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Abstract—Finger vein recognition deals with the recognition
of subjects based on their venous pattern within the fingers.
The majority of the available systems acquire the vein pattern
using only a single camera. Such systems are susceptible to
misplacements of the finger during acquisition, in particular
longitudinal finger rotation poses a severe problem. Besides some
hardware based approaches that try to avoid the misplacement
in the first place, there are several software based solutions to
counter fight longitudinal finger rotation. All of them use classical
hand-crafted features. This work presents a novel approach to
make CNNs robust to longitudinal finger rotation by training
CNNs using finger vein images from varying perspectives.

Index Terms—Finger vein recognition, longitudinal finger ro-
tation, rotation tolerance, CNN

I. INTRODUCTION

The performance of finger vein recognition systems suffers
from environmental conditions (e.g. temperature and humidity)
and deformations due to misplacement of the finger, typically
including shifts, tilt, bending and longitudinal rotation. The
influence of some of these misplacements can be reduced or
even prevented completely either during acquisition by adding
support structures for finger positioning or a correction during
pre-processing, feature extraction or comparison. Especially
longitudinal finger rotation is hard to avoid. In [1], the authors
showed that existing finger vein data sets contain longitu-
dinal rotation to a non neglectable extend. By eliminating
only longitudinal finger rotation (all other condition remain
unchanged), they achieved performance increases of up to
350%. This indicates that longitudinal finger rotation is not
only a problem in selected use cases, but a general problem
in finger vein recognition. As finger vein recognition systems
evolve towards contact less acquisition (e.g. [2], [3]), problems
due to finger misplacements will become more severe.

Longitudinal finger rotation is hard to counteract as it
changes the positioning of the veins and their visibility due
to a non-linear transformation. As can be seen in Fig. 1,
the acquired vein pattern of a finger differs depending on its
rotation. There is already some work on rotation detection
and compensation for single-camera systems. Prommegger et
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al. [5] analysed different approaches and showed that existing
recognition systems, even when applying rotation compensa-
tion, cannot handle rotational distances of >30°. Others try to
tackle the problem by acquiring the vein pattern from different
perspectives (e.g. [6], [7]). The disadvantage of multi-camera
systems are the increased cost and complexity.

Recently, finger vein recognition systems using convolu-
tional neural networks (CNN) are getting more attention.
These systems are either not designed to counter fight lon-
gitudinal rotation (e.g. [8], [9]) or require the acquisition of
finger vein images from multiple perspectives [7]. Therefore,
this paper is the first to present a CNN based rotation tolerant
single camera finger vein recognition system. The proposed
idea is to train CNNs using finger vein images from vary-
ing perspectives. There are two different sources for these
images: (1) images that were actually taken from different
perspectives and (2) augmented images using a novel approach
that simulates longitudinal rotations during training. This way,
the CNNs should learn to recognize the connection between
images that come from different angles and thus to recognize
the non-linear distortion caused by the rotation.

II. CNN ARCHITECTURES

To demonstrate that our proposed approach to increase the
rotation tolerance of CNNs is independent of the used CNN
architecture and loss function, two different CNN architectures
and loss functions are used in our experiments:

Squeeze-Net (SqNet) with triplet loss function: The
advantage of the triplet loss compared to more common loss
functions (e.g. SoftMax) is that the CNNs learn to group
images of the same classes together in the CNN feature output
space and separate images from different classes, instead
of directly classifying images. So, contrary to common loss
functions, CNNs can also be applied to images whose classes
are not included in the training data. This property is crucial
in biometric applications. The triplet loss using the squared
Euclidean distance is defined as follows:

L(A,P,N) = max(||f(A)− f(P )||2 − ||f(A)− f(N)||2 + α, 0) (1)



Fig. 1: Schematic finger cross section showing five veins (blue dots) rotated from -30° (left) to +30° (right) in 10° steps. The projection
(bottom row) of the vein pattern changes depending on the rotation angle according to a non-linear transformation (originally published in
[4])

where A and P are two images from the same class (finger),
N from a different one. α is a margin that is enforced between
positive and negative pairs (in our case α = 1), and f(x) is the
CNN output of an input image x. Same as in [9], we employ
hard triplet selection and the Squeeze-Net architecture.

DenseNet with SoftMax loss: A more common approach
than using the triplet loss is to train a net with the common
Soft-Max loss function and then use the net as feature extractor
for evaluation by using the CNN activations of intermediate
layers. This approach has already been applied in prior work
(e.g. [8]). As network architecture we employ the DenseNet-
161. For evaluation, we remove the final layer and thereby
get a 2208 dimensional feature vector output when feeding an
image through the network.

III. TRAINING DATA

As already described, the rotated versions of the training
images are provided using two different approaches. In the
first approach, the images are acquired at different rotation
angles, while in the second approach the rotation is artificially
generated using data augmentation. Using vein images that
were actually captured from different perspectives for CNN
training is of course more effort than generating the rotated
versions with the help of data augmentation. It should be noted
that rotated samples of the same finger are only needed for
training. The actual angles of rotation of these samples do
not necessarily have to be known, as long as the acquired
samples cover the rotational range for which the recognition
system should be tolerant. This can be achieved by e.g. placing
the finger in different rotations on the existing single camera
capturing device or by rotating the camera and illumination
module around the finger as done for the employed data
sets. This is certainly a reasonable expense for commercial
products. Recognition is still applied using vein images from
a single perspective.

All images for training and evaluation are normalized using
Circular Pattern Normalization (CPN) [5]. In principle CPN
corresponds to a rolling of the finger surface assuming a cir-
cular finger shape. After this unrolling, longitudinal rotations
correspond to shifts in the acquired images.

Finger Vein Images Captured from Different Perspec-
tives: For the training of the CNNs, finger vein images
acquired from different perspectives are used (the finger is

Fig. 2: ROI of sample images of the PLUSVein-FR after applying
CPN. Left: palmar view (0°), middle: vein image captured at 45°,
right: 45° artificially rotated version of the palmar image.

rotated around its longitudinal axis). All images of a finger, re-
gardless of the angle at which they were taken, are considered
as the same class. As a result of this, the CNN should learn to
recognize finger vein images independent of their perspective.
The left and middle image in Fig. 2 show two such input
images. The left image has been acquired from the palmar
view (0°), the middle one from 45°. It is clearly visible that
the vein pattern is vertically shifted and deformed in a non-
linear manner due to the rotational difference.

CNN Training using Augmentation of Finger Vein Im-
ages: The augmented training data is generated from images
acquired at the palmar view (0°). The height of a CPN image
is hCPN = r · π, which is half the fingers perimeter with an
assumed radius of r. The displacement (in pixels) that must
be applied for a rotation of a defined rotation angle ϕrotate

can be calculated as:

hshift (ϕrotate) =
2 · r · π · ϕrotate

360°
=
hCPN · ϕrotate

180°
(2)

For data augmentation in the rotational range of ±ϕ, the height
h of the input images is enlarged by twice the maximum
shift h = hCPN + 2 · hshift (ϕ). Augmentation is applied by
randomly cropping patches with height hCPN (and original
width) of the enlarged images, which corresponds to rotations
in the range of ±ϕ. The right image in Fig. 2 is an artificially
rotated version (45°) of the original image at the left.

IV. EXPERIMENTS

Datasets: The datasets used for the experiments are the
PLUSVein Finger Rotation Dataset (PLUSVein-FR) [10] and
the PROTECT Multimodal Dataset (PMMDB) [11]. Both
datasets provide finger vein images acquired all around the
finger (360° in steps of 1°) and have been acquired using
the same sensor and the same acquisition protocol. In this
work, only the perspectives in the range of ±45° around the
palmar view are used. The PLUSVein-FR provides vein images
from 63 different subjects with 4 fingers per subject and each
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Fig. 3: Trend of the EER across different longitudinal rotations applying Triplet-SqNet and DenseNet-161 trained with different rotational
ranges

finger is acquired 5 times per perspective, resulting in 1.260
finger vein images per perspective and 115.920 vein images
in total. PMMDB is acquired from 29 subjects with 4 fingers
per subject and either 5 or 10 images per finger (one or two
sessions) for each perspective with a total of 102.987 finger
vein images.

For finger region detection and finger alignment, an imple-
mentation that is based on [12] is used. The ROI extraction
differs from [12]: Instead of cutting out a defined rectangle
within the finger, the width of the finger is stretched to a fixed
width and normalized using CPN. It is worth to note, that
no image enhancement techniques (e.g. contrast enhancement)
have been applied to the input images.

CNN Training: In order to study the influence of using
training data from different longitudinal rotations on the
rotation invariance of the CNNs, the range of rotation from
which the training samples were taken was varied. The ranges
are 0° (which corresponds to the training of a classical
single-camera recognition system with images from palmar
view) and ±5°, ±15°, ±30° and ±45° from the palmar view
(0°). All experiments are executed using (1) images acquired
at different rotations and (2) augmented images simulating
different rotations for CNN training.

Training is performed for 400 epochs starting with a
learning rate of 0.001 for SqNet and 0.005 for DenseNet.
The learning rate is divided by 10 each 120 epochs. For
both nets, training is performed on batches of 128 images.
The images are resized to 224 × 224 pixels and normalized

to zero mean and unit variance before feeding them into
the CNNs. The two employed nets are pre-trained on the
ImageNet database. In order to ensure a 100% separation of
the training and evaluation data set, the training data was taken
from the PMMDB, while for evaluation it was taken from
PLUSVein-FR.

Evaluation Protocol: The EER is used to assess the recog-
nition performance. The evaluation follows the test protocol of
the FVC2004 [13]. The employed similarity metric to measure
the similarity between CNN feature outputs of different images
(genuine and impostor scores) is derived from the Euclidean
distance. To transform the Euclidean distance to a similarity
metric, the Euclidean distances are inversed (d → 1/d) and
normalized so that the resulting similarity values range from
zero to one.

Evaluation of the CNN’s Rotation Invariance: For the
evaluation of the rotation invariance of the CNNs, we apply
networks trained using images from different rotational ranges
(0°, ±5°, ±15°, ±30° and ±45°). For the evaluations, the vein
images acquired at a certain rotation angle ϕ are compared to
the ones acquired at the palmar view. ϕ is varied from -45°
to 45°.

The trend of the EERs for Triplet-SqNet are shown in
the top row of Figure 3. The left image holds the results
for the experiments using training images actually acquired
at different angles, whereas the right plot depicts the results
for the augmented training images, where the images have
been acquired at the palmar view and the rotation has been



simulated as described in Section III. The plots reveal that
the proposed approach to train CNNs with vein images from
different rotations works quite well. For Triplet-SqNet, the
recognition rates of the reference evaluation (training only
with images of the palmar view) drop rapidly for increasing
rotational differences. With an increasing rotational range of
the actually acquired training data, this decline becomes far
less pronounced. For a training range of ±45°, the EER at the
palmar view (0°) is approximately 3%. For the perspectives
at +45° and -45° it is still around 6% for using training data
acquired at different rotation angles. Training the CNN with
augmented image data improves the results as well, but not to
the same extent. For the training range of ±45°, this results
in EERs below 10% at +45° and -45°.

The same evaluations have been executed for DenseNet-161
(bottom row of Figure 3). Training the DenseNet-161 using
images acquired from larger rotational ranges improves the
recognition results, and therefore also the CNNs invariance to
longitudinal rotations. Training with larger rotational ranges
leads to slightly smaller improvements compared to the refer-
ence setting (training images only taken from the palmar view)
as for Triplet-SqNet, but the performance of the reference
settings is also noticeable better for DenseNet-161 over the
whole range of ±45°. The results using augmented input data
for DenseNet-161 show no clear improvements.

V. DISCUSSIONS

In order to be able to quantify the performance of the
proposed method, the best performing methods for actually
acquired rotated training data (DenseNet-161 using CPN and
±45°) and for using augmented training data (Triplet-SqNet
using CPN and ±45°) are compared to the best performing
methods of a previous evaluation on longitudinal rotations in
finger vein recognition [5]. The comparison methods comprise
Principal Curvature (PC) [14], Maximum Curvature (MC)
[15], Deformation Tolerant Feature-Point Matching (DTFPM)
[16], a SIFT based approach [17] and Finger Vein Recognition
With Anatomy Structure Analysis (ASAVE) [18]. The evalua-
tions in [5] showed, that the mentioned recognition schemes
achieve their best results when combined with Elliptic Pattern
Normalization (EPN) [19] and the Fixed Angle Approach [5]
to counteract longitudinal finger rotation.

The results presented in the left plot of Fig. 4 indicate, that
the performance of classical hand-crafted recognition systems
is good if the samples contain little to no longitudinal rotations.
With an increasing rotational distance between the probe and
enrolment samples, the performance drops noticeable. The best
performing classical systems are the simple vein pattern based
approaches PC and MC. For more sophisticated approaches
(DTFPM, SIFT and ASAVE), the absolute performance degra-
dation due to longitudinal rotation is higher. In contrast, the
EER of the proposed CNN based approaches are higher for
smaller rotations, but the drop of the performance is lower
when the rotation increases. The right plot of Fig. 4 should
visualize this effect by plotting the relative performance degra-
dation (RPD), calculated as RPD =

ERRrotated−ERRpalmar

ERRpalmar
,
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Fig. 4: Trend of the EER (left) and RPD (right) across different
longitudinal rotations comparing the proposed systems with hand-
crafted single perspective recognition systems

of the different methods. It is obvious that the two CNNs
using our proposed training strategies are most robust against
longitudinal rotation as their drop in performance is the least.

Besides to the robustness against longitudinal rotation, the
proposed CNN approach has some additional advantages over
traditional hand-crafted solutions:

Pre-Processing: Most traditional finger vein recognition
systems require different pre-processing steps (e.g. image
enhancement) that have to be tailored to each data set. Apart
from the ROI extraction, the approach presented in this article
does not require any pre-processing except of resizing and
normalization (which are standard preprocessing steps for
CNNs and require hardly any computation time and do not
require any adaption to different data sets).

Cost of Time: Once the CNNs are trained, executing a
single comparison is very fast. On average, feature extraction
takes 7 ms, a single comparison 0.01 ms. This is way faster
as for hand-crafted approaches applying time consuming ap-
proaches to increase rotation invariance. Experiments in [5]
have shown that e.g. for PC with the rotation compensation
scheme ”fixed angle” and EPN feature extraction takes just
below 130 ms, and a comparison 2.4 ms.

VI. CONCLUSIONS

In this article, we presented a novel CNN training strategy
to increase the CNN’s tolerance against longitudinal finger
rotation. It is the first CNN-based approach to achieve rotation
tolerance on single camera finger vein recognition systems



and it can be applied to any CNN, regardless of the used net
architecture and loss function. We showed, that by training the
CNNs using vein images acquired from different perspectives,
the tolerance with respect to longitudinal finger rotation of
the CNNs can be increased noticeable. For Triplet-SqNet, the
same holds true if images acquired from a single perspective
are artificially rotated into different perspectives for the train-
ing (data augmentation), but to a smaller extent.

Although the trained CNNs do not yet achieve the same
baseline performance (when all samples are acquired from the
same perspectives) as systems utilizing classic hand-crafted
features, their tolerance against longitudinal finger rotation
is exceptional good. The performance degradation caused by
longitudinal finger rotation is noticeable lower for the trained
CNNs compared to classical systems. Besides the CNN’s
robustness to rotations, other advantages compared to classical
systems are that CNNs do not need any special pre-processing
(besides of the ROI extraction) and that a single biometric
comparison is very fast.
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