainly European people.

Based on this statistical data, the geometric finger analysis
to detect the finger rotation is executed for all rotation angles.

Fig. 12. Number of images with a detected longitudinal finger rotation (type 3
deformation) using the method presented in [2]. Left y-axis: absolute number
of deformed images detected, right y-axis: value in percent (the total number
of images is 1260).

Fig. 12 illustrates the number of detected images exhibiting
longitudinal finger rotation. At a rotation angle of ±30◦, less
than 6% of the input images are detected as rotated, whereas
for more than 2% a wrong (opposite direction) rotation is
detected. Even at ±45◦ only 12% of the images are classi-
fied to contain a type 3 deformation. Thus, this method is
clearly not applicable to the PLUSVein-FR. One reason there-
fore might be due to the placement of the finger. Chen et al.
used a device where the finger is placed over its entire length
on the scanner, while the PLUSVein-FR was captured with
a device where only the fingertip and the finger trunk rests.
The rest of the finger does not touch any part of the scanner.
When placing a finger onto a surface, the finger is slightly
deformed. This deformation influences the geometric proper-
ties on which Chen et al.’s algorithm is based. Due to the
improper rotation detection, the recognition performance is
not significantly improved compared to the unmodified data
set. On the contrary, the performance even slightly decreases.
This result seems to be valid as, e.g., for the SDUMLA-HMT
Chen et al. only achieved an average RPI of 22% over all 7
investigated algorithms when applying corrections for all three
analysed finger deformations. For MC, the RPI was 7% only
(the EER decreased from 2.44% to 2.38%). These results indi-
cate, that the performance gain will be even smaller if only a
single correction is applied. The trend for GADC is basically
the same as for the baseline results in Fig. 9, hence there is no
separate visualization for GADC. However, the performance
trend for GADC is depicted in the plots of Fig. 17, where all
recognition schemes are compared.

G. Rotation Compensation Using Elliptic Pattern
Normalization

In this part of the experiment, the EPN as proposed by
Huang et al. [5] and described in Section III-C is applied.
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Fig. 13. Trend of the EER across the different rotation angles after applying
EPN in the range of −45◦ to 45◦.

Fig. 13 depicts the trend of the EER for elliptic input image
normalization. The area in which the performance remains
almost stable becomes larger for all recognition schemes.
All algorithms, but especially MC, PC and WLD, show an
increased robustness against longitudinal rotation. For MC,
PC and WLD, the point at which the performance begins
to degrade sharply, shifts to > ±30◦ and to > ±25◦ for
GF. For DTFPM and SIFT, the performance curve flattens
out compared to the unmodified data set. The same holds
for ASAVE, which achieves the worst performance in terms
of EER.

H. Rotation Compensation Using a Fixed Rotation Angle

The last part of the experiments is devoted to the analy-
sis of the proposed rotation compensation method based on
a fixed rotation angle as described in Section III-D. The top
plot of Fig. 14 shows the functional principle using MC fea-
tures for ϕcorr = 20. It shows five different lines: one line
for the trend of the EER of the unmodified data set, two
lines for the ±ϕcorr rotated images, the result of the maxi-
mum rule score level fusion from the original and the two
fixed angle corrected scores and as a reference and a line for
the performance using the known rotation angle for correction.
Within the region of ±ϕcorr, the fused results are equal to the
exact correction. Outside this region they stick to the angle
corrected lines. That the performance of the proposed method
is close to the performance of the known angle approach con-
firms the effectiveness of the approach. To show the influence
of the pre-defined rotation angle ϕcorr on the results, it is var-
ied between 5◦, 10◦, 15◦, 20◦ and 25◦ and applied on the
PLUSVein-FR. The results are visualized in the bottom plot
of Fig. 14: in essence, all curves follow the same trend, but
the rotation angle at which the performance starts to decrease
rapidly rises with an increasing ϕcorr.

Fig. 14. Trend of the EER across the different perspectives applying a
rotation compensation using a fixed rotation angle using MC features. Top:
details for ϕ = 20◦, bottom: the influence of varying ϕ from 5◦ to 25◦ in
steps of 5◦.

In the next experiment, the proposed fixed angle approach
is applied on two different data sets with a correction angle
of ϕcorr = 20◦: first to the original PLUSVein-FR and second
to the PLUSVein-FR after elliptical pattern normalization has
been performed. As all analysed recognition schemes are able
to tolerate rotations to at least ±10◦ a ϕcorr of 20◦ is chosen,
which keeps the effective rotation angle below 10◦ within a
range of ±30◦. Fig. 15 shows the results for both data sets.
The top plot visualizes the EER values for the original data
set. By applying the proposed approach, all evaluated recogni-
tion schemes achieve superior results compared to the original
data set. The performance degradation is slower which, leading
to flatter EER curves. Especially vein pattern based methods,

Chapter 3. Publications

162



PROMMEGGER et al.: LONGITUDINAL FINGER ROTATION—DEFORMATION DETECTION AND CORRECTION 133

Fig. 15. Trend of the EER across the different perspectives applying a rota-
tion compensation using a fixed rotation angle using MC features. Top: fixed
angle compensation ϕ = 20◦, bottom: fixed angle compensation combined
with EPN.

namely MC, PC and WLD, benefit from this approach: there is
no sharp drop in their performance any more: PC’s EER stays
below 10% over the whole range, MC’s and WLD’s below
14%. DTFPM achieves an EER just above 15% at ±45◦,
which is worse than the vein pattern based methods. SIFT
and ASAVE arrive at EERs around 25%, GF at less than 35%
for this rotation angle. The results for applying the proposed
method together with EPN, which are depicted at the bottom
of Fig. 15, are even superior. The curves are flatter compared
to the original data set. The EER for PC stays below 5% over
the whole range of ±45◦, for MC and WLD below 10%, for
DTFPM below 15% and for GF and SIFT below 20%. For the
worst-performing algorithm, ASAVE, the EER only slightly
exceeds 20%.

TABLE VI
EVALUATION RESULTS FOR THE METHOD PROPOSED IN SECTION III-D

ON THE UTFVP DATA SET

I. Verification of the Fixed Rotation Angle Approach

To verify the effectiveness of the proposed fixed angle
approach, it is applied on the publicly available UTFVP [10]
and SDUMLA-HMT [11] data sets. Both data sets consist
of finger vein images acquired from the palmar perspective.
Again, we use the original data set and its elliptic normalized
version during the experiments. ϕcorr is varied from 5◦ to 45◦
in steps of 5◦. This part of the experiment is only performed
for MC features.

By visual inspection, the UTFVP data set seems to exhibit
little to no longitudinal rotation, whereas the extent of longi-
tudinal finger rotation within SDUMLA-HMT seems to be
higher. Table VI lists the results for the UTFVP data set.
The baseline EER without any rotation correction is 0.38%.
Using the fixed angle correction approach, the EER reaches
its minimum of 0.14% for ϕcorr = 10◦ and keeps below
0.34% until ϕcorr ≤ 30◦. With a further increase of ϕcorr,
the performance drops faster and hits an EER of 7.39%.
FMR100, FMR1000 and ZeroFMR follow approximately the
same trend. The last column shows the RPI with respect to
the baseline EER. At its maximum, the relative performance
increase is 175%. By applying EPN on the data set the EER
without fixed angle correction arrives at 0.35%, correspond-
ing to an RPI of 20% compared to the baseline performance
on the unchanged data set. When combining both meth-
ods, the best result with an EER of 0.17% is achieved for
ϕcorr = 5◦. This corresponds to an RPI of 100% and 145%
compared to the elliptic normalized data set without fixed
angle correction and to the original unmodified data set,
respectively.

The results for the SDUMLA-HMT data set are listed in
Table VII. The baseline EER is 4.19% for the unmodified data
set. By applying the proposed approach with increasing ϕcorr,
the EER steadily drops until ϕcorr = 25◦ where it reaches
its minimum of 1.62%. If ϕ is further increased, the EER
increases rapidly to an EER around 9.5%. Again, FMR100,
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TABLE VII
EVALUATION RESULTS FOR THE METHOD PROPOSED IN SECTION III-D

ON THE SDUMLA-HMT DATA SET

FMR1000 and ZeroFMR show approximately the same trend.
The maximum RPI is 158% for ϕcorr = 25◦. By applying EPN
on the data set, the EER arrives at 2.18%, which corresponds
to an RPI of 92% compared to the baseline performance.
Combining both methods further improves the results, hitting
the best performance at ϕcorr = 25◦ with an EER of 1.05%.
The resulting RPI is 109% and 300% with respect to the ellip-
tic normalized data set and to the original unmodified data set,
respectively.

As the rotation angle of 25◦, where the best result is
achieved, seems to be relatively high, we checked the result
for plausibility by visually inspecting the images manually. It
turned out that there are quite a view samples exhibiting a
high degree of longitudinal rotation. Fig. 16 shows such an
example (sample number 2 and 3 of the left ring finger from
subject #6). The top row shows the original images from the
data set. It is clearly visible that the two finger images are
rotated versions of each other. The second and third row show
the ROI of the left and right sample, respectively. The bottom
row is the rotation corrected right image using a rotation angle
of 25◦. The vein pattern of the rotated version of the right
image is clearly more similar to sample #2 than the original
features of sample #3.

J. Comparison of Rotation Compensation Methods

To enable a better comparison of the different rotation cor-
rection approaches’ performance gain for each recognition
scheme, Fig. 17 depicts their trends grouped per scheme. As
all simple vein pattern based methods (MC, PC, WLD, GF)
follow the same general behaviour, only MC is visualized.
Table VIII lists the EER and the RPI with respect to the base-
line performance of the unmodified data set at the palmar view
for all correction / recognition scheme combinations for some
selected perspectives.

The top-left figure gives the performance for MC. Like
all vein pattern based methods, MC highly benefits from the

Fig. 16. Example of two samples from the same finger of the SDUMLA-
HMT data set. Top row: original images, row 2: ROI and extracted features
from the left sample, row 3: right sample, bottom row: rotated version of the
right sample using a rotation angle of 25◦.

rotation compensation. Without rotation correction, MC is able
to achieve a relatively stable recognition rates up to a rotation
angle of ±15◦. For higher rotation angles, the performance
drops faster, and starts to drop rapidly at ±25◦. At ±45◦, the
EER is close to 45%. The recognition rate can be improved
noticeably by applying a correction based on the actual known
rotation angle. Hereby, the range, in which the performance
is stable can be increased to ±30◦. Even at ±45◦ the EER
is still around 10%, which corresponds to an RPI of 600%.
An application of GADC type 3 correction has no positive
effect at all. On the contrary, the performance even slightly
degrades. Similar to applying a correction using the known
rotation angle, also EPN extends the stable region. However,
starting at a rotation angle of ±30◦, the recognition rate starts
to decrease rapidly. Applying the proposed fixed angle method
with a pre-defined rotation correction angle of ϕcorr = 20◦
achieves similar results to the known angle method. The
best results are accomplished by combining the fixed angle
method with EPN. This combination even outperforms the
known angle correction method. The worst EER at −45◦
is still 8%.

The DTFPM results are visualized in the top-right subplot.
DTFPM is designed to be robust against longitudinal finger
rotation. As a result, all curves are shallowed compared to MC.
Even using the original, non-corrected data set yields EERs
of < 20% over the whole tested range. Applying a correc-
tion using the known rotation angle doubles the performance,
resulting in a maximum EER of about 10% at ±45◦. Again,
the application of GADC yields a slight deterioration of the
performance. Elliptic normalization, the fixed angle method
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Fig. 17. Trend of the EER across the different perspectives applying different rotation compensation approaches for the same recognition scheme. Top left:
MC, top right: DTFPM, bottom left: SIFT, bottom right: ASAVE.

and the combination of both are superior to no correction
but inferior to the known angle method. The proposed fixed
angle method achieves the best results among these methods
for DTFPM.

Similar to DTFPM, SIFT is more robust against longitu-
dinal finger rotation than vein pattern based methods. This
leads to a similar behaviour for the different correction meth-
ods, although with raised EER rates: A correction using
the known rotation angle flattens the EER curve, achiev-
ing an EER of just above 15% at ±45◦ (instead of 30%
without correction). GADC does not improve the results at
all. The proposed method also reduces the resulting EERs,
but not to the same extent as the known angle method.
EPN achieves roughly the same recognition rates as the

correction using the known angle. The combination of elliptic
normalization and the fixed angle method achieves the over-
all best results. The results are depicted in the bottom-left
plot.

The bottom-right chart shows the results for ASAVE. The
known angle correction achieves pretty stable results within
the range of ±40◦ with an EER below 8%. For higher rota-
tion angles the performance drops sharply until it reaches its
maximum EER of 15% at −45◦. Again, GADC does not
gain any performance increase compared to the performance
of the original data set. Elliptic normalization shallows the
EER curve and achieves EERs below 10% up to ±30◦. For
higher rotation angles its performance decreases rapidly and
arrives at an EER of 23% at ±45◦. The proposed method is
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TABLE VIII
PERFORMANCE RESULTS IN TERMS OF EER AND RPD OF ALL CORRECTION METHODS AND RECOGNITION SCHEMES. THE RPI IS ALWAYS

CALCULATED WITH RESPECT TO THE BASELINE PERFORMANCE OF THE UNMODIFIED DATA SET AT THE PALMAR VIEW FOR ALL CORRECTION /
RECOGNITION SCHEME COMBINATIONS. THE HIGHLIGHTED RESULTS (BOLD FACE) REPRESENT THE BEST RECOGNITION RATES

FOR A RECOGNITION SCHEME AT THE SPECIFIED ROTATION ANGLE

able to keep the recognition rates stable between ±20◦. For
higher rotation angles the performance degrades sharply. Once
more, the best results are achieved by using a combination

of EPN and the proposed method. Although, for ASAVE the
performance results in this case are noticeable worse compared
to the correction using the known angle.
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TABLE IX
RANKING OF THE ROTATION CORRECTION METHODS UNDER

INVESTIGATION BASED ON THE EXPERIMENTAL RESULTS

PER RECOGNITION SCHEME

K. Ranking of Rotation Correction Methods

Table IX gives the ranking of the applied rotation correc-
tion methods per recognition scheme. Regarding the single
approaches, the correction using the known rotation angle
achieves the best results. Although, in practical applications
the known angle method cannot be applied as the rota-
tion angle is usually not known. Thus, the most appropriate
approach is the proposed fixed angle method on its own.
However, a combination of the proposed approach and the
EPN further improves the results. Especially for vein pattern
based schemes, the results achieved by the proposed method
are only slightly worse than the known angle approach. Except
for SIFT, EPN on its own leads to inferior results compared
to the proposed method. GADC even degrades the recognition
rates compared to applying no correction.

The results of the different rotation correction approaches
indicate that simple vein pattern based methods get the most
out of rotation correction. MC, PC as well as WLD outper-
form all other recognition schemes after applying a rotation
compensation using the exact rotation angle, elliptic normal-
ization, the fixed angle method or a combination of the latter
two.

L. Runtime Evaluation for Fixed Angle Approach

The rotation correction introduces additional processing
steps. Thus, the runtime costs are relevant in a practical
application. As the rotation compensation is applied during
biometric enrolment, the additional cost are two comparisons
and the maximum rule score level fusion at the biometric
recognition. If the approach is combined with EPN, this step
needs to be considered too. Note, that the implementations
of the recognition algorithms used in these experiments are
not optimized for runtime performance. Hence, the deter-
mined durations are only indicators for the additional costs
imposed due to the proposed approach. Table X lists the aver-
age processing times for the different steps in the recognition
tool-chain. It can be seen that the additional runtime of the
steps added by this approach (two comparisons and the max-
imum score level fusion) is negligible compared to the other
steps. Therefore, the total duration, as shown in Table XI, is
only slightly higher. As the processing of the elliptical cor-
rection takes noticeably longer, its application increases the
overall duration perceptibly. The runtime analysis shows, that
the fixed angle correction approach on its own is suitable for
real-time applications.

TABLE X
THE AVERAGE TIME OF COST FOR EVERY RELEVANT STEP IN THE

RECOGNITION TOOL-CHAIN

TABLE XI
THE AVERAGE TIME OF COST FOR A SINGLE COMPARISON USING NO

ROTATION CORRECTION, THE FIXED ANGLE APPROACH AND THE

FIXED ANGLE APPROACH AFTER APPLYING EPN

V. CONCLUSION

We systematically investigated the extent to which longitu-
dinal finger rotation can be compensated and the impact of
the correction on the recognition accuracy of a finger vein
recognition system. Therefore, we evaluated two novel correc-
tion approaches and two other ones from the literature. The
first approach has not been applied to finger vein recogni-
tion before and exploits the fact that for the PLUSVein-FR
data set the angle of the longitudinal rotation is known. It
applies a rotation compensation using a circular projection
based on this known angle. As second approach we evalu-
ated a method proposed by Chen et al. [2] that analyses the
geometric shape of the finger and based on this results, detects
deformations and corrects them. The third approach applies an
elliptic pattern normalization as proposed in [5].

In real world scenarios the longitudinal rotation angle is
unknown and its estimation is a difficult task. The fourth
approach, is a novel method that is able to correct longitu-
dinal finger rotation deformation without any knowledge or
estimation of the actual angle of rotation, which is its main
advantage.

The results of the known angle approach showed that a
correction of the rotation is possible up to ±30◦, achieving
reasonable recognition results. It turned out that especially
vein pattern based algorithms, e.g., MC and PC, benefit from
this rotation correction. The approach based on the geometric
shape analysis, did not achieve satisfactory results on our data
set at all. By applying EPN, all recognition schemes under
investigation achieved superior results compared to applying
no correction. By successfully applying the newly proposed
fixed angle method on three different data sets (PLUSVein-FR,
UTFVP and SDUMLA-HMT), we confirmed its effectiveness.
The analysis of the computational cost showed, that the fixed
angle correction approach is also suitable for real-time appli-
cations. A combination with EPN further improved the results
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and achieved the best robustness against longitudinal finger
rotation for all recognition schemes. However, EPN is more
computational expensive than the proposed approach.

We further confirmed that simple, vein pattern based recog-
nition schemes in combination with our proposed correction
method outperform more sophisticated and complex recogni-
tion algorithms and rotation detection frameworks. For exam-
ple, PC with elliptic normalization and our proposed fixed
angle compensation approach reduces the impact of longitudi-
nal finger rotation noticeably. In biometrics there is a general
trend towards contact-less as well as on-the-move acquisition.
Hence, recognition tool-chains that are robust against differ-
ent finger misplacements and the resulting deformations will
become essential.

Our future work will include further analysis of deforma-
tions caused by different finger misplacements and the devel-
opment of methodologies improving the robustness against
them. Furthermore, we will analyse the presence of finger
rotation in commonly used publicly available finger vein
data sets.
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Chapter 10
Different Views on the Finger—
Score-Level Fusion in Multi-Perspective
Finger Vein Recognition

Bernhard Prommegger, Christof Kauba and Andreas Uhl

Abstract In finger vein recognition, the palmar view of the finger is used almost
exclusively, with some exceptions where the dorsal view is utilised. Only little atten-
tion has been paid to all other views around the finger’s longitudinal axis. We estab-
lished a multi-perspective finger vein dataset comprising of views all around the fin-
ger’s longitudinal axis, captured using our self-developed rotating multi-perspective
finger vein capture device. The performance of the single views is evaluated using
common finger vein recognition algorithms. Based on these single view scores, sev-
eral score-level fusion experiments involving different fusion strategies are carried
out in order to determine the best performing set of views and feature extraction
methods to be fused in terms of recognition accuracy while minimising the number
of views involved. Our experimental results show that the recognition performance
can be significantly improved over the best performing single view one with as few
as two views and two-feature extraction methods involved.
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10.1 Introduction

Finger vein recognition as one representative of vascular pattern biometrics deals
with the vascular pattern inside the fingers of a human. Since one of the first men-
tions of finger veins as a biometric trait in academia by Kono [1] in 2000, they have
received much attention not only from academia but also from industry. Commercial
off-the-shelf (COTS) finger vein capture devices, as well as most research papers
solely, use the palmar (front side of the finger) view in combination with light trans-
mission (the light source and the image sensor are placed on opposite sides of the
finger) as illumination source. Multi-perspective finger vein recognition deals with
two or more arbitrary perspectives around the finger’s longitudinal axis. Despite the
advantages of multi-perspective finger vein biometrics over single view ones, these
additional perspectives have not got much attention so far. Moreover, there is no
publicly available multi-perspective finger vein dataset yet.

This chapter is based on our previous work [2] where we designed a novel, multi-
perspective finger vein capture device in order to establish the first multi-perspective
finger vein data set. This dataset comprises of images captured all around the finger’s
longitudinal axis in 1◦ steps.Basedon this dataset, eachof the different viewshas been
evaluated individually and some simple fusion experiments have been conducted.
The main focus of this chapter is on the fusion of multiple perspectives and feature
extractionmethods in order to determine the best performing combination in terms of
recognition accuracy by employing amore advancedmulti-sample score-level fusion
scheme as well as by applying further fusion strategies in terms of view and feature
combinations.Weanalyse all possible pairs and triples of perspectives and all possible
combinations of the used feature extraction methods. In addition, we combine the
best results of our multi-perspective and multi-algorithm fusion experiments to one
single combined fusion. Our main goal is to minimise the number of views and
feature extraction methods involved, while maximising the recognition accuracy. A
typical multi-perspective finger vein capture device contains one image sensor and
one light source situated at the right position per desired view. The more views are
to be captured, the more camera and illumination modules have to be equipped, thus
increasing the production costs, the complexity and the overall size of the finger
vein capture device. If the number of desired perspectives is further increased, the
construction of a suitable capture device is no longer feasible without the need of
rotating parts. Our current multi-perspective finger vein capture device is such a
rotating device, making it more susceptible to malfunctions and external influences
than a capture device containing no rotating parts. Moreover, the capturing time
is increased as the capture device has to rotate all around the finger. Hence, it is
beneficial to reduce the number of different views to be captured to a minimum in
order to reduce the complexity and production costs of the biometric capture device
and to avoid the need for a rotating device while still preserving the advantages of a
multi-perspective capture device.

The rest of this chapter is structured as follows: Sect. 10.2 starts with a description
of multi-perspective finger vein biometrics including related work regarding other
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views than the palmar and dorsal one in finger vein recognition.Ourmulti-perspective
finger vein capture device design is described in Sect. 10.3. Section10.4 introduces
our multi-perspective finger vein dataset captured with the aforementioned device.
Section10.5 gives an overview of biometric fusion in general followed by related
work on biometric fusion in finger vein recognition. Section10.6 explains our exper-
imental set-up, including the finger vein recognition tool chain as well as the fusion
framework we utilised and lists the experimental results, followed by a results dis-
cussion. Section10.7 concludes this paper an gives and outlook on future work.

10.2 Multi-perspective Finger Vein Biometrics

The majority of the available finger vein recognition schemes as well as all available
COTS finger vein capture devices deal with the palmar (also called ventral) view of
the finger. There are only some exceptions where the dorsal view is used. Raghaven-
dra and Busch [3] proposed the first dorsal finger vein acquisition and a complete
recognition tool chain including several different feature extraction schemes. In the
scope of the PROTECT project (http://www.projectprotect.eu), we acquired the first
publicly available dorsal finger vein dataset [4] using the predecessor of our open-
source finger vein capture device. In [5], we established a larger dorsal finger vein
dataset captured using both of our proposed open-source finger vein capture devices,
which design is decribed in Chap.3 of this book [6].

There are more views around the finger than the palmar and dorsal one that can
be captured. A single finger is an elliptical cylinder-shaped object, hence, there are
all possible views around its longitudinal axis (360◦ of rotation) available. Multi-
perspective finger vein recognition describes the use of two or more of these per-
spectives around the finger’s longitudinal axis. Multi-perspective finger vein recog-
nition has several advantages over the single perspective one: The vein patterns of
the palmar and dorsal view as well as of the perpendicular views are independent
from each other [7]. By fusing more than one perspective that is independent enough
from each other (i.e. the rotation angle between the single perspectives has to differ
enough for the perspectives to be independent of each other), the overall recognition
performance can be increased easily. Tome et al. [8, 9] showed that finger vein and
hand vein recognition systems are susceptible to a simple type of presentation attack.
By using a paper printout of the vein pattern, they were able to successfully spoof
several finger vein capture devices. This paper printout is a flat, 2D representation
of the vein pattern. If a biometric capture device takes finger vein images from dif-
ferent perspectives, such simple 2D printout attack finger vein presentation will not
be identified as bona fide finger vein presentation. Thus, a multi-perspective finger
vein capture device is successfully able to prevent this kind of presentation attack.
However, multi-perspective finger vein recognition bears some disadvantages too:
The biometric capture devices get more complex, either more than one camera and
illumination module are needed, or the capture device has to be build in a rotating
manner. This leads to higher production costs of multi-perspective capture devices
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and especially rotating capture devices are more error prone due to the moving parts.
Another disadvantage is the bigger size of a multi-perspective capture device com-
pared to single perspective ones. The multiple image sensors/illuminator modules or
the rotating parts need more space than just a single image sensor in combination
with one illumination module.

Lu et al. [10] proposed a multi-perspective finger vein recognition system using
two cameras. The cameras are placed at an angle of 60◦ next to each other, each
camera is located 30◦ apart from the palmar view. They applied feature—as well as
score-level fusion using the two views captured simultaneously by the two cameras
and were able to improve the recognition performance of the single view ones.
Zhang et al. [11] employed a binocular stereoscopic vision device to do 3D point
cloud matching of hand veins and knuckle shape. Their capture device set-up consist
of two cameras, placed in a relative position of about 45◦ next to each other, each one
equippedwith anNIR-pass filter. There is only a single light transmission illuminator
placed underneath the palm of the hand. The 3D point clouds are generated by
extracting information from the edges of the hand veins and knuckle shapes and then
compared utilising a kernel correlation method, especially designed for unstructured
3D point clouds. The authors claim that their proposed method is faster and more
accurate compared to 2D vein recognition schemes. In [12] the authors propose a 3D
hand vein capturing system based on a rotating platform and a fixed NIR camera. The
camera is located above the hand, the hand is put on a handle with an integrated light
transmission illuminator. This handle is mounted on a rotating plate. Then the plate
rotates around the z-axis. However, the degree of rotation is limited due to the limited
movement of the hand in this position. A 3D point cloud is generated from the single
view images and matched using kernel correlation. This should help to overcome
hand registration and posture change problems present in hand vein recognition if
only 2D vein patterns/images are available.

Nevertheless, truemulti-perspective finger vein recognition (evaluatingmore than
two different views around the finger) has not been investigated so far, except for
our previous work [2]. One reason herefore might be the lack of available multi-
perspective finger vein datasets. In order to acquire such a dataset a suitable biomet-
ric capture device, able to capture the different views to be acquired, is essential.
Capturing these additional perspectives could be done by utilising either a COTS
capture device or one of the capture devices proposed in other works by simply
turning the finger around its longitudinal axis. However, it is difficult to position the
finger in the correct rotational angle. Thus, rotating the finger itself implies the dis-
advantage of an inaccurate rotation angle and deviations in the rotation angle across
different iterations, leading to a low repeatability and a low quality dataset. In order
to acquire a suitable multi-perspective finger vein dataset comprising of images cap-
tured in several, defined perspectives, either a biometric capture device comprising
of several cameras and illumination modules, able to capture more than one view
simultaneously, or a rotating biometric capture device able to capture these views
consecutively, is necessary. If only a limited number of perspectives are involved, a
suitable biometric capture device canbebuiltwithout any rotating parts, just by equip-
ping an individual image sensor and an associated illumination module per desired
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Fig. 10.1 Multi-perspective finger vein set-up exhibiting three different perspectives based on three
image sensors and three illuminator modules

view (an example with three different views is shown in Fig. 10.1). The illumination
intensity has to be adjusted per view as the path to penetrate the finger is different
for each individual view, requiring a stronger or weaker illumination depending on
the distance. If more perspectives are desired, rotating the capture device around the
finger while the finger remains in a fixed position during the acquisition process is
the only feasible option.

The design and construction of a practicable biometric capture device is a com-
plex task. Furthermore, the actual data acquisition is a tedious and time-consuming
work. In our previous paper [2], we proposed a rotating multi-perspective finger vein
capture device that is able to capture the finger all around its longitudinal axis (360◦).
We established a multi-perspective finger vein dataset consisting of 252 individual
fingers. Based on this dataset, we evaluated the different views around the finger in 5◦
steps and concluded that the palmar followed by the dorsal one achieve the best sin-
gle view recognition performance. Moreover, we applied a simple score-level fusion
strategy and showed that the recognition performance can be improved by fusing
more than one view. This chapter is an extension of our previous work. Based on
our proposed multi-perspective finger vein capture device, we refine and extend our
previous results by the following:

• Improving the recognition tool chain to improve the single view results, espe-
cially the ROI extraction and by including a new recognition scheme proposed by
Matsuda et al. [13].

• Employing an advanced score-level fusion framework (BOSARIS [14]).
• Exploring different fusion strategies in terms of which views to include in the
fusion.

• Evaluating multi-algorithm fusion per view (fusion is done at score level).
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• Combining multi-perspective and multi-algorithm fusion.

The purpose of our evaluations is to maximise the recognition performance while
minimising the number of single views involved. If only a limited number of views is
involved, the capture device can be built without the need for any rotating parts just by
equipping an individual image sensors and an illuminationmodules per desired view.
A biometric capture device which relies on rotating parts is more error prone and
more susceptible to external influences, the rotation speed can vary due to increased
friction or it can be completely blocked if the finger is not properly inserted. The
rotating parts exhibit a higher wear than non-moving parts and are thus more prone
to failures. Moreover, the acquisition time of a rotating capture device is higher
compared to a non-rotating one as the device needs to rotate around the finger in
order to capture the different views. Furthermore, a capturing device exhibiting a
closed box design, where the capture subject has to put his finger into a “black
hole” poses psychological disadvantages and leads to discomfort. Hence, in practical
applications of multi-perspective finger vein biometrics only a capture device built
in a non-rotating and open manner is feasible. Consequently, we aim to identify the
best combination of two or three views to include in the fusion in order to build
such a multi-perspective finger vein capture device based on fixed, non-moving parts
only. Figure10.1 shows the schematic principle of such a capture device for three
perspectives: it consists of three independent image capturing pairs, each consisting
of its own NIR illumination module and NIR camera.

10.3 Multi-perspective Finger Vein Capture Device

In order to acquire a multi-perspective finger vein dataset, we designed a custom
finger vein capture device tailored to this purpose. For more details on the general
principle of a finger vein scanner and the vascular pattern recognition basics, the
interested reader is referred to our open finger vein scanner chapter [6] and the
introductory chapter [15] of this book, respectively. Ourmulti-perspective finger vein
capture device is able to capture images from all around the finger’s longitudinal axis
(360◦). An illustration of the unwrapped finger vein capture device with all its parts
labelled can be seen in Fig. 10.2. Its outside dimensions (of the aluminium frame
including the rotating part) are 258 × 325 × 455 mm (width × height × depth).
The rotating part (rotator) has a diameter of 380 mm. The device consists of an
aluminium frame, where the rotation motor and the control board are located and a
rotator, which rotates around the finger. The rotating part is connected to a stepping
motor by two cogwheels. These cogwheels have a gear ratio of 1:5/3 (motor to rotor).
The steppingmotor (SY42STH47-1684A [16]) which drives the rotator has 200 steps
per full rotation (1.8◦ per single step). We use a micro-stepping of 1/16, thus one
step corresponds to 0.0675◦. Hence, it is possible to capture a maximum of 5333
different perspectives of the finger. Located on the right side of the device is the
image sensor, an IDS Imaging UI-1240ML-NIR industrial NIR-enhanced camera
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[17]. It has a max. resolution of 1280 × 1024 pixels, a max. frame rate of 25 fps
and is equipped with a Fujiflim HF9HA-1b 9mm 2/3" wide-angle lens [18]. To
reduce the influence of ambient light, an additional NIR long-pass filter (MIDOPT
LP780 [19], with a cut-off wavelength of about 750 nm and a useful range of 780–
1000 nm) is mounted on top of the camera lens. The illumination module is located
on the opposite side of the image sensor (the left side in Fig. 10.2). Our multi-
perspective finger vein capture device is based on the light transmission principle.
Instead of typical NIR LEDs the illumination module consists of five NIR laser
modules with a peak emission wavelength of 808 nm placed in a strip. Laser diodes
have several advantages over LEDs, especially, if the finger is not placed directly
on top of the illumination module as mentioned in Chapter [6]. Due to the rotating
principle of the biometric capture device, it is not possible for the finger to touch
the illumination module, which prevents the use of LEDs without impacting the
image quality. Each laser module consists of a NIR laser diode, a control PCB for
the laser diode and a housing with a focus-adjustable lens. The plane of focus of
the laser modules is set at the axis of rotation where the finger is placed, leading
to the highest possible amount of illumination at the position of the finger. Each of
the laser modules can be brightness controlled separately (by adjusting the operating
current) and independently, enabling a uniform illumination along the whole finger.
The finger is put into the capture device at its axis of rotation (in the centre of the
image in Fig. 10.2). A fingertip stabiliser (a custom 3D printed part which inside is
shaped like the outside of a fingertip) is located at the inside bottom of the rotating
part and a height-adjustable finger trunk stabiliser, which is basically a wooden plate
with a hole in the middle is located above the rotating part. These finger stabilisers
help to reduce fingermovements during one acquisition run to aminimum. The finger
is put into the capture device so that its tip is inside the fingertip stabiliser, pushing
the height-adjustable plate down. Afterwards, this individual finger height is fixed
using four screws on the top of the scanner and remains fixed until a new finger is
to be captured. All parts except the stepping motor, the camera including the lens
andNIR long-pass filter) are self-designed andmanufactured by ourselves, including
several 3D printed parts, the wooden housing of the rotating part, the housing of the
control board, the control board itself and the aluminium frame.

The acquisition process is semi-automated.At first, the subject has to put the finger
into the device. Then the height of the finger trunk stabiliser plate has to be adjusted
and the operator initiates one capturing run (360◦ around the finger’s longitudinal
axis), starting the automated part of the acquisition process.

During this automated data acquisition part, the illumination for each lasermodule
is set automatically by the help of an automated brightness control algorithm. This
algorithm tries to achieve a sufficient and uniform illumination along the finger in
order to obtain an optimal image contrast. It evaluates the average grey level of the
image area around the centre of each laser module i (GLicurrent) and compares this
value to a predefined target grey level (GLitarget). If there is a deviation between these
two values, the operating current of the corresponding laser module is adjusted:

I icorr = GLitarget−GLicurrent
GLmax

· Imax
2·n , where GLmax is the maximum grey value (255 for 8 bit
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Fig. 10.2 Self-designed multi-perspective finger vein capture device (image originally published
in [2], c©2018 IEEE)

images) and n is the number of the current iteration. Initially, all laser modules are
set to half of their maximum operating current Imax (corresponding to its maximum
intensity). The algorithm finishes in at most log2(Imax) steps.

After the optimal intensity level for each laser module is set, the video sequence
recording is started. The rotator starts to rotate around the finger and an indicator
LED is turned on to synchronise the video stream. The rotation is stopped when the
rotator reaches its start position again and at this point the indicator LED is turned
off. A few frames later the video sequence recording is stopped too. The videos are
recorded in the MP4 container format using the MJPG video codec with a frame rate
of 15 fps and YUV colour space. The speed of the rotation and the video frame rate
are synchronised such that a defined resolution (in degree) of images per full rotation
(video frames) is met and the desired degree steps can later be extracted from single,
individual frames without the need for temporal interpolation. The set illumination
intensity remains the same for the whole capturing run until all perspectives are
captured. This ensures the compatibility and comparability of the single, individual
perspectives to each other. The different projections in 1◦ steps corresponding to
single video frames are then extracted out of the video sequence. The capture device’s
indicator LED is utilised to synchronise the video frames with the beginning and the
end of the rotation. In theory, there should be 361 images per full rotation run (0◦
and 360◦ is captured separately). Due to slight variations in the rotation speed and
the video frame rate, there are between 357 and 362 frames instead of 361. Thus, it
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became necessary to map the frame with the minimum deviation from the desired
rotational angle to the corresponding perspective, resulting in a maximum deviation
of 0.5◦ from the desired rotation angle.

10.4 Multi-perspective Finger Vein Dataset

With the help of our self-designed multi-perspective finger vein capture device, we
established a multi-perspective finger vein dataset in order to be able to conduct our
multi-perspective score-level fusion experiments. This dataset currently consists of
63 subjects, 4 fingers per subject (index and middle finger of the left and right hand)
and 5 runs per finger. The thumb and the pinky finger were not included as they are
too short compared to the index and middle. The ring finger was skipped as well as
it turned out to be too uncomfortable for the subjects to put it in the capture device
for the whole capturing process. The finger was removed and inserted in the device
again after each run. During each run, a video sequence of a full 360◦ rotation with a
target resolution of 1◦ (each frame corresponds to a 1◦ step) is captured. Figure10.3
shows the capture device during the data acquisition process. The acquisition process
takes approximately 45 s per capture attempt, hence it takes about 15min to capture a
single subject, including all four fingers, 5 runs per finger. The whole dataset consists
of 63 × 4 × 5 × 361 = 454,860 images in total. The extracted video frames have a
resolution of 1024 × 1280 pixels and are 8-bit greyscale images stored in png format.

Fig. 10.3 Data acquisition with the multi-perspective finger vein capture device (image originally
published in [2], c©2018 IEEE)
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Fig. 10.4 Age (left, image originally published in [2], c©2018 IEEE) and country of origin distri-
bution (right) for the multi-perspective finger vein dataset

Fig. 10.5 Multi-perspective finger vein dataset example images, from left to right: 0◦, 60◦, 120◦,
180◦, 240◦, 300◦ (image originally published in [2], c©2018 IEEE)

The finger is always located in the centre area of the image, thus the images are then
cropped to 650 × 1280 pixels to retain the usable finger area only. Figure10.5 shows
some example images in different perspectives from 0◦ to 300◦. It can be clearly
seen that the visible vein lines vary among the different perspectives. The black part
at the centre top area in the images results from the finger trunk stabilisation plate,
which is pushed in further or less depending on the length of the finger.

The gender distribution of the 63 subjects is almost balanced with 27 (42.7%)
female and 36 (57.3%) male subjects. The subjects represent a good cross section
among all different age groups, as the age distribution, depicted in Fig. 10.4 left,
shows. There is only a slight overhang among the 20–40 year old subjects. The
youngest subject was 18 and the oldest one 79years old. The subjects are from
11 different countries (Austria, Brazil, China, Ethiopia, Hungary, Iran, Italy, Russia,
Slovenia, USA)while themajority of subjects arewhite Europeans (73%). The origin
country distribution is depicted in Fig. 10.4 right. The dataset is available for research
purposes and can be downloaded at http://wavelab.at/sources/PLUSVein-FR/.

10.5 Biometric Fusion

Like every typical biometric recognition system, a finger vein recognition system
consists of five steps/modules: image acquisition, preprocessing, feature extraction,
comparison and the final decision. This recognition tool chain is depicted in Fig. 10.6.
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Fig. 10.6 Basic components of a biometric recognition system including the different levels of
fusion by taking the example of finger veins (second row)

There are two modes, enrolment and authentication. Authentication includes both,
verification as well as identification. During enrolment one or several finger vein
images are captured and the extracted biometric templates are stored in a database.
During authentication a new template is extracted from a newly captured image
and compared against one or more templates stored in the database. The result is
a comparison score. Finally the decision module outputs for the capture subject an
“accept” or “reject” depending on the evaluation of the comparison score against a
threshold.

According to the ISO/IEC TR 24722:2015 standard [20], biometric fusion can
be regarded as a combination of information from multiple sources, i.e. sensors,
characteristic types, algorithms, instances or presentations in order to improve the
overall system’s performance and to increase the systems robustness.1 Biometric
fusion can be categorised according to the level of fusion and the origin of input
data. The different levels of fusion correspond to the components of a biometric
recognition system:

• Sensor-level fusion: is also called multisensorial fusion and describes using multi-
ple sensors for capturing samples of one biometric instance [20]. This can either be
done by the sensor itself or during the biometric processing chain. An example of
sensor-level fusion are finger vein images that have been captured using different
wavelength of near-infrared light and fused by merging the different wavelength
bands to obtain one single output image. This can be done by a single biomet-

1Recognition performance is just one aspect. PAD performance (robustness against presentation
attacks) is another aspect to keep in mind.
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ric capture device. Another example is the acquisition and fusion of fingerprint
images captured using optical, electrostatic and acoustic sensors.

• Image-level fusion: during data acquisition, the biometric capture device itself
might be able to capture multiple samples of the same biometric trait and combine
those samples to a single output sample. Image-level fusion corresponds to fusing
several images captured from the same biometric trait but not necessarily within
the sensor device. Image-level fusion can also be applied after preprocessing so
the input to the fusion module is the preprocessed images. One example of image-
level fusion is a finger vein capture device that captures more than one finger
simultaneously and combines the images from the individual fingers into a single
output image, which is also called multi-instance.

• Feature-level fusion: during template creation, several meaningful features,
describing the biometric trait’s properties, are extracted from the preprocessed
images and stored in a feature vector, commonly denoted as biometric template.
Feature-level fusion combines several such feature vectors to form a new, higher
dimensional feature vector which should represent a subject’s biometric traits in a
different and more discriminant way. Dimensionality reduction methods are ben-
eficial in combination with feature-level fusion to extract the most significant and
discriminative features and to save storage space.

• Score-level fusion: during the comparison step, two templates are compared
against each other and a similarity or dissimilarity score is calculated. Score-
level fusion combines two or more of those scores into a new, single score. The
input scores can originate from different comparison modules. They should either
be compatible with each other (e.g. all are similarity scores exhibiting the same
range of possible values) or else a score normalisation technique has to be applied
during the fusion.

• Decision-level fusion: the output of the decision module is a binary one, which
can be interpreted asmatch/non-match or accept/reject.Decision-level fusion com-
bines two or more of these binary output decisions to a single output one. Usually,
majority of voting schemes are employed at decision-level fusion. Note that at the
decision level, the least information is available (only a binary decision), compared
to the other levels of fusion.

Regarding the origin of the input data, biometric fusion can be categorised into:

• Multi-modal fusion: multiple different types of biometric traits from the same
subject is fused together. A popular example is the fusion of information from
fingerprints and finger veins or iris and periocular.

• Multi-instance fusion: multiple instances of the same type of biometric trait are
fused together. For example, several finger vein images from different fingers of
the same subject or information from both irises of one subject are fused together.

• Multi-presentation fusion: multiple samples of the same instance of biometric trait
is captured and fused, e.g. several finger veins of the same finger is captured and
fused together.
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• Multi-algorithmic fusion: multiple feature representations are generated using the
same input data, e.g. several different finger vein features are extracted with dif-
ferent algorithms from the same input image and fused together.

There is no direct dependency between the origin of the input data and the level of
fusion that is employed.

10.5.1 Fusion in Finger Vein Recognition

This subsection provides an overview of related work in biometric fusion involving
finger veins. The first subsection discusses several singlemodality fusion approaches.
The second subsection lists multi-modality fusion approaches which include finger
veins among other biometric traits.

10.5.1.1 Single Modality (Finger Vein Only) Fusion

Table10.1 gives an overview of related work on single modality fusion in finger
vein recognition, i.e. only data from finger veins is utilised during fusion at different
levels. The table lists the level of fusion applied, the origin of the input data to the
fusion, the number of images and subjects contained in the used dataset, the reported
biometric performance (EER if not stated otherwise) and the year of publication,
sorted according to fusion level and year of publication. All the related works listed
in Table10.1 are described in the following.

Yang and Jia [21] presented a multispectral finger vein fusion approach by fusing
enhanced finger vein images captured in different wavelengths. They applied an
image denoising method followed by image registration and a brightness adjustment
prior to the image-level fusion of images captured in six different wavelength bands.
Their image-level fusion strategy operates pixel-wise and is based on an improved
regional energy integration method in the spatial domain. The comparison scores are
obtained by phase-only correlation. They achieved a minimum EER of 11.02% by
fusing all six bands.

Guan et al. [22] applied feature-level fusion to Wavelet transform based vein
image features. The high- and low-frequencyWavelet features are obtained indepen-
dently and then fused by a simple nearest-neighbour rule. They did several experi-
ments using different training set sizes and arrived at a maximum recognition rate
of 94.35%. Yang and Zhang [23] proposed a feature-level scheme using global and
local features. The local features are extracted using a Gabor filter framework and
the global ones using 2D invariant moments. The fusion itself is performed by a
weighted fusion strategy based on canonical correlation analysis. They reported a
lowest FAR of 1.15% and a FRR of 2.47% for their fused features. Gupta and Gupta
[24] proposed a feature-level fusion approach of two distinct binary vein features (the
features are binary vein images). The first type of features is extracted using repeated
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Table 10.1 Related work in single modality finger vein fusion, ordered according to fusion level
and year of publication

Reference Fusion
level

Origin Images/subjects Performance
(EER)

Year

[21] Image Multi-sample 5760/60 11.02% 2012

[22] Feature Single-sample 2044/292
(fingers)

Recognition
rate: 94.35%

2009

[23]
Single-sample 640/64 FAR: 1.15%,

FRR: 2.47%
2010

[24]
Single-sample 3132/156 2.98% 2015

[26]
Single-sample 1440/60 0.19% 2016

[27]
Score Single-sample 1200/100 0.28% 2010

[28]
Multi-instance 1440/80 0.83% (fusion

of 3 fingers)
2012

[29]
Single-sample 4000/50 0.011% 2012

[30]
Single-sample 4080/30 1.56% 2013

[31]
Single-sample 4260/71

(680/85)
2.63%/0.78% 2013

[32]
Single-sample 3804/634

(fingers)
2.84% 2013

[33]
Single-sample 1440/60 0.27% 2014

[2]
Multi-sample 454860/63 0.04% 2018

[35]
Decision Single-sample 1620/54 FAR: 0.0086%

at 1% FRR
2009

line tracking [25]. The second type of features is obtained by multi-scale matched
filtering. A variational approach is proposed to fuse both feature extraction methods.
The score calculation is conducted by first aligning the two input images with the
help of an affine transformation. The affine transformation matrix is found using
a gradient descent optimisation based on a sum of squared differences cost func-
tion. The authors report a minimum EER of 2.98%. Kauba et al. [26] used different
binary vein feature extraction schemes and applied several advanced feature-level
fusion schemes (COLLATE, STAPLE, STAPLER), which were originally proposed
for segmentation of magnetic resonance imaging (MRI) brain images together with
simple average and majority voting based fusion in the finger vein domain. They
conducted two different sets of experiments exhibiting two different fusion strate-
gies. In the first one, only a single feature extraction scheme was used with a set of
several different feature extraction parameters per input image. The output features
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obtained for the individual parameters where then fused together. In the second set,
different feature extraction schemes were applied per input image and their outputs
were fused. The authors showed that both strategies (single feature extractor as well
as multiple feature extractors) lead to an improvement in the recognition accuracy.
The best EER achieved for the first strategy was 0.29% and for the second one 0.19%
compared to the best EER for the single features of 0.47%.

Zhou andKumar [27] proposed a score-level fusion scheme for palm vein recogni-
tion based onmultiple representations. They extracted four different kinds of features,
two based on their proposed representations. The first ones are using Hessian phase
information from the vein images, the second ones using localised Radon transform
to generate a kind of orientation encoding. The other two ones are based on Ordinal
Code and a Laplacian representation, respectively. These four feature representations
are compared individually to get the output scores which are then fused by apply-
ing a heuristic fusion rule. The authors arrived at a minimum EER of 0.28%. Yang
et al. [28] did a score-level fusion of extracted features from multiple fingers of the
same subject. They used LBP based features and a Hamming distance based com-
parison module to generate the scores. These scores are then fused using a simple
sum rule in combination with triangular norm. Their best reported EER of 0.83%
was achieved by fusion ring, middle and index finger using Frank’s t-norm. In [29]
Kang Park used local as well as global vein features in combination with score-level
fusion. The local features are extracted by the help of LBP and compared using the
Hamming distance. The global ones are Wavelet transform based features which are
compared using the Euclidean distance. The comparison scores are then fused with
the help of a radial basis function based support vector machine. Park reported a
best achieved EER of 0.0011%. Liu et al. [30] proposed a score-level fusion scheme
including pixel as well as super-pixel based finger vein features. LBP, vein pattern
structure based and vein minutiae based features form the pixel based features. The
super-pixel based image segmentation is done using the SLIC method. Histogram,
gradient and entropy features extracted from the super-pixel based segmentation
are then combined and form the super-pixel based features. An Euclidean distance
based comparison of both individual features is performed to calculate the compar-
ison scores. These scores are normalised and fused by using the weighted average
fusion strategy. The weights are tuned to achieve an optimal EER. They reported a
minimum EER of 1.56%. Qin et al. [31] applied score-level fusion to multiple rep-
resentations of the same finger vein pattern. The vein pattern is represented by three
different types of features: finger vein shape based, finger vein orientation based
and SIFT feature point based features. The former two are subregion partitioned
and subregion compared with the help of the SIFT based features, which are treated
individually, leading to three comparison scores. The scores are normalised using
the Z-score normalisation and then fused by applying a weighted-sum rule based
fusion as well as a support vector machine based fusion. They achieved minimum
EERs of 2.63 and 0.78%.Lu et al. [32] proposed a score-level fusion scheme based on
Gabor features. Usually, the individual filter responses obtained from the Gabor filter
bank are weighted and/or directly combined into a single output feature. Instead, the
authors extract and compare the output of each single Gabor filter channel separately.
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The corresponding comparison scores are then fused using a simple weighted-sum
rule. The authors were able to get an EER of 2.84% using their proposed method.
Kauba et al. [33] tested different preprocessing cascades in order to improve the indi-
vidual performance of the single finger vein feature extraction schemes. Binary and
SIFT/SURF based features were compared individually to obtain the output scores.
These scores were normalised using Min-Max normalisation and then fused using
weighted sum/product/average/minimum/maximum fusion rule. The best fusion rule
in terms of lowest EER was chosen accordingly. They were able to achieve a min-
imum EER of 0.27% with the help of score-level fusion compared to a minimum
EER of 0.47% for the single features. In our previous work [2], we performed a
multi-sample score-level fusion of several different perspectives around the finger.
Therefore, we established a multi-perspective finger vein dataset with the help of
our self-designed multi-perspective finger vein capture device, described in Sects.
10.4 and 10.3, respectively. Several different perspectives starting from 2 up to 72
were fused at score-level for 4 different kinds of extracted features using a simple
sum-rule based fusion. We achieved a best overall EER of 0.039% for the fusion of
18 different views and Maximum Curvature [34] features.

Yang et al. [35] proposed a decision-level fusion approach based on three differ-
ent finger vein feature representations. They extracted a topological feature, a local
moment based feature and a vein shape based feature. These features were compared
individually by means of a nearest cosine classifier outputting the class which the
input feature belongs to. These output decisions were then fused by the help of the
Dempster–Shafer algorithm. The authors reported a lowest FAR of 0.0086% at a
FRR of 1%.

10.5.1.2 Multi-modality Fusion Including Finger Veins

In addition to the single modality fusion approaches, several multi-modality fusion
approaches including finger veins as one of the involved biometric traits were pro-
posed. Table10.2 gives an overview of these approaches, including the reference to
the original publication, the fusion level, the involved biometric traits, the number of
subjects in the dataset used, the reported performance (EER if not stated otherwise)
and the year of publication. Most approaches fuse finger-related biometrics, includ-
ing fingerprint, finger texture, finger shape, finger knuckle and finger veins. There
are only two approaches involving other biometrics than finger-related ones. Razzak
et al. [36] fused face and finger veins and He et al. [37] fused face, fingerprints and
finger veins. Both applied score-level fusion. The number of involved traits varies
between at least two and at most four. Fingerprint is the most prominent one [37–46]
besides finger veins that is included in the fusion followed by finger texture [38, 43,
45, 47–49] as the second most prominent one and finger shape [42, 43, 50–52] as
the third one. The majority of the approaches is based on feature-level and score-
level fusion, there are only two decision-level fusion approaches compared to eight
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Table 10.2 Relatedwork infinger vein fusion,multi-modality fusion involvingfinger veins, ordered
according to fusion level and year of publication

References Fusion level Involved traits Subjects Performance
(EER)

Year

[40] Feature Fingerprint,
finger veins

40 1.85% FRR
and 0.97%
FAR

2011

[44]
Fingerprint,
finger veins

64 1.35% FAR at
0% FRR

2012

[46]
Fingerprint,
finger veins

40 1.485% 2012

[48]
Finger texture,
finger veins

220 0.45% 2012

[49]
Finger texture,
finger veins

220 0.435% 2014

[43]
Finger texture,
finger shape,
fingerprint,
finger veins

100 0.00796% 2015

[45]
Finger texture,
fingerprint,
finger veins

300 0.415% 2016

[51]
Score Finger shape,

finger veins
816 0.075% 2010

[37]
Face,
fingerprint,
finger veins

510 99.8% GAR
at 0.01% FAR

2010

[36]
Face, finger
veins

35 5% FAR and
92.4% GAR

2010

[47]
Finger texture,
finger veins

312 0.08% 2012

[52]
Finger shape,
finger veins

120 4% 2013

[50]
Finger shape,
finger veins

492 1.78% 2014

[42]
Finger shape,
fingerprint,
finger
knuckle,
finger veins

100 0.0319% 2014

[38]
Finger texture,
fingerprint,
finger veins

378 0.109% 2015

[41]
Decision Fingerprint,

finger veins
33 1.86% 2011

[39]
Feature/decision Fingerprint,

finger
knuckle,
finger veins

165 0.04% 2016
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feature-level and eight score-level ones. All proposed fusion approaches showed a
significant improvement in the recognition accuracy of the fusion compared to using
finger veins only.

10.6 Experimental Analysis

This section describes the experimental part of this chapter. At first, the used subset of
the dataset introduced in Sect. 10.4 is explained. Afterwards, the finger vein recogni-
tion tool chain which is employed during the experimental analysis is described. This
is followed by a presentation of the fusion strategy and the applied score-level fusion
framework. Afterwards, the experimental protocol to determine the FAR and FRR
and consequently the recognition performance in terms of EER/FMR1000/ZeroFMR
is explained. Then the results of the individual fusion strategies are given and dis-
cussed. Finally, this section is concluded with an overall results discussion.

10.6.1 Finger Vein Dataset

To reduce the amount of data during the fusion, we used a subset of the multi-
perspective finger vein dataset [2] only. Not all 360 different perspectives are eval-
uated, but only each fifth one is considered. Thus, there is a total of 73 different
perspectives ( 360◦

5◦/step = 72 plus the last one which is 360◦ = 0◦ again results in 73).
All 63 capture subjects, 4 fingers per subject and 5 images per view and finger are
considered. This results in a total of 73 × 63 × 4 × 5 = 91,980 images instead of
454,860 for the total dataset.

10.6.2 Finger Vein Recognition Tool chain

The finger vein recognition tool chain includes all steps of a biometric recognition
system starting with the extraction of the Region of Interest (ROI) to preprocessing,
feature extraction and comparison. The input data are the images of the different
individual perspectives acquired from the 3D capture device, the output is a com-
parison score that can be used to determine whether the provided finger belongs to
a certain (enrolled) data subject or not.

ROI Extraction

Prior to the ROI extraction, the finger is aligned and normalised. The alignment
should place the finger always in the same position in the image, independent of the
relative position of the finger during the acquisition. To achieve this, the finger lines
(edge between finger and the background of the image) are detected and the centre
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Fig. 10.7 ROI extraction process (images originally published in [2], c©2018 IEEE)

line (in the middle of the two finger lines) is determined. Afterwards, the centre line
of the finger is rotated and translated in a way that it is placed in the middle of the
image and the image region outside of the finger is masked by setting the pixels to
black. The final step is to extract a rectangular ROI of a fixed size (1100× 300 pixel)
from a fixed position. The three steps are visualised in Fig. 10.7. The implementation
used is based on the method proposed in [53].

Preprocessing

Preprocessing tries to enhance the low contrast and improve the image quality. In the
following the preprocessing methods, we employed in our finger vein recognition
tool chain are explained.

Simple CLAHE [54] or other local histogram equalisation techniques are most
prevalent according to the literature for this purpose. A localised contrast enhance-
ment technique like CLAHE is a suitable baseline tool to enhance the vein images
as they exhibit unevenly distributed contrast. CLAHE has an integrated contrast
limitation (clip limit) which should avoid the amplification of noise.

High-FrequencyEmphasis Filtering (HFEF) [55], originally proposed for hand
vein image enhancement tries to enhance the vein images in the frequency domain.At
first, the discrete Fourier transform of the image is computed, followed by the appli-
cation of a Butterworth high-pass filter of order n. The authors originally proposed
to use a global histogram equalisation but we decided to apply CLAHE instead.

Circular Gabor Filter (CGF) as proposed by Zhang and Yang [56] is another
finger vein image enhancement technique which is rotation invariant and achieves an
optimal joint localisation in both, the spatial and the frequency domain. The authors
originally suggested to use grey level grouping for contrast enhancement but we
again apply CLAHE instead.

Furthermore, the images were resized to half of their original size, which not only
speeded up the comparison process but also improved the results. For more details on
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the preprocessing methods, the interested reader is referred to the authors’ original
publications.

Feature Extraction

Weusedfive different feature extractionmethods. Thefirst three techniques discussed
aim to extract the vein pattern from the background resulting in a binary image (vein
pattern based methods) followed by a comparison of these binary images using
a correlation measure. All algorithms are well-established finger vein recognition
algorithms. We used the publicly available implementations published in [5].

Maximum Curvature (MC [34]) aims to emphasise only the centre lines of
the veins and is therefore insensitive to varying vein widths. The first step is the
extraction of the centre positions of the veins by determining the local maximum
curvature in cross-sectional profiles obtained in four directions: horizontal, vertical
and the two oblique directions. The cross-sectional profile is determined based on
the first and second derivates. Then each profile is classified as either being concave
or convex, where only the local maxima belonging to a concave profile indicate a
vein line. Afterwards, a score according to the width and curvature of the vein region
is assigned to each centre position and recorded in a matrix called locus space. Due
to noise or other distortions, some pixels may not have been classified correctly at
the first step, thus the centre positions of the veins are connected using a filtering
operation in all four directions taking the 8-neighbourhood of pixels into account.
The final binary output image is obtained by thresholding of the locus space using
the median as a threshold.

Principal Curvature (PC [57]): At first the gradient field of the image is cal-
culated. In order to prevent the unwanted amplification of small noise components,
a hard thresholding which filters out small gradients by setting their values to zero
is done. Then the gradient at each pixel is normalised to a magnitude of 1 to get a
normalised gradient field. This normalised gradient field is smoothed by applying a
Gaussian filter. The next step is the actual principal curvature calculation. The cur-
vatures are obtained from the Eigenvalues of the Hessian matrix at each pixel. The
two Eigenvectors of the Hessian matrix represent the directions of the maximum and
minimum curvature and the corresponding Eigenvalues are the principal curvatures.
Only the bigger Eigenvalue which corresponds to the maximum curvature among
all directions is used. The last step is a threshold based binarisation of the principal
curvature values to arrive at the binary vein output image.

Gabor Filter (GF [47]): Gabor filters are inspired by the human visual system’s
multichannel processing of visual information and have been widely used in biomet-
rics. A Gabor filter is a Gaussian kernel function modulated by a sinusoidal plane
wave. Kumar and Zhou [47] proposed a Gabor filter based finger vein extraction
approach. Therefore, a filter bank consisting of several 2D even symmetric Gabor
filters with different orientations (in π

k steps where k is the number of orientations) is
created. k feature images are extracted by filtering the vein image using the different
filter kernels contained in the Gabor filter bank. The final feature image is obtained
by summing all the single feature images from the previous step and thresholding
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the resulting feature image. This image is then post-processed using morphological
operations to remove noise to get the final binary vein output image.

In contrast to the vein pattern based techniques described above, two key-point
based techniques were used. Key-point based techniques try to use information from
the most discriminative points as well as considering the neighbourhood and context
information around these points by extracting key-point locations and assigning a
descriptor to each detected key-point location.

The first one is a Scale-Invariant Feature Transform (SIFT [58]) based tech-
nique with additional key-point filtering along the finger boundaries to suppress
information originating from the finger shape instead of the vascular pattern. This
technique was originally proposed by Kauba et al. [33].

Deformation-Tolerant Feature Point Matching (DTFPM [13]): The second
key-point based technique replaces the conventional SIFT descriptor and key-point
detector by vascular pattern tailored ones. This method is robust against irregular
shading and vein deformations due to posture changes. At first, the authors apply a
technique originally proposed by Yang and Yang [59] for enhancing the vein images.
Then a minimum-curvature map is calculated from the enhanced vein images based
on Eigenvalue analysis. The feature point locations are determined from this curva-
ture image (smaller Eigenvalue) at any point where the vein shape is non-linear. The
feature descriptor takes the vein shape around the key-point location into account
and is extracted from the so-called vein pattern map (larger Eigenvalue). The feature
vector contains a quantification of the different vein directions inside a variable-sized
window around the key-point location. The descriptor is normalised with the help
of a finger shape model in a way that the descriptor area becomes smaller the closer
the key-point location is to the finger boundaries. The authors claim that their pro-
posed method is tolerant against several different types of finger posture changes,
e.g. longitudinal finger rotation, translations and bending of the finger.

Comparison

For the comparison of the binary feature images we extended the approach in [25]
and [34]. As the input images are neither registered to each other nor aligned, the
correlation between the input image and in x- and y-direction shifted versions of the
reference image is calculated. Themaximumof these correlation values is normalised
and then used as the final comparison score.

The SIFT features are compared by finding their nearest neighbours/best corre-
spondences and calculating a score based on the distances between the corresponding
key-points.

DTFPM employs a deformation tolerant comparison strategy by using non-rigid
registration. At first, the correspondences between the key-points in the two images
for comparison are found. These correspondences are filtered using a local and global
histogram technique based on the relative distances between the corresponding key-
points. After this filtering step, the key-point coordinates of one of the involved
feature vectors are transformed by applying a non-rigid transformation based on an
outlier-robust thin-plate spline model as proposed in [60]. Afterwards, the corre-
spondences between the adjusted key-points are determined again. These updated
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correspondences are filtered by a comparison of the descriptor distances with fixed
thresholds. The final comparison score is determined as the ratio of the matched
points and the sum of the number of detected key-points in both images.

10.6.3 Score-Level Fusion Strategy and Toolkit

We applied three different fusion strategies. The first strategy involves the fusion of
all possible combinations of pairs of distinct views (which are

(N
k

) = (73
2

) = 2628
combinations, 73 different views are considered) as well as all possible three tuples
of distinct views (which are

(73
3

) = 62196 combinations) for each of the five-feature
extraction methods. As motivated in the introduction, it is beneficial if the number
of involved views is as little as possible to reduce the complexity and the production
costs of the biometric capture device and to be able to build such a device without
any moving parts. Thus, only pairs and three tuples are considered here. The sec-
ond strategy employs the fusion of all possible combinations of feature extraction
methods per view. There are

(5
2

) + (5
3

) + (5
4

) + (5
5

) = 26 combinations per perspec-
tive, resulting in a total of 10,830 different fusion combinations. Here, our aim is to
identify the best combination of features for each individual view which does not
necessarily have to be the same across all the different views. The third strategy is a
combination (fusion) of the best results obtained during the first and second one.

All three fusion strategies are applied at score-level. The second strategy could be
applied at feature-level too, but not for all the involved feature extraction types as they
are not compatible with each other. The feature-level fusion of MC, PC and GF is
possiblewhile the fusion ofDTFPMand SIFTwith any of the other feature extraction
types is not possible. Feature-level fusion is not possible for the first strategy at all,
as there is no meaningful way to combine the features of different perspectives, e.g.
by merging the extracted vein lines or using majority voting as the visible vein lines
differ for each view. Score-level fusion usually performs better than decision-level
fusion, as there is more information available at the score level and there are more
variants to fuse the individual scores. Hence, we decided to apply score-level fusion
in all three fusion strategies.

In our previous work [2], a simple sum based fusion rule, without any weights
for the input scores, was applied. In this work, a more advanced score-level fusion
approach, namely the BOSARIS toolkit [14] is utilised. BOSARIS provides a MAT-
LAB based framework for calibrating, fusing and evaluating scores from binary
classifiers and has originally been developed for automatic speaker recognition. It
can be applied to any biometric trait where two alternate classes are distinguished
(genuine/impostor). The toolkit provides several functionalities, e.g. a normalised
Bayes error rate plot, ROC and DET plots, including efficient algorithms to gen-
erate these plots for large score files, logistic regression solutions for the fusion of
several subsystems, solutions for calibration (mapping scores to likelihood ratios),
a logistic regression optimiser and an efficient binary score file format. During this
work, we only harness the fusion capabilities of BOSARIS though. BOSARIS needs
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a supervised training phase where combination weights are trained based on logistic
regression in order to fuse multiple input systems into a single output one providing
well-calibrated log-likelihood-ratios. This is achieved by employing a general pur-
pose, unconstrained convex optimisation algorithm, which is used to train the logistic
regression fusion and calibration methods. Hence, BOSARIS needs a training set of
data to find the optimal combination of weights for the actual fusion in order to min-
imise the classification error and thus tomaximise the recognition performance based
on the fused output scores. BOSARIS has the option to set a target prior according
to the costs of a miss and a false alarm for the training phase of the fusion. We set
this target prior to 0.5 assuming that the costs of a miss and a false alarm are both
weighted equally.

10.6.4 Evaluation Protocol

The experiments are split into four parts: in the first part, we analyse the recognition
performance of all single perspectives. Every perspective is considered as a separate
dataset. Here, we do not perform any cross-projection comparison. The images are
processed as described in Sect. 10.6.2 and 73 projections all around the finger in 5°
steps are extracted. The recognition performance is quantified in terms of the EER
as well as the FMR1000 (the lowest FNMR for FMR = 0.1%) and the ZeroFMR
(the lowest FNMR for FMR = 0%). The performance values are calculated for each
single perspective. For the parameter optimisation, the data set is divided into two
roughly equal-sized subsets. The division is based on the contained subjects, i.e.
all fingers of the same person are in one subset. Each subset is used to determine
the parameters which are then applied to the other subset. This ensures a 100%
separation of the data used for determining the optimal parameters and the actual
test set. The necessary comparison scores for the FAR/FRR calculation, which is
the basis for the EER/FMR1000/ZeroFMR calculation, are determined according to
the test protocol of the FVC2004 [61]: to compute the genuine scores, all possible
genuine comparisons are done. Instead of computing all possible impostor scores
only the first image of a finger is compared against the first image of all other
fingers. The final results are evaluated based on the combined scores (genuine and
impostor) of both test runs. The parameter optimisation is executed only for the
palmar dataset. The same parameter settings are also applied for the experiments
on the other perspectives. The resulting number of comparisons for both subsets are
listed in Table10.3. All performance-related result values are given in percentage
terms, e.g. 0.04 means 0.04%.

In the second part of our experiments, we fuse different features originating
from the same feature extraction method but extracted from different perspectives as
described in Sect. 10.6.3. The third part of the experiments is dedicated to a multi-
algorithm fusion. We fuse all possible combinations of the five employed feature
extraction methods at score level based on the scores obtained during the first part
of the experiments, resulting in 2-, 3-, 4- and 5-tuples. In the last part, we com-
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Table 10.3 Number of comparisons for each subset

Name Subjects Genuine Impostor Total

Subset 1 32 1280 8128 9408

Subset 2 31 1240 7626 8866

Total 63 2520 15,754 18,274

bine the two strategies of multi-perspective and multi-algorithm fusion. Based on
the results from the two individual fusion strategies we determine the best possible
combinations/fusion of perspectives and feature extraction methods. All four parts
are evaluated using the same protocol to determine the performance figures. For
all fusion experiments, the input data are the comparison scores generated during
the single perspective experiments. We apply a fivefold cross-validations procedure,
where we use every fold once for the training of the fusion module. The determined
fusion parameters are applied to the test data consisting of the four remaining folds.
The final results are evaluated based on the combined scores (genuine and impostor)
of all five test runs.

We provide the scores files for each individual perspective and feature extraction
methods as well as a script to run BOSARIS and generate all the fused scores files
and performance figures we used during our experiments. These files and the scripts
can be downloaded at http://www.wavelab.at/sources/Prommegger19b/.

10.6.5 Single Perspective Performance Results

The single perspective analysis for MC, PC, GF and SIFT have already been carried
out in our previous work [2]. We added DTFPM as an additional key-point based
recognition scheme. We had to change our ROI extraction to make the ROIs compat-
ible with DTFPM. Our previous ROI approach selected a fixed size rectangle placed
at the centre of the finger, independent of the finger’s width. DTFPM is sensitive
to parts of the finger outline and background areas that are contained in the input
images and expects the finger width normalised to the ROI height. Thus, we updated
our ROI extraction scheme as described in Sect. 10.6.2 and recalculated the results
for the already evaluated algorithms based on the new ROIs. Note that due to the
new ROIs these updated results are different from our previous work. Figure10.8 top
shows the results in terms of EER. There are two lines for every method: the thin line
shows the actual EER value, the thicker line is a smoothed version calculated based
on the EER using a moving average filter of size 5, which should highlight the trend
of the recognition performance. The images captured of neighbouring views contain
quite a similar vein structures (note that our step-width is 5°), thus the recognition
performance is similar too. The best results are obtained around the palmar (0°, 360°)
and dorsal (180°) region. The results of the perspectives in-between are inferior. This
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Fig. 10.8 Recognition performance for different projections: EER (top) and relative performance
degradation in relation to the best performing view (bottom)

is due to the fact, that they contain fewer visible vein lines and thus fewer vein infor-
mation than the palmar and dorsal view. Figure10.9 shows the original ROI, the ROI
after preprocessing and the extracted features (using MC) for the views 0°, 90°, 180°
and 270°. It reveals that the 90° and 270° views contain less vein information than
the palmar and dorsal view. Moreover, the vein extraction algorithms include some
features related with the texture of the finger. This is especially visible at 180° where
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Fig. 10.9 ROI (first row), enhanced images (second row) and extracted MC features (third row)
for different projections (originally published in [2], c©2018 IEEE). Note that there are less vein
lines visible for 90° and 270° compared to 0° and 180°

some of the features are related with the finger knuckles instead of veins. These
features are visible as horizontal lines in the feature image.

For the key-point based algorithms, especially SIFT, the palmar region exhibits
a better performance than the other perspectives as well, but the best performance
is achieved around the dorsal region. For SIFT this can be explained based on the
employed preprocessing: only image (vein) enhancement and no vein extraction
(binarisation) ahead of the SIFT key-point calculation is applied. Hence, the non-
vein finger texture information is not suppressed in the input images of SIFT. Espe-
cially, the structure of finger knuckles seem to contain a lot of additional information
which SIFT is able to exploit during feature extraction. Finger knuckles have been
introduced by Zhang et al. [62] as an independent biometric characteristic. Yang
et al. [63] experienced a similar behaviour. They fused the finger texture of the dor-
sal view with the vein structure of the palmar view which leads to an improvement in
the recognition performance. Consequently, the additional information originating
from the finger knuckles and the finger texture present at the dorsal view leads to the
superior performance of SIFT for the dorsal view compared to the palmar one.

Table10.4 lists the information regarding the best and worst perspective for each
feature extraction method. MC, PC and GF perform best around the palmar view
(note that 360° = 0°), while SIFT and DTFPM perform best around the dorsal view.
The overall best result was achieved for MC at 0° with an EER of 0.44% (±0.15)
where the number in brackets is the confidence interval. For all feature extraction
methods, the worst results can be reported around 270°. The Relative Performance
Degradation (RPD) of the different perspectives is visualised in Fig. 10.8 bottom. The
RPD, stated in Eq. (10.1), is calculated with respect to the minimum EER (EERFT

min)
reached for a certain feature extraction method, where EERFT

perspective is the EER of
the current perspective. The maximum performance degradation across the different
algorithms is between 200 and 800%.

RPDFT
perspective = EERFT

perspective − EERFT
min

EERFT
min

(10.1)
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Fig. 10.10 Recognition performance among the different projections: FMR1000 (top), ZeroFMR
(bottom)

The FMR1000 and ZeroFMR are visualised in Fig. 10.10 top and bottom, respec-
tively. They follow the same trend as the EER: a good performance around the palmar
and dorsal region and an inferior one for the views in between.
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Table 10.4 Best/worst single perspective results per feature extraction method and single perspec-
tive

Feature
type

Best perspective Worst perspective

View EER FMR1000 ZeroFMR View EER FMR1000 ZeroFMR

MC 0◦ 0.44
(±0.15)

0.76 1.15 260◦ 2.67
(±0.37)

4.46 7.69

PC 10◦ 0.60
(±0.18)

0.87 1.35 280◦ 2.47
(±0.36)

5.02 9.79

GF 0◦ 1.55
(±0.28)

2.54 5.13 275◦ 8.87
(±0.65)

18.76 22.54

SIFT 180◦ 0.55
(±0.17)

1.35 6.98 265◦ 5.33
(±0.53)

20.67 42.98

DTFPM 160◦ 0.56
(±0.17)

1.31 3.13 285◦ 2.87
(±0.38)

8.51 12.56

10.6.6 Multi-perspective Fusion Results

In the second part of our experiments, we analyse the impact of fusing the extracted
features of the same feature extraction method from multiple perspectives (MPF). In
detail, we evaluate the fusion of all possible pairs and three tuples.

The first part of this section deals with the fusion of all possible pairs. Figure10.11
shows heat maps of the EER for all combinations per feature extraction method (top
row: MC, PC, bottom row: GF, SIFT and DTFPM). The perspectives involved in
the fusion are plotted on x- and y-axis, whereas the performance in terms of EER is
visualised using a colour scheme from light/white which corresponds to a low EER
(good performance) to dark/redwhich corresponds to a high EER (bad performance).
The actual logarithmic scale is given in the colour bar on the right side of the plots.
Note that the results are symmetric with regard to the main diagonal (45°). This
diagonal corresponds to the single perspective performance results and is visible as
dark line (high EER) in all five plots.

According to the performance analysis of the single perspectives (Sect. 10.6.5),
the palmar and dorsal region perform best. Although, there are slight variations
among the different feature extraction methods, the results obtained from the single
perspectives are confirmed by the two-perspective fusion: a combination of two
perspectives including the palmar (close to 0°, 360°) or dorsal (close to 180°) region
always results in a good recognition performance. A fusion of two views in-between
those two regions result in an inferior performance. For MC, PC and GF the EER
for all fusion combinations including the palmar (area along the outer edges of the
plot) and dorsal view (cross lines in the centre) perform better (light, white to yellow
colours) than fusion combinations without these views (dark, orange to red colours),
achieving the best results when both regions are fused (light, white colour).
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Fig. 10.11 Recognition performance for two-view fusion. Top row: MC (left), PC (right), bottom
row: GF (left), SIFT (middle) and DTFPM (right)

Both key-point based methods show a different behaviour. The fusion of the
palmar and dorsal region is still superior to all other fusion combinations, but SIFT
andDTFPMperformwell if the dorsal perspective is included in the fusion in general.
This can also be seen in the plots as the 180° cross shows light, white to yellow colours
which indicates a good performance. For SIFT, this is even more pronounced than
for DTFPM.

Table10.5 lists the best results in terms of EER, FMR1000 and ZeroFMR for
each feature extraction method in detail. MC when fusing 0° and 180° achieves the
overall best performance with an EER of 0.12%. For the evaluation of the results, the
single perspective baseline EER and the relative performance increase (RPI) with
respect to the baseline EER, as calculated in Eq. (10.2), are stated. The performance
increase compared to the best single view result is between 110% (PC) and 270%
(MC), which corresponds to a 2–3.5 times lower EER than the single perspective
performance, respectively.

RPI = EERBaseline − EERFusion

EERFusion
(10.2)

In addition to all pairs, all possible triples are evaluated. Table10.6 shows the five
best performing combinations per feature extraction method. Again the single per-
spective baseline EER and the relative performance increase is included. The highest
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Table 10.5 Best two-perspective fusion results per feature extraction method. Best result is high-
lighted bold font. For comparability also the single perspective baseline EER and the relative
performance improvement (based on the single perspective performance) is included

Feature
type

2 Perspective fusion Single perspective Rel.
Perf.

View 1 View 2 EER FMR1000 ZeroFMR View EER Incr. [%]

MC 0◦ 180◦ 0.12
(±0.08)

0.12 0.16 0◦ 0.44 264.90

PC 10◦ 190◦ 0.28
(±0.12)

0.36 0.56 10◦ 0.60 113.14

GF 140◦ 360◦ 0.60
(±0.18)

0.80 1.56 0◦ 1.55 156.48

SIFT 165◦ 205◦ 0.17
(±0.09)

0.36 1.63 180◦ 0.55 229.72

DTFPM 0◦ 160◦ 0.24
(±0.11)

0.32 1.55 160◦ 0.56 132.27

recognition performance improvement is between 150% for PC and 1100% for MC
which is in any case better than the best two-perspective fusion (see Table10.5). The
overall best result with an EER of 0.036% is achieved using MC when fusing the 5°,
170° and 235° view.

Table10.6 also includes the perspectives of interest. It is striking, that once again
a lot of combinations include perspectives close to the palmar (0°, 360°) and dorsal
(180°) regions. Thus, we additionally analysed the occurrence of the palmar and
dorsal view in the top 25 results for each feature extraction method. All angles
within a certain range around 0° and 180° are mapped to the palmar and dorsal
region, respectively. Three differentmapping ranges are evaluated:±15° (345°−15°,
165°−195°), ± 20° (340°−20°, 160°−200°) and ± 25° (335°−25°, 155°−205°).
The results are presented in Table10.7. It turns out that the best performing individual
region (palmar for MC, PC, GF and dorsal for SIFT and DTFPM) is present in most
of the top 25 fusion combinations. At a mapping range of ±25° it is even included
in at least 96% of the top 25 results. For this mapping range also the opposite region
is part of at least 80% of the combinations, except for GF (only 24%). For GF, this
can be explained by the big performance difference of palmar (~1.5%) and dorsal
region (~3.6%).

In order to be able to decide whether a three-perspective fusion is beneficial com-
pared to a two-perspective approach, one way is to calculate the significance of the
recognition performance improvement. We use the method proposed in [64] to cal-
culate a boundary for the significance from the achieved EERs. Table10.8 lists the
χ2 values in detail. The following translations of χ2 values into pv values can be used
to interpret the values stated in the table: χ2 = 6.6 corresponds to pv = 0.01(≡1%),
χ2 = 7.9 to pv = 0.005(≡0.5%) and χ2 = 10.8 to pv = 0.001(≡0.1%). Thus, all
performance improvements exhibiting χ2 > 6.6 are regarded as significant. The
resulting χ2 values indicate that a fusion of two and three perspectives lead to
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Table 10.6 Recognition performance for three-view fusion: five best results per feature extraction
method. Best result per feature extraction method is highlighted bold font. For comparability also
the single perspective baseline EER and the relative performance improvement (based on the single
perspective performance) is included
Feature
type

3 Perspective fusion Single perspective Rel.
Perf.

View 1 View 2 View 3 EER FMR1000 ZeroFMR View EER Impr.
[%]

MC 5◦ 170◦ 235◦ 0.036
(±0.04)

0.040 0.240 0◦ 0.44 1111.78

0◦ 210◦ 235◦ 0.036
(±0.04)

0.040 0.120 1107.27

10◦ 165◦ 215◦ 0.039
(±0.05)

0.040 0.159 1019.25

20◦ 160◦ 235◦ 0.039
(±0.05)

0.040 0.040 1014.94

165◦ 235◦ 355◦ 0.039
(±0.05)

0.040 0.159 1014.94

PC 10◦ 175◦ 200◦ 0.238
(±0.11)

0.401 0.602 10◦ 0.60 150.21

20◦ 205◦ 235◦ 0.239
(±0.11)

0.319 0.638 149.65

175◦ 235◦ 360◦ 0.239
(±0.11)

0.399 0.518 149.65

140◦ 190◦ 360◦ 0.239
(±0.11)

0.282 0.524 149.59

155◦ 210◦ 360◦ 0.239
(±0.11)

0.399 0.839 149.45

GF 125◦ 225◦ 360◦ 0.284
(±0.12)

0.401 1.325 0◦ 1.55 446.48

90◦ 205◦ 360◦ 0.313
(±0.13)

0.638 1.794 394.98

75◦ 140◦ 360◦ 0.321
(±0.13)

0.442 1.165 383.32

120◦ 220◦ 355◦ 0.321
(±0.13)

0.758 1.475 383.09

120◦ 200◦ 360◦ 0.321
(±0.13)

0.481 0.882 382.82

SIFT 165◦ 205◦ 350◦ 0.058
(±0.05)

0.040 0.635 180◦ 0.55 857.58

20◦ 170◦ 210◦ 0.075
(±0.06)

0.040 0.714 643.62

170◦ 205◦ 350◦ 0.081
(±0.06)

0.079 0.476 585.30

170◦ 205◦ 335◦ 0.081
(±0.06)

0.079 0.635 585.30

140◦ 205◦ 350◦ 0.081
(±0.06)

0.079 0.714 585.30

(continued)
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Table 10.6 (continued)
Feature
type

3 Perspective fusion Single perspective Rel.
Perf.

View 1 View 2 View 3 EER FMR1000 ZeroFMR View EER Impr.
[%]

DTFPM 5◦ 160◦ 280◦ 0.159
(±0.09)

0.559 1.837 160◦ 0.56 249.88

0◦ 180◦ 295◦ 0.162
(±0.09)

0.439 1.276 243.31

15◦ 160◦ 295◦ 0.162
(±0.09)

0.439 1.637 243.04

0◦ 180◦ 185◦ 0.165
(±0.09)

0.437 1.033 237.24

0◦ 180◦ 245◦ 0.169
(±0.09)

0.439 2.396 228.78

Table 10.7 Analysis of the occurrence of palmar and dorsal views per feature extraction method
in the 25 best three-perspective fusions. Both means that palmar and dorsal are present at the same
combination.

Feature
type
(%)

Max distance ±15◦ Max distance ±20◦ Max distance ±25◦

Palmar Dorsal Both Palmar Dorsal Both Palmar Dorsal Both

MC 84.0 52.0 40.0 92.0 76.0 68.0 100.0 84.0 84.0

PC 92.0 68.0 68.0 100.0 68.0 68.0 100.0 80.0 80.0

GF 100.0 8.0 8.0 100.0 16.0 16.0 100.0 24.0 24.0

SIFT 80.0 88.0 68.0 84.0 88.0 72.0 92.0 96.0 88.0

DTFPM 92.0 60.0 56.0 100.0 100.0 100.0 100.0 100.0 100.0

a significant improvement compared to the single view performance, whereas the
improvement for a three perspective fusion compared to fusing two views is lower
but still significant for MC, GF and SIFT.

10.6.7 Multi-algorithm Fusion Results

This time different feature extraction methods per perspective are fused (MAF)
instead of perspectives per feature extraction method. We evaluate all possible pairs,
triples, quadruples and the combination of all five- feature extractionmethods, result-
ing in 26 different combinations per perspective. Figure10.12 shows the best fusion
result per number of fused feature extraction methods. The best result, for example,
two-feature extraction methods included in the fusion at 0° means that the best per-
forming pair of features in terms of EER of all pairs calculated at 0° is depicted. It
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Table 10.8 Estimated χ2 from the EER for multi-perspective fusion. Best results per number of
involved views is highlighted bold font

Feature
extraction
method

Best EER for [n] involved views Significance n1 → n2 (χ2 value)

n = 1 n = 2 n = 3 n = 1→n = 2 n = 1→n = 3 n = 2→n = 3

MC 0.44
(±0.15)

0.12
(±0.08)

0.036
(±0.04)

33.415 62.660 8.265

PC 0.60
(±0.18)

0.28
(±0.12)

0.238
(±0.11)

21.264 28.576 0.622

GF 1.55
(±0.28)

0.60
(±0.18)

0.284
(±0.12)

76.708 159.698 20.642

SIFT 0.55
(±0.17)

0.17
(±0.09)

0.058
(±0.05)

36.650 72.755 10.054

DTFPM 0.56
(±0.17)

0.24
(±0.11)

0.159
(±0.09)

23.391 140.869 3.005

Fig. 10.12 Recognition performance for multi-algorithm fusion: best result in terms of EER per
number of feature extraction methods fused is depicted for each perspective

can be seen that even the fusion of two-feature extraction methods increases the per-
formance remarkably. Adding the third feature extraction method further improves
the result, whereas fusing four- or five-feature extraction methods does not further
improve the recognition performance significantly.

Table10.9 lists the results of the MAF in more detail. The column occurrence
states how often in terms of perspectives a feature extraction method combination
performs superior to all other combinations of the same number of included feature
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Table 10.9 Multi-algorithm fusion results per number of included features. Occurrence indicates
the numbers of perspectives for which the specified combination achieves the best score, the given
EER values are calculated over all perspectives. The two view columns state at which view the best
and worst performance has been achieved. The best result per number of included feature extraction
methods is highlighted bold face

# Features
included

Feature types Occurrences Best Avg Worst

EER View EER EER View

1 MC 34 (46.58%) 0.44
(±0.15)

0◦ 1.46 2.67
(±0.37)

260◦

PC 19 (26.03%) 0.60
(±0.18)

10◦ 1.47 2.47
(±0.36)

280◦

DTFPM 16 (21.92%) 0.56
(±0.17)

160◦ 1.71 2.87
(±0.38)

285◦

SIFT 4 (5.48%) 0.55
(±0.17)

180◦ 2.75 5.33
(±0.53)

265◦

GF – 1.55
(±0.28)

0◦ 4.89 8.87
(±0.65)

275◦

2 PC, DTFPM 31 (42.47%) 0.20
(±0.10)

180◦ 0.66 1.32
(±0.26)

205◦

MC, DTFPM 22 (30.14%) 0.13
(±0.08)

185◦ 0.68 1.47
(±0.28)

285◦

MC, SIFT 11 (15.07%) 0.12
(±0.08)

170◦ 0.78 1.83
(±0.31)

265◦

SIFT, DTFPM 8 (10.96%) 0.16
(±0.09)

175◦ 1.04 2.08
(±0.33)

265◦

MC, PC 1 (1.37%) 0.32
(±0.13)

10◦ 0.95 1.95
(±0.32)

285◦

PC, SIFT – 0.24
(±0.11)

180◦ 0.92 1.88
(±0.31)

265◦

GF, DTFPM – 0.32
(±0.13)

180◦ 1.17 2.32
(±0.35)

265◦

GF, SIFT – 0.40
(±0.14)

170◦ 1.63 3.56
(±0.43)

265◦

MC, GF – 0.44
(±0.15)

0◦ 1.39 2.54
(±0.36)

300◦

PC, GF – 0.51
(±0.16)

360◦ 1.28 2.32
(±0.35)

265◦

(continued)
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Table 10.9 (continued)

# Features
included

Feature types Occurrences Best Avg Worst

EER View EER EER View

3 MC, SIFT,
DTFPM

33 (45.21%) 0.04
(±0.05)

170◦ 0.50 0.99
(±0.23)

285◦

MC, PC, DTFPM 23 (31.51%) 0.12
(±0.08)

185◦ 0.52 1.23
(±0.25)

205◦

PC, SIFT,
DTFPM

11 (15.07%) 0.12
(±0.08)

165◦ 0.53 0.96
(±0.22)

270◦

PC, GF, DTFPM 3 (4.11%) 0.23
(±0.11)

245◦ 0.62 1.31
(±0.26)

205◦

MC, GF, DTFPM 2 (2.74%) 0.16
(±0.09)

185◦ 0.66 1.47
(±0.28)

285◦

MC, PC, SIFT 1 (1.37%) 0.12
(±0.08)

170◦ 0.64 1.31
(±0.26)

265◦

MC, GF, SIFT – 0.12
(±0.08)

170◦ 0.77 1.76
(±0.30)

265◦

GF, SIFT,
DTFPM

– 0.12
(±0.08)

175◦ 0.82 1.68
(±0.30)

265◦

PC, GF, SIFT – 0.25
(±0.11)

170◦ 0.82 1.71
(±0.30)

265◦

MC, PC, GF – 0.32
(±0.13)

0◦ 0.94 1.91
(±0.31)

285◦

4 MC, PC, SIFT,
DTFPM

51 (69.86%) 0.04
(±0.05)

170◦ 0.42 0.88
(±0.21)

265◦

MC, PC, GF,
DTFPM

10 (13.70%) 0.12
(±0.08)

185◦ 0.51 1.23
(±0.25)

205◦

MC, GF, SIFT,
DTFPM

9 (12.33%) 0.04
(±0.05)

170◦ 0.50 1.07
(±0.24)

275◦

PC, GF, SIFT,
DTFPM

3 (4.11%) 0.11
(±0.08)

185◦ 0.50 1.00
(±0.23)

265◦

MC, PC, GF,
SIFT

– 0.09
(±0.07)

170◦ 0.63 1.32
(±0.26)

265◦

5 MC, PC, GF,
SIFT, DTFPM

73 (100.00%) 0.04
(±0.05)

170◦ 0.41 0.84
(±0.21)

265◦

extractionmethods. Theminimum, average andmaximumEERare determined based
on the results for all perspectives of the given feature extractionmethod combination.
Considering single feature extraction methods, MC or PC are included in more than
70% of the best results. GF is not included in any combination that performs best for
any perspective. The results of fusing feature extraction method pairs clearly show
that it is beneficial to fuse a vein pattern based algorithm (MC, PC, GF) to a key-point
based one (SIFT, DTFPM). The combinations of either MC/PC and SIFT/DTFPM
are leading to 98% of the best results in two-feature extraction methods fusion.
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Table 10.10 Estimated χ2 from the EER for multi-algorithm fusion

Nr of features
EER

n = 1
0.44 (±0.15)

n = 2
0.12 (±0.08)

n = 3
0.04 (±0.05)

n = 4
0.04 (±0.05)

n = 5
0.04 (±0.05)

n = 1 – 33.42 60.91 60.91 60.91

0.44 (±0.15)

n = 2 33.42 – 7.31 7.31 7.31

0.12 (±0.08)

n = 3 60.91 7.31 – 0 0

0.04 (±0.05)

n = 4 60.91 7.31 0 – 0

0.04 (±0.05)

n = 5 60.91 7.31 0 0 –

0.04 (±0.05)

DTFPM (83%) is involved more often than SIFT (26%). Again, GF is not present
in any of the best combinations. The overall best result with an EER of 0.04% is
achieved when fusing MC, PC, SIFT and DTFPM. Once again, the analysis of the
perspective, at which the best result is achieved, confirms, that views from the palmar
(0°, 360°) and dorsal (180°) region perform best.

Same as for the two-perspective fusion, we also check the performance increase
of three-perspective fusion on its significance. Table10.10 lists the results in detail.
The resulting χ2 values indicate, that a fusion of two or more feature extraction
methods is always beneficial compared to a single feature extraction method. The
same holds true when comparing a two-feature extraction method fusion to a three,
four or five one. However, applying a four or five feature-type fusion instead of a
three feature-type one leads to no significant improvements anymore.

10.6.8 Combined Multi-perspective and Multi-algorithm
Fusion

In this section, we combine multiple perspectives and multiple feature extraction
methods into one combined fusion method (CMPMAF). For the selection of the
relevant perspectives and feature extraction methods we considered the results for
multi-perspective fusion (Sect. 10.6.6) and feature extraction method fusion (Sect.
10.6.7). Although the χ2 values for the multi-perspective fusion in Table10.8 are
only boundaries, they still indicate that the performance increase from two to three
perspectives is significant for MC, GF and SIFT. The drawback of adding addi-
tional perspectives is the added cost/complexity to the system (additional camera
and illumination module, higher computational costs). Therefore, we decided that
the significance of the improvement is not high enough to justify the extra effort. As
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Table 10.11 Performance results: Fusion of vein pattern based with key-point based features for
both, palmar and dorsal view. The best result is highlighted bold face

Feature types Perspectives EER FMR1000 ZeroFMR

MC, SIFT 0◦, 180◦ 0.04 (±0.05) 0.04 0.64

MC, DTFPM 0◦, 180◦ 0.08 (±0.07) 0.08 0.12

PC, SIFT 0◦, 180◦ 0.16 (±0.09) 0.16 0.32

PC, DTFPM 0◦, 180◦ 0.16 (±0.09) 0.16 0.24

GF, SIFT 0◦, 180◦ 0.20 (±0.10) 0.20 0.60

GF, DTFPM 0◦, 180◦ 0.20 (±0.10) 0.20 0.28

a result of this, we only consider the two perspective fusion. The results presented in
Fig. 10.11 and Table10.5 show that the best results are achieved when fusing palmar
and dorsal view. This behaviour can be confirmed when analysing the occurrence of
certain perspectives of the three-perspective fusion: Table10.7 states that the palmar
and dorsal region is part of most of the top 25 results. Therefore, we selected 0° and
180° for our combined fusion.

For MAF, the significance analysis (see Table10.10) indicates that the perfor-
mance increase from a two to a three feature extraction method fusion is significant
but would lead to additional computational costs (for score-level fusion, every fea-
ture extraction method needs to be processed by the whole processing chain up to the
comparison). Thus, we decided to include the two-feature extraction method MAF
into our combined fusion strategy only. Furthermore, the results listed in 10.9 state
that 88% of the best two-feature extraction method fusion combinations include one
vein pattern based (MC, PC, GF) and one key-point based (SIFT, DTFPM) feature.
Therefore, we analysed all possible combinations of those feature extractionmethods
using both, palmar and dorsal view. Table10.11 lists the results of the CMPMAF.
We evaluated all six possible combinations and arrived at a best EER of 0.04% with
a confidence interval of 0.05% for the combined fusion of MC and SIFT for palmar
and dorsal view. This result is 11 times better than the best single perspective result
(MC at 0° with an EER of 0.44%). All other combinations also perform well. The
worst result with an EER of 0.20% is achieved when fusing GF with either SIFT
or DTFPM. This is still more than two times better than the best single perspective
result. For the sake of completeness, we also calculated the results of the best 3-,
4- and 5-MAF combinations with the palmar and dorsal view. These results, listed
in Table10.12, show that the EER can be further improved. The best result with an
EER of 0 is achieved when fusing the scores of all five feature types.

Table10.13 compares the performance of the best combined two-perspective two-
algorithm fusion with the best results of all other fusion strategies. One can see that
the calculated χ2 indicates a significant performance improvement with respect to
the single perspective, the 2-MPF and the 2-MAF strategy. All other fusion strategies
achieved about the same EER.
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Table 10.12 Performance results: Fusion of vein pattern based with key-point based features for
both, palmar and dorsal view. The best result is highlighted bold face

Feature types Perspectives EER FMR1000 ZeroFMR

MC, SIFT,
DTFPM

000◦, 180◦ 0.04 (±0.04) 0.00 0.36

MC, PC, SIFT,
DTFPM

000◦, 180◦ 0.01 (±0.01) 0.00 0.12

MC, PC, GF,
SIFT, DTFPM

000◦, 180◦ 0.00 (±0.00) 0.00 0.00

Table 10.13 Comparison of the best two-perspective two-algorithm fusion combination to the best
result of the other fusion strategies including the relative performance improvement, the factor, by
which the EER decreased and the boundary χ2 for significance

Fusion
strategy

EER EER
CMPMAF

Rel. Perf.
Impr. [%]

Factor χ2

Single
perspective

0.44 (±0.15) 1000 11 60.91

2-MPF 0.12 (±0.08) 200 3 7.31

3-MPF 0.04 (±0.04) 0 1 0.00

2-MAF 0.12 (±0.08) 0.04 (±0.05) 200 3 7.31

3-MAF 0.04 (±0.05) 0 1 0.00

4-MAF 0.04 (±0.05) 0 1 0.00

5-MAF 0.04 (±0.05) 0 1 0.00

10.6.9 Results Discussion

The evaluation of the independent recognition performances for different projections
revealed, that indeed thewidely used palmar perspective performed best, followed by
the dorsal one performing second best. The views in-between exhibit a slightly worse
performance, which is still acceptable. Our results indicate that the presence of finger
texture and finger knuckles has a positive influence on the recognition performance.
Figure10.9 shows, that the well-established feature extraction algorithms not only
extract features resulting from the finger veins but also from the skin texture of the
finger and therefore inherently fuse texture and vein structure. The best single view
result was achieved using MC features at the palmar view with an EER of 0.44%.

However, the main objective of this work was to find a suitable trade-off between
the number of involved views and feature extraction methods and the recognition
performance. In order to arrive at a design decision for a multi-perspective finger
vein capture device, several aspects have to be considered: first of all, the gain in
recognition accuracy, followed by the production costs and complexity of the bio-
metric capture device which is directly related to the number of involved views and
finally the computational complexity of the finger vein recognition system including
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the capturing time, i.e. the total processing time, which is related to both, the number
of different views and the number of different feature extraction methods involved.
Adding more perspectives or feature extraction methods increases the complexity
of the finger vein sensor and the recognition tool chain. For every feature extraction
method, all steps of the recognition tool chain from preprocessing to comparison
need to be executed. Adding further perspectives additionally increases the cost and
complexity of the capture device’s hardware by the need of either adding more cam-
era/illumination modules (one per perspective) or a rotator that moves camera and
illumination module into position. Ideally, the number of perspectives and feature
extraction methods are kept to a minimum. Furthermore, additional aspects like an
improved resistance against presentation attacks and an increased robustness against
environmental influences should be included too. Therefore, the decision on how
many perspectives and feature extraction methods are used has to be a trade-off
between added cost/complexity and improvement of the recognition performance.
Our proposed design is based on the findings during the fusion evaluations.

The multi-perspective fusion results showed that by fusing two independent
views, in particular, the palmar and dorsal view, a significant performance gain can
be achieved. Adding a second perspective improved the recognition performance
between a factor 2–3.5, depending on the feature extraction method. The best result
with an EER of 0.12% was achieved using MC features fusing the palmar and dorsal
view. Adding a third view still improves the performance compared to two perspec-
tives, but not to the same extent (significance) as from a single perspective to the
2-MPF. In this case, the best result of 0.036%EERwas achieved usingMCwhen fus-
ing 5°, 170° and 235°.A biometric capture device able to capture the palmar and the
dorsal view simultaneously can be built without any moving parts. Two cameras and
two illumination modules are sufficient. Each additional view poses noticeable extra
costs in terms of hardware (camera and illumination modules) and complexity of the
capture device construction. Therefore, one must decide whether the improvement
in accuracy justifies the extra effort. As our results show, the performance improve-
ment from a 2-MPF to a 3-MPF is not as significant as from a single perspective
to a 2-MPF, a two-perspective capture device, capturing the vein structure from the
palmar and dorsal region is the best choice.

For MAF, a single perspective capturing device is sufficient. Such a biometric
capture device can be built in amore compact and less expensivemanner than amulti-
perspective one. Moreover, existing finger vein capture devices acquiring images of
the palmar view, can be utilised to applymulti-algorithm fusion too. However, adding
an additional feature type to the MAF increases the computational cost. The MAF
results showed, that the fusion of different feature extraction methods per single view
improves the overall performance remarkably as well. The best results were obtained
when fusing vein pattern based algorithms (especially MC and PC) with key-point
based methods (SIFT, DTFPM). The best MAF result with an EER of 0.04% was
achieved when fusing MC, SIFT and DTFPM in the dorsal region. Including more
feature types does not improve the performance compared to the 3-MAF. As the
computational complexity for the calculation and comparison of DTFPM features
are higher than for the other features types, and the performance increase compared
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to the best 2-MAF utilisingMC and SIFT (EER= 0.12%) features is not as significant
as from a single perspective to the 2-MAF, the bestMAF option is a 2-MAF including
MC and SIFT features.

In a third step, we combined MPF and MAF. By using the best performing per-
spectives of the two-perspective approach (palmar and dorsal) and combining them
with a vein pattern based (MC, PC or GF) and a key-point based method (SIFT
or DTFPM), we were able to achieve an EER of 0.04% utilising MC and SIFT.
This corresponds to an improvement by a factor of 11 compared to the best single
perspective performance, while achieving similar results as for the best MPF and
MAF strategies. Adding more feature types to the combined fusion strategy further
improved the result. Combining palmar and dorsal view together with all five feature
types resulted in a perfect result with EER, FMR1000 and ZeroFMR of 0%.

A multi-perspective finger vein capture device is more resistant against presen-
tation attacks, especially against simple paper printout based attacks. Depending on
the actual construction of the multi-perspective capture device, it might also be more
robust against contamination (e.g. dust and dirt, sun protection lotion or hand cream
on the finger surface) of the finger due to the fact that more than one perspective is
captured. Hence, the two-perspective capture device is the preferred option over the
single perspective, multi-algorithm fusion one regarding these additional aspects.

Taking all the above-mentioned considerations into account, especially the addi-
tional advantages provided by a multi-perspective capture device in terms of resis-
tance against presentation attack and robustness against external influences, the most
preferable option is to design a two-perspective capture device capturing the palmar
and the dorsal view applying a two-algorithm fusion includingMCandSIFT features,
whereas by including only one view the advantages of multi-perspective recognition
can not be retained. The second feature extraction method can be included without
involving additional hardware costs just by extending the recognition tool chain and
putting up with the extended processing time, which makes the two-feature version
beneficial in any case. This proposed finger vein capture device set-up arrives at
an EER of 0.04%, which is a performance gain by a factor of 11 compared to the
best single-view, single feature performance. Hence, this option provides an optimal
trade-off between recognition accuracy, construction costs and processing time.

10.7 Conclusion and Future Work

In this chapter, we introduced multi-perspective finger vein recognition. For most
work reported in the literature, only the palmar view is used in finger vein recognition.
However, as the finger is an elliptically shaped cylinder, there are several other views
available all around the finger’s longitudinal axis. In order to be able to exploit
these additional views, a suitable biometric capture device able to capture these
different views is necessary. This chapter is based on our previouswork [2], wherewe
constructed a rotating, multi-perspective finger vein capture device which was then
utilised to capture a multi-perspective finger vein data set. Based on this dataset, the
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recognition performance of each view was evaluated individually. Then we applied
three different score-level fusion strategies, the first one fusing all possible pairs and
triples of distinct views, the second one fusing all different feature combinations
per each single view and the third one combining the first two approaches. The first
strategy was employed to find out the best performing pairs and three tuples of views
in terms of recognition performance. The more views are desired to be captured, the
higher the complexity and production costs of a suitable biometric capture device.
At some point (a certain number of desired views), only a rotating device is able
to capture the desired views. A rotating capture device bears several disadvantages,
e.g. it is more prone to failures and has an increased capturing time. If only a limited
number of views is involved, the production costs and the complexity of the biometric
capture device are kept low. The second strategy was applied to investigate the best
feature extraction method combination per view. The third strategy, which combines
the first two approaches, was applied to find out if the recognition results can be
further improved.

The single view evaluation results confirmed that the widely used palmar per-
spective, followed by the dorsal one (not taking views which are only a few degrees
off from the palmar and dorsal view into account), achieves the best performance in
finger vein recognition. All the perspectives in-between the palmar and dorsal one
exhibit an inferior recognition performance to the palmar and dorsal one. Regarding
the multi-perspective score-level fusion it turned out that a fusion of only two per-
spectives increases the recognition performance significantly, where a fusion of the
palmar and the dorsal view performed best. Adding a third perspective still improves
the results over the two perspective ones, but not to the same extent as the two
perspective ones. The multi-algorithm fusion achieves similar results to the multi-
perspective one, arriving at an EER of 0.04% for the combination of three-feature
extraction methods. A pure multi-algorithm fusion is preferable in terms of hard-
ware costs and capture device’s complexity but does not exhibit the advantages of a
multi-perspective recognition in regards to resistance against presentation attacks and
increased robustness against external influences. By applying both fusion approaches
at the same time for the best performing two perspectives (palmar and dorsal) and the
best performing two distinct feature extraction methods (MC, a vein pattern based
one and SIFT, a key-point based one), we were able to improve the recognition per-
formance by a factor of 11 compared to the best single view result, achieving an EER
of 0.04%.

Regarding recognition performance, hardware costs, processing time and robust-
ness against presentation attacks and external influences the overall best option is to
go for the combined multi-perspective and multi-algorithm fusion. In particular, a
finger vein capture device capturing the palmar and the dorsal view including MC
and SIFT features in a combined fusion provides the best trade-off between the above
mentioned considerations and is, therefore, our preferred design decision.

Future Work

The first step will be the construction of a combined multi-perspective and multi-
algorithm type fusion finger vein capture device to prove its applicability in real-life
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applications of finger vein recognition. We plan to do extended tests with this device,
regarding presentation attacks, robustness against external influences like changing
ambient conditions as well as subject-related influences.

Besides the capture device construction, our future work will include further anal-
ysis using our multi-perspective finger vein dataset. There are several other aspects
besides the single perspective performance and the fusion of multiple perspectives
which can be evaluated based on this dataset. One example is the robustness evalua-
tion of different finger vein recognition algorithms against longitudinal finger rota-
tion, which we already performed in a separate work [65]. We showed that this kind
of rotation poses a severe problem for most algorithms. Since for our dataset the lon-
gitudinal rotation angle is known, we will test different techniques to compensate the
finger rotation, either by estimating the rotation angle based on the captured images
only or by using the known rotation angle and then applying a rotation compensating
transform.

Another interesting question is if the best performing view is consistent across
different subjects/fingers. To perform this analysis we will extend our dataset to
contain at least 100+ subjects and then conduct a subject/finger based analysis to
find out if the palmar perspective is the best one for all or at least a majority of the
subjects/fingers or if there are significant differences.

Another field of interest is finger vein recognition in the 3D space. Therefore,
we want to reconstruct a 3D model of the finger vein structure based on multiple
images captured in different perspectives and apply different feature extraction and
comparison strategies.
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Abstract
Finger vein recognition systems utilize the venous pattern within the fingers to recognize
subjects. It has been shown that the alignment of the acquired samples has a major impact
on the recognition accuracy of such systems. Although a lot of work has been done in this
field, there is still no approach that solves all kind of finger misplacements. In particular,
longitudinal finger rotation still causes major problems. As the capturing devices evolve
towards contactless acquisition, solutions to alignment problems become more impor-
tant. As an alternative to rotation detection and correction, the problem can also be
addressed by acquiring the vein pattern from different perspectives. This article presents a
novel multi‐camera finger vein recognition system that captures the vein pattern from
multiple perspectives during enrolment and recognition. Contrary to existing multi‐
camera solutions that use the same capturing device for enrolment and recognition, the
capturing devices for the proposed system differ in the configuration of the acquired
perspectives. The cameras of the devices are positioned so that the recognition rates
around the finger are high and that the number of cameras needed is kept to a minimum.
The experimental results confirm the rotation invariance of the proposed approach.

1 | INTRODUCTION

Vascular biometric systems [1] have established themselves as a
serious alternative to systems using traditional biometric traits
such as fingerprint, face or iris. Especially, systems utilizing the
structure of the blood vessels in the palm or fingers, commonly
denoted as hand and finger vein biometrics, offer several ad-
vantages over traditional modalities. As the vein pattern is
located inside the human body and it is only visible in near‐
infrared (NIR) light, vein images can hardly be acquired
without the knowledge of the human subject and no latent
variants of it exist [2]. As NIR videos exhibit the blood flow in
the vessels, it is possible to apply liveness detection techniques
to prevent presentation attacks [3,4].

The performance of finger vein recognition systems mainly
depends on the quality and alignment of the acquired sample
data. The quality of the vein images is influenced by the
physical design and the configuration of the capturing device,
whereas the alignment suffers from misplacements of the
finger during the acquisition. The most typical finger mis-
placements are vertical or horizontal shifts, tilt, bending and

longitudinal rotations. The problem of misaligned acquisition is
not exclusive to finger vein recognition. Also other modalities
suffer from it and apply different correction methods. In face
recognition, the acquired images are registered towards the
frontal view (face frontalization [5,6]). For fingerprint recog-
nition pose‐correction is particularly important when using
contactless fingerprints [7,8]. In iris recognition, pose‐correc-
tion is done implicitly by applying Daugmans rubber sheet
model [9]. As there is a trend towards contactless acquisition in
finger vein recognition systems [10–12], problems due to
finger misplacements will get more important.

The negative effect of various types finger misplacements
on the recognition rates and how its impact can be reduced or
eliminated has been addressed in several publications. Lee et al.
[13] utilized minutiae points of the vessel network of the finger
for alignment. Huang et al. [14] reduced the influence of
longitudinal finger rotation by normalizing the vein pattern
assuming an elliptic finger shape. Kumar and Zhou [15] aligned
the finger based on their boundary to correct in‐planar
translations and rotations. The feature‐point based recognition
system proposed by Matsuda et al. [16] introduces a finger‐
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shape model together with a non‐rigid registration method.
Yang et al. [17] introduce a system with an anatomy structure
analysis based vein extraction algorithm and matching strategy.
In [18], the authors proposed a recognition system which can
handle different finger misplacements utilizing PCA‐SIFT [19]
together with bidirectional deformable spatial pyramid
matching [20]. In [21], finger misplacements are detected by
analysing the shape of the finger. The deformations are cor-
rected using linear and non‐linear transformations. Prom-
megger et al. [22] improved the resistance against longitudinal
rotation by introducing additional comparisons to pre‐rotated
versions of the enrolment samples. In addition to these soft-
ware‐based solutions, there are also hardware‐based ones
which guides the subject to place the finger into the correct
position in the first place (e.g. [23]). This way, finger mis-
placements are avoided during acquisition rather than cor-
recting them afterwards in the processing pipeline. Another
approach is to acquire the vascular pattern from multiple
perspectives. For example Bunda [24] and Sonna Momo et al.
[25] propose multi‐camera systems that acquire vein images
from three different perspectives. A system proposed by Kang
et al. [26] applies finger vein recognition in the 3D space.

In [27], the authors presented two rotation invariant finger
vein recognition systems. Contrary to traditional single‐camera
systems, both systems acquire the vein structure from multiple
perspectives all around the finger for enrolment, while for
recognition still only a single sample is captured. The first
approach, Multi‐Perspective Enrolment (MPE), compares the
probe sample to all corresponding enrolment images. The final
biometric comparison score is determined using a maximum
rule score level fusion. The second approach, Perspective
Cumulative Finger Vein Templates (PCT), uses the enrolment
samples to generate a single template holding the vein infor-
mation all around the finger. For recognition, the probe sample
is compared to the generated template. The experiments
confirmed the rotation invariance of both methods, although
the recognition rates for MPE are better than those for PCT.
In [28], an adopted version of MPE named Perspective
Multiplication for Multi‐Perspective Enrolment (PM‐MPE)
has been introduced. It effectively reduces the number of
perspectives needed to be acquired during enrolment by
introducing pseudo perspectives while the recognition rates are
kept high. If enough perspectives are acquired during enrol-
ment, negative effects of longitudinal finger rotation on the
recognition performance can be inhibited for all three
methods.

To counteract longitudinal finger rotation, a novel fully
rotation invariant finger vein recognition system, Combined
Multi‐Perspective Enrolment and Recognition (MPER), is
presented. Its rotational invariance is achieved by acquiring the
vein pattern from several perspectives for both, enrolment and
recognition. The final biometric candidate score is calculated
using a maximum rule score level fusion (MaxSLF) of the in-
dividual comparison scores of each enrolment and recognition
perspective. The idea of acquiring multiple perspectives for
enrolment and recognition is not new. While existing solutions,
for example [24–26], use the same capturing device for

enrolment and recognition, for MPER the two devices are
different in terms of the acquired perspectives. The two
capturing devices are designed in such a way that the rotational
distance between the closest enrolment and probe sample as
well as the number of perspectives involved is kept to a min-
imum. The experiments analyse the recognition performance
of MPER with respect to rotation invariance and its applica-
bility for real‐world applications. The performance achieved
with its camera configuration is compared to the performance
achieved by the state‐of‐the‐art single‐camera systems and by
camera configuration of existing multi‐camera finger vein
recognition systems. The experiments are carried out using the
PLUSVein finger rotation data set (PLUSVein‐FR, [29]).

The reminder of this paper is organized as follows: Lon-
gitudinal finger rotation and the problems it causes for finger
vein recognition systems are described in more detail in Sec-
tion 2. Section 3 hold all details on MPER. The experimental
set‐up together with its results are described in Section 4.
Section 5 discusses the design of the required capturing de-
vices. Section 6 concludes the paper along with an outlook on
future work.

2 | LONGITUDINAL FINGER
ROTATION

Virtually all currently available commercially finger vein scan-
ners acquire the vein images from a single finger using a single
camera. Such capturing devices are prone to different mis-
placements of the finger, including in‐planar shifts and rota-
tion, bending, tilt and longitudinal finger rotation, during image
acquisition. Misplaced fingers result in images that are mis-
aligned or subject of certain deformations. There exist several
countermeasures during acquisition (e.g. by adding support
structures to the device for finger positioning) or processing
(during pre‐processing, feature extraction or comparison) to
avoid or compensate certain misplacements, but especially
longitudinal finger rotation is hard to prevent.

The acquisition of vein images corresponds to a projection
of the blood vessels structure in the finger (3D space) onto a
2D plane. Rotating the finger along its longitudinal axis results
in a change of the acquired vein pattern. Figure 1 tries to
visualize this effect. The top row shows schematic cross sec-
tions of the same finger rotated from � 30° to þ30° in steps
of 10°, the bottom row holds the corresponding vein patterns.
It can be clearly seen that the vein pattern changes with the
rotation of the finger. These changes follow a non‐linear
transformation and depend on the relative positioning of the
veins to each other. In the worst case some veins can even
disappear (merge). The vein pattern acquired at � 30°, 0° and
þ30° differ quite a lot. Obviously, this is a major problem for
finger vein recognition systems. An analysis of publicly avail-
able finger vein data sets [31] showed that longitudinal finger
rotation is a real problem. Depending on the acquisition setup
(used capturing device and protocol), the examined data sets
contain rotational distances of up to 77° between two samples
of the same finger. In [30], it has been shown, that the
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performance of widely used recognition schemes suffer from
such deformations. The negative effect for single camera
systems can be reduced if appropriate countermeasures are
taken [22]. There are also approaches, that is [24–28], that try
to further reduce the negative influence of longitudinal finger
rotations by acquiring multiple perspectives of the vein
pattern.

3 | COMBINED MULTI‐PERSPECTIVE
ENROLMENT AND RECOGNITION

Combined Multi‐Perspective Enrolment and Recognition
(MPER) is a novel fully rotation invariant finger vein recog-
nition method. It achieves its invariance against longitudinal
finger rotation by acquiring multiple perspectives during
enrolment and recognition. For every recognition attempt, the
acquired probe samples are compared to the corresponding
enrolment samples utilizing simple vein pattern based finger
vein recognition approaches, for example as presented by
Miura et al. in [32] combined with Circular Pattern Normal‐
ization (CPN) [22]. The final biometric candidate score is
calculated using a MaxSLF of the individual comparisons. A
downside of multi‐perspective finger vein recognition is that
the cost and complexity of the capturing devices increases with
the number of perspectives involved. Multiple perspectives can
be acquired by either using more than one camera (e.g. [24–
26]), or by building the sensor in a rotating manner (camera
and illumination module rotate around the finger, e.g. [29]).
Since moving parts are susceptible to malfunction, it is
assumed in the further course of the article that each
perspective is acquired by a separate camera. Taking this into
consideration, MPER was designed in a way that the number
of perspectives a capturing device needs to acquire is kept to a
minimum, while the rotational range, for which it delivers good
results is maximized.

Contrary to existing multi‐camera solutions, where the
same capturing device is used for enrolment and recognition,
for MPER the finger vein scanner used for recognition differs
from the one used for enrolment. The n enrolment cameras
are linearly spaced around the whole finger (360°). Distributing
them evenly around the finger ensures that the vein pattern is
captured from all sides. The rotational distance between two
adjacent recognition perspectives is α¼ 360°

n . For the recogni-
tion device m cameras are arranged symmetrically with respect
to the desired acquisition perspective. The distance between

adjacent perspectives φ depends on the distance between the
enrolment cameras α and the number of acquired perspectives
m. It is calculated as φ¼ α

m . For devices with an odd number
of cameras, the middle camera is positioned exactly in the
acquisition direction. For those with an even number, the two
cameras closest to the desired acquisition perspective are
rotated by φ

2. By this arrangement, the distance between the
closest enrolment and recognition perspective δ is always
δ ≤ δmax ¼ φ

2. If δmax is kept smaller than the rotation the
finger vein recognition system utilized by MPER can
compensate, then MPER is invariant to longitudinal rotation.

Figure 2 depicts the principle of the positioning of the
cameras for MPER for two different scenarios: Both scenarios
acquire the same number of enrolment perspectives (n ¼ 4, the
cameras are visualized as filled blue dots) but a different
number of recognition perspectives. The left side captures
m ¼ 2 recognition perspectives (visualized as red circles) and
the right side m ¼ 3, respectively. The enrolment cameras are
distributed evenly around the whole finger. The rotational
distance between two enrolment cameras is α4 ¼

360°
4 ¼ 90°.

As described, the finger vein scanner used for recognition
differs from the enrolment one. The distance between two
adjacent cameras φ is calculated as φ¼ α

m. For m ¼ 2 this
results in a distance of φ4,2 ¼ 45°, for m ¼ 3 the distance is
φ4,3 ¼ 30°, respectively. The maximum distance between the
closest enrolment and recognition camera is δmax ¼ φ

2, that is
δmax(4,2) ¼ 22.5° and δmax(4,3) ¼ 15°. As all acquired probe
perspectives are compared to all enrolment ones, the number
of comparisons needed for one recognition attempt is Nc ¼ n ⋅

F I GURE 1 The problem of longitudinal finger rotation: The top row visualizes schematic cross sections of the same finger rotated from � 30° (left) to
þ30° (right) in steps of 10°. The blue dots represent veins. The bottom row shows the corresponding vein pattern. The vein pattern changes depending on the
positioning of the finger according to a non‐linear transformation (originally published in [30])

F I GURE 2 Camera positioning for MPER for a rotation distance of
90° between the enrolment perspectives and 2 (left) and 3 (right)
recognition cameras. The filled blue dots are enrolment cameras, the red
circles are recognition cameras and the red arrow in the bottom right corner
represents the perspective acquired during recognition
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m. Table 1 holds the details for all settings evaluated in the
experiments of Section 4.

It is known that the shifts executed during the comparison
of binary vein templates have a noticeable influence on the
performance of vein pattern based recognition systems (cf.
[28,31]). The horizontal shifts in the comparison step of
MPER only needs to compensate the maximum distance be-
tween the closest enrolment and recognition perspective δmax.
The experiments showed that the shift can be calculated as

hshif t ¼ 2 ⋅
δmax
360°

⋅ h¼
h

n ⋅m
ð1Þ

where h is the height of the ROI image after applying CPN.

4 | EXPERIMENTS

The experiments of this article carry out a recognition per-
formance analysis of the novel MPER approach with respect
to its rotation in various acquisition camera configurations.
Furthermore, it compares these results to those of state‐of‐the‐
art single‐camera solutions and that of camera configurations
of existing multi‐camera recognition systems. In the last part of
the experiments, a runtime analysis for MPER is carried out.

4.1 | Data set

Most available finger vein data sets were acquired using single‐
camera capturing devices. However, for the analysis of multi‐
perspective finger vein recognition systems the vein pattern
must be available from several, well defined perspectives.
Currently, there exist only a few devices, for example [24–26,
29], that are capable of doing so and not all of the data sets
captured with these devices are available to the scientific
community.

In the experiments, the performance of MPER all around
the finger is analysed for different sensor configurations.
Acquiring the data for each individual configuration separately
using dedicated capturing devices is expensive in two ways: (1)

the corresponding sensors have to be built, and above this, (2)
the data must be acquired for a sufficient number of subjects
and perspectives. The effort increases with each examined
MPER configuration. For the planned evaluations (seven
different configurations, cf. Table 1), this is unfeasible.

A viable alternative to building dedicated sensors is to ac-
quire vein images all around the finger, and simulate different
capturing devices by selecting images from the corresponding
perspectives (only those a dedicated capturing device would
acquire). This way all possible sensor configurations can be
evaluated even though the data was acquired only once. The
PLUSVein Finger Rotation Data Set (PLUSVein‐FR) [29] was
acquired with this idea in mind. It provides finger vein images
all around the finger (360°) with a resolution of 1°.

The PLUSVein‐FR contains finger images captured from
63 different subjects, four fingers per subject, which sums up
to a total of 252 unique fingers. Each finger is acquired five
times. This results in 1.260 images per perspective and 454.860
vein images for the whole data set (the data set contains 361
perspectives as 0° and 360° have been acquired separately).
The experiments are carried out on a subset of the PLUSVein‐
FR containing perspectives in steps of 5°, resulting in 73
different perspectives (0° and 360° are acquired separately).
For more details on the data set, the interested reader is
referred to the authors previous publications [29,30].

4.2 | Recognition tool‐chain
All experiments have been executed using an automated tool‐
chain. For MPER it consists of the following components:

1. Finger region detection and finger alignment are based on
[33].

2. Similar to [14], the region of interest (ROI) is normalized to
a fixed width.

3. In order to enhance the contrast between background and
vein pixels Circular Gabor Filter (CGF) [34] and simple
CLAHE (local histogram equalization) [35] are applied on
the vein image during pre‐processing.

4. The binary feature images are generated using the well‐
established vein pattern based Maximum Curvature (MC)
method [32].

5. The comparison score between two feature images is
evaluated using a correlation‐based method. For this pur-
pose, the probe samples are compared to shifted and
rotated versions of the enrolment images [36].

6. The final biometric candidate score is calculated using a
maximum rule score level fusion of the individual com-
parison scores of the previous step.

The single‐camera performance results, except those for
DFVR [18] and the CNN‐based approach, have been taken
from [22], those for MPE from [27] and those for PM‐MPE
from [28], respectively. The experiments of the remaining
multi‐camera systems [24–26] use the same tool‐chain as
MPER.

TABLE 1 Details of different MPER settings: number of enrolment
(n) and recognition perspectives (m), distances between enrolment (α) and
recognition perspectives (φ), maximum distance between the closest
enrolment and recognition camera (δmax) and the number of comparisons
for one recognition attempt (Nc)

Enrolment Recognition

n α

m ¼ 2 m ¼ 3

φ δmax Nc φ δmax Nc

6 60° 30° 15° 12 20° 10° 18

4 90° 45° 22.5° 8 30° 15° 12

3 120° 60° 30° 6 40° 20° 9

2 180° ‐ ‐ ‐ 60° 30° 6
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As there exists no publicly available implementation of
DFVR, this method has been implemented for the experi-
ments. For the implementation the code of Deformable Spatial
Pyramid Matching for Fast Dense Correspondences proposed
by Kim et al. [20] was extended by the vein based key‐point
selection, PCA‐Sift [19] and bidirectional matching as
described in [18]. The used CNN approach (Triplet‐SqNet)
was taken from [37]. It employs the SqueezeNet architecture
[38] using the triplet loss function together with hard triplet
online selection as described in [39]. All other experiments
have been executed using the publicly available PLUS Open‐
Vein Finger‐ and Hand‐Vein Toolkit [40]. Download links for
the PLUS OpenVein Finger‐ and Hand‐Vein Toolkit, the
DFVR implementation as well as the trained CNN model are
provided on http://www.wavelab.at/sources/
Prommegger20b.

4.3 | Evaluation protocol

The evaluation follows the FVC2004 test protocol [36]. For
this protocol the evaluation of all possible genuine compari-
sons is required, while for the impostor scores only the com-
parisons between the first sample of a finger against the first
sample of all other fingers are executed. MPER requires the
acquisition of multiple perspectives for both, enrolment and
recognition. Therefore two separate subsets are needed. The
first subset, which is used for enrolment, contains the first two
samples, the second one, used for recognition, contains the
remaining three samples. This ensures, that every sample is
used either for recognition or enrolment (but never for both).
The split results in 63 ⋅ 4 ⋅ 3 ⋅ 2 ¼ 1.512 genuine and (63 ⋅ 4) ⋅
(63 ⋅ 4 � 1) ¼ 63.252 impostor comparisons, which sums up
to a total number of 64.764 comparisons. To assess the
recognition performance of the examined recognition systems,
the equal error rate (EER), the receiver operating character‐
istics (ROC) curve and the area under the ROC curve (AUC)
are used.

4.4 | Performance evaluation for MPER

In this part of the experiments, the performance of the pro-
posed method, MPER, with respect to its rotational invariance
all around the finger (360°) is evaluated. In order to assess the
performance of the proposed system, the recognition rates of
every single (independent) perspective, the intra‐perspective
performance (IPP), serve as a reference. For the IPP, the 73
perspectives used in the experiments are evaluated independent
from each other. This means that in principle every perspective
represents its own single‐camera system (only a single sample is
acquired for enrolment and recognition using a single camera
where ideally the finger is placed in the same manner). As a
result of this, the results of the IPP, with respect to longitudinal
finger rotation, are subject to the same limitations as presented
in [30]. The IPP is calculated once without applying any
rotation correction or compensation method and once

applying CPN [22]. As MPER claims to be invariant against
longitudinal finger rotation, recognition rates in the range of
(or better than) IPP without rotation compensation can be
accounted as good. Be aware that the IPP results are
completely independent from each other, and therefore,
although the results are presented together, no rotational in-
dependence can be concluded from them.

As described in Section 3, for MPER multiple probe
samples are compared to multiple enrolment samples. The final
score is calculated by fusing the scores of the different com-
parisons applying a maximum rule score level fusion. For these
experiments seven different scenarios, which differ in the
number of acquired enrolment and recognition perspectives,
are evaluated. For enrolment, four different camera settings are
used: six cameras (α ¼ 60°), four cameras (α ¼ 90°), three
cameras (α ¼ 120°) and two cameras (α ¼ 180°). For recog-
nition, the sensors are equipped with either two or three
cameras. The actual rotational distance between the recogni-
tion cameras depend on the number of cameras m and the
distance of the enrolment cameras α and is calculated by
φ¼ α

m. The details for the used sensor configurations can be
found in Table 1.

The proposed method utilizes Maximum Curvature [32]
features. This choice is based on the authors previous work on
analysing the influence of longitudinal finger rotation on sin-
gle‐camera recognition systems [22] and (PM‐)MPE [27,28,41].
The results in [22] showed that simple vein pattern based
systems (e.g. [14,32,42]) in combination with rotation detection
or compensation schemes (i.e. [14,21,22]) outperform more
sophisticated recognition systems (i.e. [16,17,43]) with respect
to their robustness to longitudinal finger rotation. The work on
(PM‐)MPE, especially [41], also indicated that vein pattern
based methods should be preferred over other methods. In the
course of this article, the evaluations of [22] were extended by
two further recognition schemes ([18,37]) and CPN (cf.
Section 4.5).

The trend of the resulting EERs are depicted in Figure 3.
In addition, to MPER, also the intra perspective performance
results for applying ‘no correction’ and CPN, respectively, are
visualized. The performance of both intra perspective methods
show akin trends, just at different EER levels: The best per-
formance results are obtained in the palmar (0°, 360°) region
followed by the dorsal (180°) region. The perspectives in be-
tween show inferior results, achieving the worst results around
90° and 270°. CPN outperforms ‘no correction’ over the
whole range in average by a factor of two.

The top plot visualizes the results for the settings which
use two cameras for recognition. The EERs for MPER‐60°/2
and MPER‐90°/2 are just above those of the intra perspective
CPN results. The plot for both scenarios shows a noticeable
drop in the recognition performance at those perspectives
where the distance between the closest enrolment and recog-
nition camera reaches its maximum δmax. But they still achieve
a better performance for almost all perspectives than IPP
without rotation correction. For MPER‐120°/2, the perfor-
mance drops are more prominent. The reason for the high
performance degradation is that MPER‐120°/2 with
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δmax ¼ 30° brings the recognition system used (MC together
with CPN) to its limits.

The bottom plot of Figure 3 shows the result for the three‐
camera recognition settings (please note the different scaling of
the y‐axis). All four evaluated scenarios again show the per-
formance drop for those perspectives where the closest
enrolment and recognition perspective are the farthest away
from each other. However, the performance degradation is
only striking for MPER‐180°/3, where δmax is again 30°, and
thus can no longer be compensated.

The EER describes the behaviour of the system only for
the single threshold where the false acceptance rate equals the
false rejection rate. To describe the overall performance of the
system, the ROC curve, where the system is evaluated for
varying thresholds, can be used. The top row of Figure 4 shows
the ROC curves for two selected MPER settings (MPER‐90°/
2 and MPER‐120°/3). The evaluation of 73 perspectives for
each MPER configuration results in 73 different ROC curves.
For a good readability of the plot, only a few selected

perspectives are highlighted with different colours, whereas the
ROC curves for all other perspectives are shown using the
same grey hue. The highlighted perspectives are 0° (palmar
view), 45°, 90°, 135° and 180° (dorsal view). The ROC curves
confirm the result of the EER values and affirm a good per-
formance for all 73 perspectives. In order to better assess the
results of the individual perspectives, a detailed view of the
most interesting region (upper left corner, FAR in 0; 0:1½ �, TPR
in 0:9; 1½ �) is shown. In this view, differences between the in-
dividual curves can be seen. These differences are determined
by two factors: (1) the distance δ between the closest enrol-
ment and recognition perspective, and (2) the performance at
the examined perspective itself (cf. IPP performance). Table 2
holds the camera positions for enrolment and recognition, the
evaluated perspective, the corresponding rotational distance δ
and the EERs when applying MPER and IPP without any
rotation correction, respectively.

For MPER‐90°/2 δ is 22.5° for all five perspectives, which
is the maximum δ can be for this setting. Therefore, the per-
formance in relation to each another roughly corresponds to
that of the IPP EER results: The best performance is achieved
at the palmar view, the worst at 90°. The others are between
these two curves. For MPER‐120°/3 the situation is slightly
different. There, δ differs for the highlighted curves. For 0°
and 45° δ is quite small (0° and 5°). For 180° δ reaches its
maximum of δmax ¼ 20°. The experiments at 0° and 45° also
give the best results. 90° (δ ¼ 10°) and 135° (δ ¼ 15°) perform
worst.

In order to be able to better compare the different camera
settings, this article uses the area under ROC curve (AUC) to
aggregate the ROC curve into a single value. The AUC is
equivalent to the probability that a randomly selected genuine
comparison attempt is ranked higher than a randomly chosen
imposter one. High AUC values (close to 1) are an indicator for
well performing systems (a perfect system achieves an AUC of
1). The AUC plots in the bottom row of Figure 4 show the
AUC values for all camera settings and perspectives. The trend
of the curves confirms the results shown for the EER. Again,
the worst results are achieved for those perspectives in which
the distance between the closest enrolment and recognition
perspectives, δ, approaches δmax.

From the presented results it can be deduced, that rota-
tional invariance is only given if the maximum distance be-
tween the closed enrolment and recognition camera is less than
the angle the used recognition system (in these experiments:
MC, CPN and Miura matcher) can compensate. Prommegger
et al. showed in [22], that for the used recognition system, this
angle should be δmax < �30° for simple vein pattern based
systems. The aim of MPER is to find a camera setting, that
maximizes the recognition rates across the entire range all
around the finger while minimizing the number of used cam-
eras. For the evaluations the intra‐perspective recognition
performance without rotation detection is defined as an indi-
cator for good performance. As a result of this, all configu-
rations that achieve recognition rates below the IPP without
correction are rated as good. From the evaluated settings,
MPER‐90°/2 and MPER‐120°/3 fulfil this aim best. Since

F I GURE 3 Performance results (EER) for MPER: The top plot holds
settings for two recognition cameras, the bottom plot for three, respectively
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F I GURE 4 Performance results (ROC, AUC) for MPER, the left colon holds the results for two recognition results, the right one for three, respectively.
The top row shows the ROC curve for the best performing setting (MPER‐90°/2 and MPER‐120°/3), the bottom row the AUC for all MPER camera settings

TABLE 2 Details of the highlighted perspectives of the ROC plots in Figure 4

Setting Enrolment Camera Positions Recognition Camera Offset Evaluated Perspectives Distance δ EER EER IPP No Corr

MPER‐90°/2 0°
90°
180°
270°

� 22.5° 22.5 0° 22.5° 0.8% 0.9%

45° 22.5° 1.5% 2.8%

90° 22.5° 4.0% 4.6%

135° 22.5° 2.5% 4.1%

180° 22.5° 2.1% 2.3%

MPER‐120°/3 0°
120°
240°

� 40° 0° 40° 0° 0° 0.5% 0.9%

45° 5° 0.4% 2.8%

90° 10° 2.6% 4.6%

135° 15° 2.6% 4.1%

180° 20° 1.7% 2.3%
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there are usually fewer enrolment than recognition stations, the
number of perspectives used for recognition should not exceed
the number of enrolment cameras (m ≤ n). Furthermore, it
must be taken into account whether the proposed capturing
devices can be built easily. Here, it is especially important to
consider whether the illumination modules can be mounted for
the proposed camera perspectives. More details on the required
capturing devices can be found in Section 5.

4.5 | Comparison to single‐camera
recognition systems

In this part of the experiments the proposed system is
compared to existing single‐camera systems. Most of the per-
formance results are taken from [22]. In addition to the
methods evaluated in [22], two further recognition schemes,
Deformable Finger Vein Recognition (DVFR) [18] and a
CNN based system (Triplet‐SqNet) [37], and Circular Pattern
Normalization (CPN) [22] are evaluated. The added experi-
ments follow the same protocol as described in [22]. Results
taken from [22] are marked with an asterisk (*).

The experiments analyse the recognition performance of
single‐camera finger vein recognition schemes with respect to
longitudinal finger rotation. The experiments intend to show,
that with such traditional one‐camera systems it is only
possible to compensate longitudinal finger rotation to a limited
extent. The evaluations include not only different recognition
schemes, but also different state‐of‐the‐art rotation correction
and compensation methods. The recognition schemes under
investigation are three simple vein pattern based recognition
schemes, Maximum Curvature (MC) [32], Principal Curva‐
ture (PC) [42] and theWide Line Detector (WLD) [14], where
the biometric comparison score is calculated based on the
correlation of the extracted binary feature images (as proposed
in [44]), Deformation‐Tolerant Feature‐Point Matching
(DTFPM) [16], Finger Vein Recognition with Anatomy
Structure Analysis (ASAVE) [17], an approach based on
classical SIFT [43] and a more recent scheme, Deformable
Finger Vein Recognition (DFVR) [18], that uses SIFT features
as well. The latter four of these methods claim to be rotation
tolerant to a certain extent. The last method, Triplet‐SqNet
[37], employs the SqueezeNet architecture [38] using the triplet
loss function together with hard triplet online selection [39].

The evaluated rotation compensation methods are Known
Angle Approach [22], Elliptic Pattern Normalization (EPN)
[14], Circular Pattern Normalization (CPN) [22], Geometric
Shape Analysis Based Finger Rotation Deformation Detection
and Correction (GADC) [21] and the Fixed Angle Approach
proposed in [22]. The Known Angle Approach corrects the
vein images based on the actual angle of rotation. Since the
used PLUSVein‐FR provides the actual angle of rotation, this
method can be applied. EPN corresponds to a rolling of the
finger. It assumes an elliptic finger shape and that the acquired
veins are close to the finger surface. This way, non‐linear de-
formations of the vein structure are reduced. CPN is very
similar to EPN. The only difference is, that it assumes a

circular finger shape instead of an elliptical one. GADC ana-
lyses the shape of the finger and based on this analysis, a de-
cision is made for example whether a finger is rotated to the
right or left and if so corrected accordingly. For the Fixed
Angle Approach, the enrolment samples are rotated using a
pre‐defined angle in both directions. The probe sample is
compared to all three enrolment images (the actual acquired
one and the two rotated versions of it). The final biometric
candidate score is determined using MaxSLF. By pre‐rotation
the input image, the rotational distance between the probe
sample and the (rotated) enrolment samples should be
reduced.

First, the behaviour of the single‐perspective recognition
systems with respect to longitudinal finger rotation is evalu-
ated. The rotational range under investigation is �45° from the
palmar view. Figure 5 depicts the results. All simple vein
pattern based methods, MC, PC and WLD, follow akin trends.
At the palmar view, they achieve EERs below 1%. Up to a
rotation of �15°, the performance keeps quite stable. The
performance drops sharply for larger rotation angles, hitting
EERs close to 45% at �45°. For the more sophisticated ap-
proaches, DFVR, DTFPM, SIFT and ASAVE, the perfor-
mance at the palmar view is worse, but the performance
degrades slower when the finger is rotated. The same holds
true for the CNN based Triplet‐SqNet. The best performance
is achieved for DFVR.

Applying different rotation correction approaches can
improve the recognition rates for the different recognition
systems. As Prommegger et al. [22] showed, simple vein
pattern based methods benefit most from rotation correction.
Therefore, only one such system, that is using MC features, is
evaluated. The results are presented in Figure 6. The line
labelled No Correction corresponds to the MC line in Figure 5.
The results show that the GADC approach (at least on the

F I GURE 5 Trend of the EER for different single‐camera recognition
schemes across the rotation angles from � 45° to 45° (0° corresponds to
the palmar view)
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PLUSVein‐FR) does not work. EPN and CPN improve results
almost to the same extent. However, CPN is a bit better at
larger rotation angles. The results of the Fixed Angle method
are better than for CPN and almost match those of Known
Angle. The overall best results are achieved if the Fixed Angle
approach is applied together with EPN. For more details on
results for single‐perspective recognition systems, the inter-
ested reader is referred to the authors previous publication
[22].

For the comparison of the proposed systems to classical
single‐perspective ones, the best recognition system, DFVR,
and the best rotation compensation method, the Fixed Angle
approach together with EPN, have been selected. The results
are presented in Figure 7. As the single‐perspective systems are
tolerant to longitudinal rotation only to a certain extent, only

the rotational range of �45° is evaluated. All methods start
with an EER <1% at the palmar view. As the rotation in-
creases, the performance of the single‐camera system drops.
With DFVR an acceptable performance is achieved almost to
�20°. After that, the recognition rate drops rapidly. For the
Fixed Angle Method with EPN (using MC features), this
crucial point is reached at approximately �25°. The multi‐
camera systems, and here in particular MPER‐120°/3, achieve
stable results across the entire range.

4.6 | Comparison to multi‐camera
recognition systems

The comparison to the camera configurations of other multi‐
camera recognition systems is split into two parts. In the first
part MPER is compared to systems that enrol multiple per-
spectives only during enrolment, while in the second part it is
compared to recognition systems, that utilize multiple per-
spectives for both, enrolment and recognition. This compari-
son should demonstrate the importance of the sensor
configuration, that is how the positioning of the cameras, and
thus also the selection of the perspectives acquired, influences
behaviour of a recognition system. As the aim is to compare
the different camera systems and not the whole recognition
systems, the same processing chain (feature extraction and
comparison) is used for all systems. This ensures that the re-
sults are not undermined by use different software.

In the first part the two systems MPE [27] and PM‐MPE
[28] are evaluated. The main difference between MPE and
MPER is the sensor configuration. While MPER acquires
multiple perspectives during enrolment and recognition, MPE
captures multiple perspectives only during enrolment, and just
a single view for recognition. For recognition, both methods
compare the acquired probe sample(s) to the enrolled ones.
The final biometric comparison score is calculated using a
maximum rule score level fusion. PM‐MPE is an adopted
version of MPE. It still acquires multiple samples during
enrolment and just a single one for recognition. The difference
is that PM‐MPE generates additional perspectives, so called
pseudo‐perspectives, by rotating the acquired enrolment sam-
ples in both directions by a defined rotation angle. During
recognition, the probe sample is not only compared to the
actual acquired enrolment images, but also to its rotated ver-
sions. This way the rotational distance between the closest
enrolment sample (including the generated pseudo‐perspec-
tives) and the probe sample should be reduced. The results for
this comparison are taken from the original publications for
MPE [27] and PM‐MPE [28]. The settings MPE 45° and PM‐
MPE 60° fulfil best this papers definition of good performance
(EERs better than IPP without rotation correction with a
minimum number of involved perspectives). Therefore, the
comparison is done with respect to these two settings.

Table 3 lists the details of the configurations. All four
methods require less than 10 cameras, the two MPER settings
even only six. PM‐MPE requires the most computing capacity
because it has to calculate the pseudo perspectives during

F I GURE 6 Trend of the EER across the different perspectives
applying different rotation compensation approaches using MC

F I GURE 7 Comparison of performance results (EER) for single‐
camera recognition systems versus MPER
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enrolment and executes most comparisons during recognition.
With respect to the recognition performance, the most
important factor is δmax, the maximum distance between the
closest enrolment and recognition perspective. δmax must be
smaller than the maximum distance which the used recognition
scheme tolerates. In case of MC and CPN this is δmax < 30°.
This condition is fulfilled for all four settings. The value of
δmax for PM‐MPE 60° must be read differently. There, the
pseudo perspectives generated for the enrolment sample are
also taken into account. Therefore, the maximum distance to
the closest actually acquired perspective is 3 * δ ¼ 30°.

Figure 8 visualizes the performance results. The EERs of
all four methods are in the same range. MPE 45° shows, with
exception of a few spikes around 90°, 270° and 330° of PM‐
MPE, the worst recognition rates. The EERs for MPER‐90°/2
are slightly better than for MPE and PM‐MPE. The overall
best results are achieved for MPER‐120°/3. For this setting,
the EERs are below 1% for the range between �60° around

the palmar view and less than 3% over the entire range (360°).
All four methods can be considered as invariant against lon-
gitudinal finger rotation.

The main disadvantage of (PM‐)MPE is the complexity of
their enrolment devices. For MPE 45° a device operating eight
cameras is needed, for PM‐MPE 60° it still needs six cameras.
As a plus, the recognition devices are traditional single camera
capturing devices. This might be beneficial if the number of
recognition stations is much higher than the number of
enrolment ones. The sensors used for the two MPER settings
use four or less cameras.

Along to MPER, there are also other finger vein recogni-
tion systems that utilize multiple perspectives during enrolment
and recognition. This part of the experiments tries to compare
such existing multi‐camera systems, that is [24–26], to MPER.
Again, the main focus of this comparison is to show the in-
fluence of the configuration (arrangement of the cameras) of
the acquisition devices. Therefore, the evaluation is reduced to
a comparison of the camera systems itself. The experiments
apply the same methodology as used for MPER: All relevant
probe and enrolment samples are compared to each other
combined with MaxSLF the get the final comparison score.
Using the original algorithms/software as proposed in the
original papers would even undermine the results of the
intended analysis of the capturing devices. Anyway, for none of
the three systems a reference implementation is provided.
Therefore a comparison to the original systems would be a
difficult task.

The systems taken into consideration are three 3‐camera
systems. The first one has been proposed by the University of
Twente [24]. Its cameras are positioned towards the palmar
view (0°) and under an angle of 22.5° in both directions from
the palmar view. As the PLUSVein‐FR data set provides only
perspectives in steps of 1°, the cameras used in the experi-
ments are placed at � 22°, 0° and 23°. The second capturing
device [25] is from Global ID SA, a commercial company. In
principle the design of the sensor is identical to that of Twente.
Only the distance between the cameras (45°) is larger than for
the device from Twente (22.5°). The last capturing device was
proposed by the South China University of Technology
(SCUT) [26]. Its three cameras are positioned equally distrib-
uted around the finger which results in a rotational distance
between two adjacent cameras of α ¼ 120°. Table 4 states the
details of the three camera systems. For more information on
the capturing devices, the interested reader is referred to the
original publications.

TABLE 3 Details on the selected settings: Number of acquired
enrolment samples (n), distance between enrolment perspectives (α),
number of generated pseudo perspectives during enrolment (Np), the
number of recognition perspectives (m), the rotation angle that is used to
generate the pseudo perspectives for PM‐MPE (φ), the distance between
the recognition cameras for MPER (φ), the maximum distance between the
recognition and the closest enrolment perspective (δmax), the number of
comparisons for one recognition attempt (Nc) and the total number of
cameras needed for one enrolment and one recognition device

Method

Enrolment Recognition

# Total Camerasn α Np m φ δmax Nc

MPER‐90°/2 4 90° ‐ 2 45° 22.5° 8 6

MPER‐120°/3 3 120° ‐ 3 40° 20° 9 6

MPE 45° 8 45° ‐ 1 ‐ 22.5° 8 9

PM‐MPE 60° 6 60° 12 1 20° 10° 18 7

F I GURE 8 Comparison of performance results (EER) for MPER,
MPE, PM‐MPE

TABLE 4 Details of the capturing devices used in [24] (Twente), [25]
(GlobalID) and [26] (SCUT): position of the enrolment cameras and offset
of the cameras used for recognition

Method

Enrolment Recognition

n Camera Positions m Camera Offset δmax Nc

Twente [24] 3 0°, 22.5°, 337.5° 3 � 22.5°, 0°, þ22.5° ‐ 9

GlobalID [25] 3 0°, 45°, 315° 3 � 45°, 0°, þ45° ‐ 9

SCUT [26] 3 0°, 120°, 240° 3 � 120°, 0°, 120° 60° 9
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Figure 9 shows the results for the three camera systems.
The green line with filled diamonds depicts the results for the
Twente sensor. Around the intended acquisition perspective
(palmar view, 0° or 360°), this sensor configuration shows
good recognition results with EER's below 0.5%. In the ex-
periments, this performance keeps quite stable up to �55°.
Starting with this rotation angle, the performance starts to
degrade. Around �70° the recognition rate drops rapidly,
arriving at EERs between 45% and 50% for rotations above
�85°. This is the expected behaviour. For a rotation of 70°, the
distance of the closest enrolment and recognition camera is 25°
(closest enrolment camera at 23°, recognition camera at 48°)
which is, according to [22], close to the maximum rotation MC
together with CPN can compensate.

The red line with the empty squared markers shows the
results for the GlobalID sensor. Its behaviour is akin to the
one of Twente. The difference is, that the range, in which it
delivers good recognition results, is larger: For GlobalID, the
performance degradation starts around 90° and drops rapidly
beginning at 115°. The reason for this is the larger distance
between the cameras. The chosen 45° is the largest possible
distance the utilized recognition scheme (MC in combination
with CPN) can handle.

The cameras of the SCUT sensor are positioned at the
palmar view (intended acquisition perspective), 120° and 240°.
Its results are visualized as ochre line with asterisks markers.
Up to a longitudinal rotation of �25° from the palmar view,
the system shows good recognition rates. Starting at this angle
the performance starts to degrade quickly, reaching EER's
>40% between 40° and 80°. When the finger is rotated further
towards 120°, the performance improves to the same level as
achieved at 0°. That is the expected behaviour because the
cameras are evenly distributed around the finger (0°, 120° and
240°), and thus for a finger rotation of 120° the same views as
for 0° are acquired. The same behaviour can be observed at
240°.

It is obvious that none of the three camera systems achieve
rotation invariance when applying the same methodology as
used for MPER. The capturing devices proposed by the Uni-
versity of Twente [24], GlobalID [25] and SCUT [26], only
show a good performance in the range that is covered by
enrolment and recognition cameras while MPER‐90°/2 ach-
ieves EERs below 4% and MPER‐120°/3 even below 3% all
around the finger. Again, please note that for the experiments
only the capturing devices itself are evaluated using the same
methodology as for MPER, and not the whole finger vein
recognition systems as proposed in [24–26]. As a result of this,
the comparison to the three capturing devices (Twente,
GlobalID and SCUT) is not quite fair (the Twente and
GlobalID sensors were not built with rotation invariance
recognition all around the finger (360°) in mind and the SCUT
sensor was developed for a different CNN based recognition
system). But still, the results clearly show that the positioning
of the cameras in the enrolment and recognition capturing
devices is an essential factor for achieving rotation invariance
in finger vein recognition. Especially the comparison to
MPER‐120°/3 is interesting: The sensors of Twente, Glob-
alID, SCUT and MPER‐120°/3 use three cameras for both,
enrolment and recognition, but only MPER‐120°/3 (using a
really simple recognition scheme: MC features, CPN and
MaxSLF) achieves rotational invariance. The invariance for
MPER‐120°/3 is achieved by placing the cameras in a way that
the maximum distance between the closest enrolment and
recognition perspectives stays below the distance the recogni-
tion system can handle.

4.7 | Runtime analysis

As MPER introduces additional processing steps compared to
simple single‐camera systems, the runtime costs are relevant in
a practical application. In this analysis the focus is set on the
recognition step as this is more important to end users than
enrolment (enrolment is executed only once whereas recogni-
tion is executed n times). The runtime of the best settings with
respect to the recognition performance (MPER‐90°/, MPER‐
120°/3, MPE 45° and PM‐MPE 60°) are compared to single
perspective systems with no correction, applying the Fixed
Angle approach and the combination of EPN and the Fixed
Angle method. As shown in [41], the systems like (PM‐)MPE
and MPER are applicable to all simple vein pattern based
methods. Therefore, the runtime evaluation has been done for
three such recognition schemes: MC, PC and WLD. Note that
the implementations of the recognition algorithms used in
these experiments are not optimized for runtime performance.
Hence, the determined durations are only indicators for the
additional costs imposed due to the evaluated approaches. As
there are no reference implementations for [24–26] available, a
runtime analysis for these systems is not possible.

The relevant processing steps to evaluate are pattern
normalization (PN), pre‐processing (PP), feature extraction
(FE), comparison (CMP) and MaxSLF. While PN and MaxSLF
are independent, the other three (PP, FE and CMP) are

F I GURE 9 Comparison of performance results (EER) of other multi‐
camera recognition systems to MPER
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dependent on the used recognition scheme. For the estimation
of the runtime of every processing step, the average time
needed for 1.260 repetitions (number of images of each
perspective from PLUSVein‐FR) has been calculated. For the
scheme independent processing steps it is worth to mention,
that CPN is more than 12 times faster than EPN (7 ms instead
of 87 ms). The reason for this is, that the arc length of ellipses
cannot be calculated directly. The MaxSLF is very fast,
regardless of the number of scores involved (al-
ways < 0.001 ms). Table 5 lists the average processing times for
the method dependent steps in the recognition tool‐chain.

The number of times a processing step is executed varies
between the different approaches. for example the fixed angle
approach does not need any pattern normalization, whereas
MPER‐120°/3 needs to execute it three times (it acquires three
samples for recognition). Table 6 lists how often each step
needs to be executed for the different approaches. The run-
times determined for the different approaches are given in
Table 7. The first line holds the results for a single perspective
system without any rotation detection or compensation. One
recognition attempt for PC and WLD needs only around
50 ms whereas for MC one try takes 315 ms. These results also
serve as a reference for calculating the relative increase of the
runtimes (RI) of the other methods. RI is calculated as

RI ¼
tcur � tref
tref

ð2Þ

where tref is the execution time of the reference method
(single‐perspective system without rotation correction) and tcur
the time of the evaluated system, respectively.

The runtime for the fixed angle approach increases only
minimally by two comparisons and the three scores MaxSLF.
Combining the fixed angle approach with EPN adds another
78 ms, which more than doubles the execution time for PC and
WLD. MPE 45° is slightly slower than No Correction and the
Fixed Angle approach, but considerable faster than Fixed Angle
combined with EPN. This is due to the additional comparisons
and CPN (CPN is faster than EPN). PM‐MPE 60° is, due to the
additional comparisons to the pseudo perspectives, slower than
MPE 45°, but still faster than Fixed Anglewith EPN. As a result
of the additionally captured probe samples, the two MPER set‐
ups, MPER‐90°/2 and MPER‐120°/3, are noticeably slower
than the other approaches. However, MPER‐90°/2 is still faster
than Fixed Angle combined with EPN for PC and WLD.

All three multi‐camera systems (MPE, PM‐MPE and
MPER) have the potential to improve their runtimes by means

of parallelization. With the exception of the MaxSLF, all steps
can be carried out in parallel. With (PM‐)MPE, this affects only
the comparison step, with MPER also the processing steps of
the input images (CPN, PP, FE). Table 6 shows how often the
work steps will be carried out simultaneously and therefore
indicate the possible time savings. If the execution times are
calculated without taking overhead costs into consideration,
this would result for the same runtimes for all three ap-
proaches. The resulting runtime would be comparable to that
of a single perspective system without rotation correction or
the fixed angle approach. This clearly shows that all three
approaches have the potential to be used in real‐world
applications.

5 | DESIGN PROPOSAL FOR MPER
CAPTURING DEVICES

Multi‐perspective finger vein recognition systems require the
acquisition of the vein pattern from different views of the
finger. Currently, there exist only a few devices, for example
[24–26,29], that are capable of doing so. The data used for the
evaluation of MPER was not acquired using a dedicated

TABLE 5 The average time of cost for recognition scheme dependent
processing steps

Method PP [ms] FE [ms] Comparison [ms]

MC 35.212 276.484 3.619

PC 36.903 5.779 3.339

WLD 24.435 26.843 3.253

TABLE 6 Number of times each single step needs to be executed for
one recognition attempt of the different approaches

Method PN PP FE CMP MaxSLF

No correction ‐ 1 1 1 ‐

Fixed angle ‐ 1 1 3 3

Fixed angle þ EPN 1 1 1 3 3

MPE 45° 1 1 1 8 8

PM‐MPE 60° 1 1 1 18 18

MPER‐90°/2 2 2 2 8 8

MPER‐120°/3 3 3 3 9 9

TABLE 7 The average time needed for a single comparison using the
given recognition approaches. RI is the relative increase with respect to the
single perspective approach without any rotation correction or
compensation

Method

MC PC WLD

[s] RI [%] [s] RI [%] [s] RI [%]

No correction 315.3 0.00 46.0 0.00 54.5 0.00

Fixed angle 322.6 2.30 52.7 14.52 61.0 11.93

Fixed angle þ EPN 409.8 29.97 140.0 204.15 148.3 171.98

MPE 45° 347.6 10.25 76.4 66.01 84.3 54.59

PM‐MPE 60° 383.8 21.73 109.8 138.57 116.8 114.24

MPER‐90°/2 666.3 111.33 126.1 173.96 142.6 161.46

MPER‐120°/3 988.7 213.55 179.1 289.17 204.1 274.30

Parallel processing 322.3 2.22 53.0 15.21 61.5 12.84
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capturing device, but has been simulated by taking data from
the PLUSVein‐FR data set. However, in order to apply MPER
in practise, appropriate capturing devices are required. In this
section possible sensor designs for MPER are discussed.

MPER‐90°/2 needs a four‐camera device for enrolment and
a two camera one for recognition, respectively. For MPER‐
120°/3 two three‐camera devices are required. Figure 10 shows
the possible sensor designs forMPER‐90°/2. For the enrolment
device (left), each of the four acquired perspectives has its own
camera (C1–C4). They are placed equidistant with a rotational
distance of 90° between each other. There is only one illumi-
nationmodule (L1 and L2) for every two cameras. It is placed on
the opposite side of the relevant cameras. L1 illuminates the
finger for C3 and C4 and L2 for C1 and C2, respectively. The
angle of incidence from the illumination modules to the relevant
cameras is α

2. The recognition device on the right side consists of
one illumination module and two cameras. The two cameras (C1
and C2) are placed φ ¼ 45° from each other. The illumination
module is positioned in a way, that the angle of incidence to both
cameras is φ

2 ¼ 22:5°.
Possible designs of the sensors needed for MPER‐120°/3

are visualized in Figure 11. For the enrolment device (left), the
three cameras are positioned equally distanced with α ¼ 120°
at 0°, 120° and 240°. Every camera has its own illumination
module which is placed on the opposite side of the finger. The
recognition device on the right side consists of one illumina-
tion module and three cameras. One camera (C2) is placed
opposite of the illumination module. The two other cameras
(C1 and C3) are rotated by φ ¼ 40° from C2 to the right and
the left. Similar devices have already been built: The enrolment
device corresponds to that of SCUT [26] and the recognition
device to the one of GlobalID [25], respectively.

6 | CONCLUSION

We presented the novel multi‐camera finger vein recognition
system MPER. The system acquires multiple perspectives for
enrolment and recognition. The capturing devices used are

designed in such a way that the rotational distance between the
closest enrolment and recognition sample as well as the number
of perspectives involved is kept to a minimum. As a result of this
the two capturing devices differ. The experiments showed that
rotation invariance can be achieved by using as little as three
cameras in both devices. The processing steps are very simple. In
the course of biometric recognition, the binarized vein pattern of
all enrolment and probe samples are compared with each other.
The final biometric candidate score is determined by applying a
maximum rule score level fusion. The simplicity of the pro-
cessing chain is also a strength of the proposed method. In
contrast to other more sophisticated multi‐camera recognition
systems, for example [26], implementations for all processing
steps (pre‐processing, feature extraction and biometric com-
parison) are available (besides others also the one presented in
[40]). The runtime analysis showed that MPER achieves com-
parable results with existing solutions and has the potential to be
used in real‐world applications.

The capturing devices for MPER were not actually built
but have been simulated using the PLUSVein‐FR dataset. This
allowed us to evaluate a lot of different sensor configurations.
Interestingly it turned out that for some of the configurations,
sensors built for other recognition schemes could be used. For
example, for MPER‐120°/3 the sensor built by SCUT [26] can
be used for enrolment and the one proposed by GlobalID [25]
for recognition.

A drawback of multi‐camera recognition systems
compared to traditional single‐camera systems is the increased
cost and complexity of the capturing devices. Depending on
the application, one has to decide which of the factors is more
important. Systems that operate in a controlled environment,
in which all users are cooperative and habituated, single‐camera
systems will be sufficient. The more freedom the user is given
during acquisition (contactless, on‐the‐move), the more finger
misplacements, including longitudinal finger rotation, will
occur. In such environments, the added cost and complexity of
using multi‐camera systems will be justified.

Comparison with other multi‐camera recognition systems
shows how important the positioning of the cameras is.

F I GURE 1 0 Possible multi‐camera set‐ups for MPER‐90°/2. Left:
The enrolment device consists of four cameras that acquire the vein pattern
all around the finger. The cameras are spaced equally distanced all around
the finger. Right: The two cameras of the recognition device cover the
range between two enrolment cameras

F I GURE 1 1 Possible multi‐camera set‐ups for MPER‐120°/3. Left:
The enrolment device consists of tree cameras that acquires the vein
pattern all around the finger. The cameras are spaced equally distanced all
around the finger. Right: The three cameras of the recognition device cover
the range between two enrolment cameras
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Recognition systems that acquire multiple vein images for
enrolment, but just a single one for recognition [27,28] achieve
similar recognition rates all around the finger than MPER. The
advantage of such a system is that the cost of the sensors used
for recognition (using only a single camera) is kept low.
However, the devices for enrolment (requiring at least six
cameras) are complex and expensive. Comparison with
capturing devices of recognition systems, which also use multi‐
camera devices for both, registration and recognition, shows
the importance of the arrangement of the cameras. Like
MPER‐120°/3, all three investigated systems [24–26] use three
cameras for both devices. When using the same methodology
as proposed for MEPR for all sensors, only MPER‐120°/3
achieves rotational invariance.

In our future work we plan to actually build the capturing
devices needed for MPER‐90°/2 and MPER‐120°/3, and put
the systems into operation. We will focus on the usability of the
system, especially the time needed for a recognition attempt
will be optimized for real world applications. Furthermore, we
want to analyse existing multi‐camera systems, using the orig-
inally proposed algorithms, with respect to their rotational
invariance. Furthermore, motivated by the work of Kang et al.
[26] and Xie and Kumar [45], we want to evaluate the rotation
invariance of CNN‐based recognition systems and, if they
show good performance, whether such systems can help to
simplify the required capturing devices (reduce the number of
needed perspectives).
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4. Conclusion

Finger vein biometrics recognise human subjects based on the vascular pattern inside the finger.
In almost all commercial and scientific systems, the vein structure is acquired only for a single
finger using a single camera, preferably from the palmar view. There is very little work on
other perspectives. This theses addresses this problem and examines all perspectives around
the finger.

A general problem in biometrics is the availability of suitable data sets. For most modalities,
large databases with high quality images are rarely available. This problem is even worse in
finger vein biometrics since commercial sensors typically do not give access to the raw images,
but only to already processed proprietary templates. Therefore, in the course of this theses,
several finger vein capturing devices were built and used to acquire corresponding data sets.
Particular attention was paid to being able to capture the vein pattern also from other perspec-
tives than the commonly used palmar view as well as to contactless acquisition. The published
data sets are: (1) The PLUSVein-FV3 data set consisting of palmar and dorsal finger vein images
captured with the Laser and LED version of the PLUS OpenVein Finger Vein Sensor. For this
sensor all information to build and operate the device, e.g. technical drawings, control board
schematics or the capturing software, are available free of charge. (2) The PLUSVein-FR which
provides vein images all around the finger in steps of 1°, and (3) the PLUSVein-CL consisting of
hand and finger vein images captured in an contactless acquisition scenario. All acquired data
sets are available to the scientific public free of charge.

The analysis of perspectives other than the typically used palmar view showed that it is also
possible to use them for recognition. The best results are actually achieved for the palmar view
followed by the dorsal region. Although the perspectives inbetween those two regions show
inferior performance, they still deliver good enough results to perform recognition. The worst
results are achieved when the finger is turned by±90° from the palmar view. In further analysis
we showed that multi-perspective and multi-algorithm fusion as well as combinations of both
significantly improve the recognition rates.

In order to show that longitudinal finger rotation in finger vein recognition is not only a sci-
entific problem but also occurs in real systems, we examined four publicly available finger vein
data sets for the extent to which they contain such rotations. The results showed that every data
set contains longitudinal rotation and revealed rotational distances of up to 77° (!) between two
samples of the same finger. The extent depends on the capturing device itself and the acqui-
sition protocol (e.g. supervised vs unsupervised acquisition). These results show, that there is
definitely a need for rotation tolerant recognition systems. As a result of this we proposed two
different rotation correction and compensation schemes and compared their performance to
state of the art systems. The first approach ”known angle” improves the rotation tolerance by ro-
tating the probe sample in direction of the enrolment sample using the actual angle of rotation.
This method is only applicable if the actual angle of rotation is known. As this is not the case
in normal acquisition scenarios, the rotation angle needs to be estimated. For this purpose we
presented a CNN based rotation estimator. The second approach ”fixed angle” reduces the ro-
tational distance by rotating the enrolment sample in both direction using a pre-defined angle.
Both methods are capable of increasing the tolerance to longitudinal rotations and outperform
existing solutions. But still, for rotation angles larger than ±30° recognition is not useful any
more.
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For finger vein recognition, especially in contactless acquisition scenarios, it would be de-
sirable to get invariant to longitudinal rotation. We proposed four multi-camera systems that
are capable of doing so. The first one, Perspective Cumulative Finger Vein Templates combines
multiple perspectives acquired during enrolment to a single template to which a single probe
image is compared. The other three methods, Multi-Perspective Enrolment, Perspective Multipli-
cation for Multi-Perspective Enrolment and Combined Multi-Perspective Enrolment and Recognition,
also acquire multiple finger vein images but evaluate them independent from each other. The
final biometric candidate score is calculated using a maximum rule score level fusion. A major ad-
vantage of all four methods is that they use simple building blocks (preprocessing, vein pattern
based feature extraction, correlation based comparison and score level fusion) for which imple-
mentations are publicly available. A runtime analysis showed, that the latter three methods can
be applied in real-world applications.

4.1. Issues and open challenges

A general problem in biometrics is the availability of large high quality data sets. In finger
vein recognition this problem is even worse as most commercial sensors to not provide access
to the raw images. Therefore, we designed and built several finger vein sensors and acquired
corresponding data sets. But this does not solve the problem completely as the size as well as the
diversity (e.g. age and origin of the acquired subjects) of our data sets is still limited. If scientific
institutions all over the world would acquire finger vein images with the same capturing device,
then these independent data sets could be merged into a large global data set. With this idea in
mind, we decided to publish all information necessary to build and operate our PLUS OpenVein
Finger Vein Sensor. The task now is to get other organisations to acquire data using our sensor.
The project already started by acquiring data at our University and as part of the PROTECT
project.

Another problem is that currently available commercial (single camera) finger vein recogni-
tion systems are prone to performance degradations due to longitudinal finger rotations. It is
possible to increase the rotation tolerance by introducing pattern normalisation or more sophis-
ticated comparison algorithms, but the rotation angles that are tolerated by such systems are
still limited. Essentially there are two possibilities to solve this problem: (1) by developing new
or improving existing algorithms in order that they are more tolerant to rotation or (2) acquiring
the vein pattern from multiple perspectives in order to get the vein information from a larger
area. The development of new or improved methods is usually associated with an increased
complexity of the algorithms. Multi-camera systems already achieve rotational invariance, but
the work in this area still needs to be continued. For example, for some of the methods the
capturing devices are still complex. One would need to evaluate if the complexity can be re-
duced by e.g. a different selection of the acquired perspectives, the use of different recognition
toolchains or whether one can restrict the range in which such systems must be able to tolerate
longitudinal rotation.

With regard to other recognition toolchains, only systems that are inherently more tolerant to
longitudinal rotation than those evaluated up to now are suitable candidates. Given the promis-
ing results from our rotation detector, we believe that CNN-based systems can be a promising
alternative. A problem with CNNs in finger vein recognition is, that many of the proposed
systems use CNNs with in-built classifiers like e.g. SoftMax and therefore operate in a closed
set environment [12, 51, 33]. Such systems show the potential of CNN based systems, but can-
not be applied in practical biometric applications since theses systems are only able to identify
classes that were including in the training set. If new subjects are added, the CNN needs to be
re-trained. Contrary to this, CNN based finger vein recognition systems operating in an open
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set environment do not directly classify the input images but compute a similarity measure
between two samples. The similarity measure is than compared to a system wide threshold in
order to determine whether the two input images are from the same class (genuine comparison)
or not (impostor comparison) [18, 19, 56, 55]. It has been shown in e.g. [50] that the achieved
recognition rates of experiments in an open set scenario are noticeably inferior to those in an
closed set scenario.

When it comes to restricting the rotational range, in which a systems needs to be rotation
tolerant, the application scenario itself is very important. If it operates in a controlled envi-
ronment with cooperative and habituated users, even existing single-camera systems might be
sufficient. But with increased degrees of freedom (e.g. contactless or on-the-move recognition),
also the misplacements of the finger (including longitudinal finger rotation) will increase. For
such systems added cost and complexity for capturing devices as well as more sophisticated
algorithms can be justified.

It also needs to be noted that the data used in the experiments analysing the proposed multi-
camera recognition systems was not acquired using dedicated capturing devices, but simulated
using data from the PLUSVein-FR. For a final assessment of the proposed systems, the required
capturing devices would have to be built and an evaluation performed using data acquired
with these devices.

But rotational tolerance or invariance in not the only property that is of interest when de-
veloping next generation capturing devices. The trend in hand based vascular biometrics is
towards contactless acquisition (e.g. [1, 25]), most probably in walk-through scenarios (e.g.
[36, 33, 15]), and the use of mobile devices for data acquisition (e.g. [13, 16]). The greatest chal-
lenges in such scenarios will be achieving an uniform illumination of the object to be acquired,
insensitivity to the varying NIR portion in the environmental light (e.g. from the sunlight), and
misplacements due to the increasing number of freedom when presenting the hand or finger
to the device. The current situation with the COVID-19 pandemic may further accelerate this
trend [17].
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