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Abstract

Finger vein recognition deals with the identification of a
subjects based on its venous pattern within the fingers. The
majority of the publicly available finger vein data sets has
been acquired with the help of scanner devices that capture
a single finger from the palmar side using light transmis-
sion. Some of them are equipped with a contact surface or
other structures to support in finger placement. However,
these means are not able to prevent all possible types of
finger misplacements, in particular longitudinal finger ro-
tation can not be averted. It has been shown that this type
of finger rotation results in a non-linear deformation of the
vein structure, causing severe problems to finger vein recog-
nition systems. So far it is not known if and to which extent
this longitudinal finger rotation is present in publicly avail-
able finger vein data sets. This paper evaluates the presence
of longitudinal finger rotation and its extent in four publicly
available finger vein data sets and provides the estimated
rotation angles to the scientific public. This additional in-
formation will increase the value of the evaluated data sets.
To verify the correctness of the estimated rotation angles,
we furthermore demonstrate that employing a simple rota-
tion correction, using those rotation angles, improves the
recognition performance.

1. Introduction

Biometric authentication systems have become well es-
tablished nowadays. The most prominent examples are iris,
face and fingerprint recognition systems. Recently, some
emerging, new biometrics gain more attraction, especially
hand and finger vein based systems as they provide several
advantages over e.g. fingerprint based ones. Vein based
systems utilize the patterns of the blood vessels inside the
human body which are only visible in near infrared (NIR)
light. This makes vein recognition systems more resistant

against forgery. Moreover, the vein patterns are insensible
to abrasion and skin surface conditions and a liveness de-
tection can be performed easily [6]. The drawbacks of such
systems compared to fingerprint based ones are the relat-
ively large capturing devices and the low contrast and qual-
ity of the captured images. Furthermore, it is not clear if the
blood vessel structure might be influenced by e.g. physical
activity, temperature changes, certain injuries or diseases.

The performance of finger vein recognition systems is
highly dependent on the quality of the acquired images.
The acquisition quality is influenced by different internal
and external factors, e.g. the quality of the illumination and
camera module, ambient light or the presentation of the fin-
ger during acquisition. The later includes unintended fin-
ger movement during acquisition and finger misplacement
in general. The influence of some kind of misplacements
can be reduced by adding components to the scanner device,
for example by adding a finger-shaped guiding surface to
prevent a shift of the finger. However, finger tilt and lon-
gitudinal rotation of the finger are hard to avoid and pose
severe problems for most finger vein recognition schemes.
As finger vein systems evolve towards contact-less oper-
ation, problems due to finger misplacements will receive
more attention in the future.

Performance degradations caused by various types of fin-
ger misplacement are not new and have been addressed in
several publications. Kumar and Zhou [6] addressed the
need for robust finger vein image normalization, including
rotational alignment, already in 2012. Chen et al. [2] stated
that deformations caused by a misplacement of the finger
can be corrected either during pre-processing, feature ex-
traction or comparison. Moreover, the design of the finger
vein sensor helps to avoid or reduce misplacements of the
finger as well. In [13] the authors showed, that longitud-
inal finger rotation has a severe influence on the recognition
performance of a finger vein recognition system. There are
several approaches that try to handle these issues during the
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processing of the vein patterns. Recognition schemes that
claim to be resistant against finger misplacements to a cer-
tain extent are e.g. [7, 10, 15]. Huang et al. [3] improved
the resistance against longitudinal rotation by applying an
elliptical normalization to the input images. Chen et al.
[2] tried to tackle the problem by detecting the deformation
based on an analysis of the shape of the finger, e.g. around
its longitudinal axis, and corrects the detected deformations
using linear and non-linear transformations. However, none
of theses approaches quantifies the extent (e.g. the rota-
tion angle or the tilt angle) of the misplacement on which
the deformation is based on. Besides these software based
solutions, there are some hardware-based ones which aim
to prevent finger misplacements during acquisition rather
than correcting them. For example, Kauba et al. [5] presen-
ted a finger vein scanner that captures three fingers at once
and requires the subject to place the fingers in an aligned
position on a finger shaped guiding surface. This reduces
longitudinal finger rotation, planar finger rotation as well as
finger shifts to a minimum.

The main contribution of this work is the analysis of four
public finger vein data sets on the presence of longitudinal
finger rotation. Our analysis does not only indicate if longit-
udinal finger rotation is present, but also estimates the lon-
gitudinal rotation angle. This increases the value of those
data sets for the scientific public as future evaluations on
longitudinal finger rotation detection and correction can use
the provided information as a reference. To verify our rota-
tion detection results, we apply a simple rotation correction
based on the estimated rotation angle and compare the re-
cognition results of the original data set. The four finger
vein data sets are UTFVP [14], SDUMLA-HMT [16], FV-
USM [1] and PLUSVein-FV3 [4]. In contrast to the first
three data sets, PLUSVein-FV3 should exhibit hardly any
longitudinal finger rotation due to the design of the scanner
device.

The rest of this paper is organized as follows: Section 2
describes longitudinal finger rotation and its impact on the
recognition performance. Section 3 presents our proposed
approach to detect and determine the longitudinal finger
rotation present in a data set. Section 4 explains the pro-
cessing tool-chain, the analysed data sets, the experimental
set-up and discusses the results. Section 5 concludes this
paper and gives an outlook on our future work.

2. Longitudinal Finger Rotation
Typically, finger vein scanners are designed to acquire

only a single finger at a time. Different types of finger mis-
placement can easily occur with these scanners and pose
a severe problem. Figure 1 shows the orientations of the
x, y and z axis with respect to the finger. The different
types of finger misplacement include planar shifts and ro-
tation (shifts and rotations in the xy-plane) , shifts of the
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Figure 1. Definition of the axes of a finger in a three-dimensional
space

finger in z-direction (distance to the camera, scaling), fin-
ger bending, finger tilt (finger tip and root are not in the
same xy-plane) and longitudinal finger rotation around the
y-axis. As described in [13], the influence of some of these
problematic misplacements can be reduced or even preven-
ted completely during acquisition by adding simple support
structures for finger positioning (e.g. guiding walls to pre-
vent planar shifts) or corrected during pre-processing, fea-
ture extraction or comparison. Almost all currently avail-
able sensors are equipped with such support structures, but
most of them still do not prevent a rotation around the y-
axis (longitudinal finger rotation). Thus, longitudinal finger
rotation cannot be ruled out and poses a severe problem to
finger vein recognition systems.

The captured vein structure is a projection of the vessel
structure in the 3D space onto a 2D plane. If the finger is
rotated along its longitudinal axis, the vein pattern is de-
formed according to a non-linear transformation. Figure 2
shows the effect of longitudinal finger rotation on the vein
pattern. The finger cross section (top row) is rotated from
-30° to +30°. As a result of the rotation the projected pat-
tern of the veins (bottom row) changes as well. Depending
on the relative position of the veins to each other and the
rotation angle, some of the captured veins might merge into
a single one. The vein structures of -30° (left), 0° (middle)
and 30° (right) are completely different. Widely used vein
recognition schemes can handle such deformations only to
a certain extent [13]. If the deformations caused by the lon-
gitudinal rotation are corrected, the negative effect can be
reduced but not completely prevented.

3. Finger Rotation Detection
All publicly available finger vein data sets provide only

images captured from one perspective. But a single image
does not provide enough information to reliably calculate or
estimate the longitudinal rotation angle. Therefore, we pro-
pose an empirical approach to estimate the rotation angle:
All images in the data set are rotated in steps of 1° within
the range of ±45°. Then the rotated images of a finger are



Figure 2. Longitudinal finger rotation principle: a schematic finger cross section showing five veins (blue dots) rotated from -30° (left)
to +30° (right) in 10° steps. The projection (bottom row) of the vein pattern is different depending on the rotation angle according to a
non-linear transformation (originally published in [13]).

Figure 3. Principle of rotation correction. Left: finger rotated with
25°. The blue points depict the veins inside the finger, the cyan
points the veins projected on the finger shape. The bar below is
the projected vein pattern. Middle: the cyan points represent the
rotation corrected vein pattern on the skin, the blue points repres-
ent the veins in the finger in its original position from the palmar
view. The bar below is the rotation corrected vein pattern. On the
right side the vein patterns are visualized below each other. From
top to bottom: rotated vein pattern, corrected vein pattern, correc-
ted pattern shifted for the highest correlation to the palmar pattern
(bottom row).

compared to the first non rotated sample of this finger. The
rotation angle is the angle, where the rotated an non rotated
image shows the highest similarity, i.e. where the compar-
ison score reaches its maximum. As more advanced vein re-
cognition schemes, e.g. deformation tolerant feature point
matching [10], try to compensate longitudinal rotation, they
are not suitable for our approach. Thus, we opted to utilise
Maxium Curvature (MC) [12], a simple vein pattern based
feature extraction method and the comparison method pro-
posed by Miura et al. in [11].

For an accurate correction of the vein pattern, in addition
to the position of the veins in the 2D image, the shape of the
finger and the depth of the veins within the finger must also
be known. As this information is not available, both need
to be estimated. We approximate the shape of the finger as
a circle like Matsuda et al. did in [10]. We further assume,
that the veins are located on the skin surface. Therefore, the
vein pattern is projected back on the outer circle of the fin-
ger. Figure 3 depicts this principle. The left image shows

a schematic cross section of a finger acquired under a lon-
gitudinal rotation of ϕrotate = 25°. The blue dots represent
the veins in their proper position, the red ones those that
are projected onto the skin. The bar below is a visualiza-
tion of the vein pattern where the black areas correspond to
the veins. In the middle image, the finger is rotated back
into the ideal palmar position (ϕrotate = 0°). It is clearly
visible, that the blue and red dots are not perfectly aligned
with each other. The right side shows from top to bottom
the vein patterns of the acquired image (same as on the left
side), the rotated pattern (same as in the middle), a shifted
version of the rotated pattern and the original pattern that
would have been acquired without the presence of longitud-
inal rotation. It is clearly visible that the rotation corrected
pattern is more similar to the original pattern than the ac-
quired one. The additional shift is applied to achieve the
highest possible correlation between the corrected and the
original pattern.

The rotation of the veins by an angle of ϕrotate is calcu-
lated by applying a rotation matrix given in (1).
[
xr
yr

]
=

[
cos(−ϕrotate) −sin(−ϕrotate)
sin(−ϕrotate) cos(−ϕrotate)

]
∗
[
x
y

]
(1)

x and y are the coordinates of the vein pixel in the acquired
image, xr and yr the ones in the rotated image. x is the
position of the pixel in the vein pattern, y is calculated by
(2)

y =
√
r2 − x2 (2)

where r is the approximated radius of the finger.
The rotation angle ϕi,j between two samples of the same

finger is calculated by (3). score(i, j, ϕrotate) is the score,
obtained by applying the Miura matcher [11] on the extrac-
ted MC features, of the ith sample rotated by ϕrotate and
the non rotated jth sample.

ϕi,j = arg max
-45°≤ϕrotate≤+45°

score(i, j, ϕrotate) (3)

To achieve a more robust result, the final rotation angle Φi,1

is calculated as the average of ϕi,1 (the calculated angle of



the rotated ith sample against the non rotated 1st sample)
and ϕ1,i (the calculated angle of the rotated 1st sample
against the non rotated ith sample):

Φi,1 = avg (ϕi,1.ϕ1,i) (4)

4. Experiments
The rotation angle is estimated based on the approach

described in Section 3. We used Maximum Curvature as
feature extractor as it usually achieves accurate results in ex-
tracting the vein patterns. The rotation angle of the samples
is always calculated with respect to the first sample of the
respective finger. In order to confirm the obtained rotation
angles, we evaluate the recognition performance of the ori-
ginal data sets as well as on the rotation corrected ones and
compare the results. The rotation correction has been done
in two different ways: with respect to the first sample of
the respective finger and with respect to the mean of the
determined rotation angles of each finger.

4.1. Data Sets

We evaluate the longitudinal finger rotation of four dif-
ferent publicly available finger vein data sets:

• SDUMLA-HMT [16] is a multimodal biometric data-
base that contains samples for face, gait, iris, finger-
print and finger veins from 106 individuals. The finger
vein subset contains six fingers (ring, middle and in-
dex finger from both hands) per subject, captured in
one session taking six images of each finger.

• UTFVP [14] contains six fingers (ring, middle and in-
dex finger from both hands) from 60 volunteers in two
sessions. At each session two samples per finger were
captured.

• FV-USM [1] was acquired from 123 volunteers, four
fingers each (left and right index and middle finger).
The data was captured in two different sessions, cap-
turing six samples per finger in each session.

• PLUSVein-FV3 [4] contains palmar and dorsal im-
ages of 360 fingers from 60 different subjects (ring,
middle and index finger from both hands) captured in
one session with five samples per finger using two dif-
ferent variants of the same sensor: One utilizing NIR
laser modules for illumination, the other one using
NIR LEDs. The sensor was built in a way that requires
the subject to place the whole hand flat on the sensor.
Therefore, the data set is expected contain little to no
longitudinal rotation. We only evaluate the dorsal im-
ages acquired by the laser version of the sensor.

Table 1 contains an overview on the statistics of the data
sets.

Name Subjects Finger Samples Images View
SDUMLA-HMT 106 6 6 3816 palmar

UTFVP 60 6 4 1440 palmar
FV-USM 123 4 12 5904 palmar

PLUSVein-FV3 60 6 5 1800 dorsal
Table 1. Evaluated finger-vein data sets

Name Genuine Impostor Total
SDUMLA-HMT 9540 200340 209880

UTFVP 2160 63720 65880
FV-USM 32472 120048 152520

PLUSVein-FV3 3600 63720 67320
Table 2. Number of comparisons for each data set

4.2. Recognition Tool-Chain

The finger vein recognition tool-chain consists of the fol-
lowing components:

1. For finger region detection and finger alignment we
use an implementation that is based on [8].

2. The ROI extraction differs from [8]. We do not cut a
defined rectangle within the finger, but similar to [3],
normalize the finger to a fixed width.

3. To improve the visibility of the vein pattern we
use High Frequency Emphasis Filtering (HFE)
[18], Circular Gabor Filter (CGF) [17] and simple
CLAHE (local histogram equalisation) [19] as pre-
processing.

4. As feature extraction method we employ the well-
established vein-pattern based Maximum Curvature
method [12].

5. The comparison of the binary feature images is done
using a correlation measure, calculated between the in-
put images and in x- and y-direction shifted and rotated
versions of the reference image as described in [11].

An implementation of the recognition tool-chain is avail-
able for download on our website1.

4.3. Experimental Protocol

To quantify the performance, the EER, the FMR100 (the
lowest FNMR for FMR ≤ 1%), the FMR1000 (the lowest
FNMR for FMR ≤ 0,1%) as well as the ZeroFMR (the low-
est FNMR for FMR = 0%) are used. We follow the test
protocol of the FVC2004 [9]: For calculating the genuine
scores, all possible genuine comparisons are performed. For
calculating the impostor scores, only the first image of a fin-
ger is compared against the first image of all other fingers.
The resulting numbers of comparisons for all data sets are
listed in Table 2. To quantify the increase of the perform-
ance, the relative performance increase (RPI) is used, which

1http://wavelab.at/sources/Prommegger19c



is calculated as stated in (5):

RPIx,ref =
EERref − EERx

EERx
, (5)

EERref is the EER of the reference data set and EERx

the EER of the evaluated data set.

4.4. Results

Table 3 shows the detected longitudinal rotation angles
with respect to the reference image (first sample of every
finger) as a histogram distribution with 5° bins. As expec-
ted, the PLUSVein-FV3 data set exhibits little to no rota-
tion. 98.4% of the fingers lay within 0-5° of rotation. There
is no sample that is rotated more than 10° from its refer-
ence. The detected rotation on the UTFVP is small as well.
85% of the samples are within 5°, 99.1% within 10° of ro-
tation. Only 0.9% of the images exceed a rotation of 10°.
FV-USM exhibits a slightly higher degree of longitudinal
rotation than UTFVP. 80% of the samples are within 5°,
95.3% are within 10° and 4.7% of the samples are rotated
more than 10°. SDUMLA-HMT shows the largest devi-
ations caused by longitudinal finger rotation. Only 56.4% of
the images are rotated less than 5°, whereas 5.6% exceeds
a rotation of more than 20°. The largest rotation detected is
44.5°.

Table 4 contains statistical data regarding the longitud-
inal rotation of the different data sets, i.e. the distance of
the rotation angles with respect to the mean rotation angle
of each finger and the maximum rotation distance between
two samples of the same finger. PLUSVein-FV3 shows the
smallest deviations. In average, there is a rotation of 1.37°
between two samples. The maximum distance to the mean
value is 8.6°, the maximum rotation between two samples
is 12.5°. For UTFVP, the average distance to the mean ro-
tation angle is 2.65°. The maximum rotation between two
samples is 29.5°. The results for FV-USM are slightly worse
than for UTFVP. Also Table 4 confirms that the level of lon-
gitudinal rotation present in the SDUMLA-HMT is high.
On average, two samples are rotated 6.43° against each
other. The maximum rotation angle between two samples
is 77°, which is astonishingly high.

In order to ensure that the determined 77° did not oc-
cur due to an calculation error, we examined the respective
sample images visually. The mentioned rotation was de-
termined between sample #4 and #6 of the left ring finger
of subject #96. Figure 4 shows the samples: on the left
#1 as reference image, #4 in the middle and #6 on the right.
The top row shows the original images as contained the data
set. It is clearly visible that the three samples are rotated
versions of the same finger. The second row shows the ex-
tracted ROIs and the third row shows the rotation correc-
ted version of the ROI using the determined rotation anlge
Φi,1. Sample #4 (middle column) is corrected by 44.5° and

Figure 4. Three samples from the same finger (left ring finger of
subject #96) of the SDUMLA-HTM data set. Top row: original
images from data set, row 2: extracted ROI not rotated, row 3: cor-
rected ROI. The left column shows sample #1 (reference image),
the middle sample #4 (rotation angle: 44°) and the right sample #6
(rotation angle: -32°). All images are enhanced using CLAHE.

sample #6 (left column) by -32.5°. One can easy see that
the rotation corrected ROIs are better aligned with respect
to longitudinal rotation.

To verify the estimated rotation angles, the recognition
performance for the original data sets (ORI) and the two
corrected versions of the data sets have been evaluated: In
the first version (ROT), all samples are corrected with re-
spect to the first sample of each finger, in the second one
(ROT Mean), all samples of a finger are corrected with re-
spect to the calculated mean rotation angle of this finger.
The rotation correction is done by applying the rotation mat-
rix of Equation (1). The recognition performance results are
given in Table 5. It also gives some statistics on the compar-
ison score values, including the mean, minimum and max-
imum values for the genuine as well as for the impostor
scores. The EER, FMR100, FMR1000 and ZeroFMR de-
creased for both correction scenarios. For SDUMLA-HMT,
FV-USM and PLUSVein-FV3, the correction with respect
to the first sample of a finger achieves the best result, for
UTFVP the correction with respect to the mean rotation
angle attains a superior performance. To point out the
performance increase that can be gained by applying this
simple rotation correction, the RPI as stated in Equation (5)
is calculated too. For SDUMLA-HMT and UTFVP we ar-
rive at a RPI of nearly 350%, for FV-USM of 120%. The
lowest RPI is achieved for PLUSVein-FV3, which directly
corresponds to the low level of longitudinal finger rotation
present in this data set.

The improvement in terms of recognition performance is
mainly due to a better separation of genuine and impostor
scores. In Figure 5 the score distribution for the original
SDUMLA-HMT data set (blue lines) and its corrected ver-
sion (version 1, rotated to the first sample of a finger, red



Data Set Rotation to mean
0° - 5° 5° - 10° 10° - 15° 15° - 20° 20° - 25° 25° - 30° 30° - 35° 35° - 40° 40° - 45°

SDUMLA-HMT 56.4% 21.5% 10.4% 6.2% 2.7% 1.6% 0.8% 0.4% 0.1%
UTFVP 85.2% 13.9% 0.8% 0.1% - - - - -

FV-USM 80.0% 15.3% 3.7% 0.8% 0.2% - - - -
PLUSVein-FV3 98.4% 1.6% - - - - - - -

Table 3. Distribution of longitudinal finger rotation in classes of size 5°.

Data Set Absolute Distance to Mean Maximum Distance
Mean Max Std Mean Max Std

SDUMLA-HMT 6.43 44.83 6.90 19.40 77.00 15.73
UTFVP 2.65 16.50 2.29 7.95 29.50 4.41

FV-USM 3.04 23.83 3.23 11.32 41.00 7.75
PLUSVein-FV3 1.37 8.60 1.24 4.46 12.50 2.44

Table 4. Statistical data on the degree of rotation present in the data
sets.

Figure 5. Distribution of genuine and impostor scores for
SDUMLA-HMT: ORI = oiriginal data set, ROT = rotation cor-
rected to 1st image

lines) is visualized. The impostor scores of the rotated im-
ages are lower in general compared to the scores obtained
from the original data set. This is mainly due to the re-
duced extent of vertical shift that has to be applied during
comparison for the corrected data set. In our set up, the
shift range is reduced by a third compared to the value ne-
cessary to achieve the best results for the original data set.
The reduction of the vertical shift also leads to a slight de-
crease in the genuine score values. However, this decrease
is lower than for the impostor ones, which leads to a better
separation of the scores in general. Moreover, the genu-
ine scores of samples exhibiting a high degree of rotation
are increased too (the accumulation of the original genuine
scores around the score of 0.2 disappears after the correc-
tion). Figure 6 presents the shift in the score distributions

Figure 6. Changes in scores from the original data set to the rota-
tion corrected data set

in a different way by showing the change in their values.
The score values of the original data set are plotted on the
x axis while the ones of the corrected data set are plotted
on the y axis. Due to the reduction of the individual im-
postor score values, the cluster corresponding to the im-
postor scores (red) moves slightly downwards. The genuine
scores (green) move downwards too, but to a lower extent.
The interesting part of the plot are those genuine scores that
overlap with the impostor ones in the evaluation of the ori-
ginal data set. Most of these originally low genuine score
are increased above the level of the impostor scores after the
rotation correction. This becomes visible by the raise of the
green genuine scores above the red impostor ones around
the score of 0.2. Again, this visualises the better separation
of genuine and impostor scores. The statistical values of the
genuine and impostor scores in Table 5 confirm these visual
observation.



Data Set Version Performance Indicators Genuine Scores Impostor Scores
EER FMR100 FMR1000 ZeroFMR RPI Min Mean Max Std Min Mean Max Std

SDUMLA-HMT
ORI 4.73 (±0.22) 6.12 8.09 63.25 - 0.17 0.31 0.44 0.05 0.14 0.19 0.33 0.01
ROT 1.07 (±0.11) 1.13 1.72 59.91 341.6 0.15 0.30 0.42 0.04 0.12 0.17 0.32 0.01

ROT Mean 1.14 (±0.11) 1.18 1.82 47.77 315.8 0.14 0.30 0.42 0.04 0.12 0.17 0.30 0.01

UTFVP
ORI 0.42 (±0.12) 0.23 0.65 3.11 - 0.12 0.26 0.38 0.04 0.07 0.12 0.18 0.01
ROT 0.19 (±0.09) 0.19 0.23 1.62 124.5 0.09 0.25 0.36 0.04 0.06 0.09 0.16 0.01

ROT Mean 0.09 (±0.06) 0.05 0.09 1.30 349.1 0.10 0.25 0.37 0.04 0.07 0.10 0.15 0.01

FV-USM
ORI 1.23 (±0.08) 1.30 2.34 5.27 - 0.13 0.25 0.36 0.03 0.11 0.15 0.19 0.01
ROT 0.56 (±0.05) 0.48 0.93 2.47 120.1 0.13 0.24 0.50 0.03 0.11 0.14 0.18 0.01

ROT Mean 0.77 (±0.06) 0.69 1.42 3.93 59.4 0.13 0.24 0.40 0.03 0.11 0.14 0.19 0.01

PLUSVein-FV3
ORI 0.08 (±0.05) 0.03 0.08 0.39 - 0.08 0.20 0.32 0.04 0.05 0.07 0.09 0.00
ROT 0.06 (±0.04) 0.00 0.06 0.25 50.0 0.08 0.20 0.31 0.04 0.05 0.07 0.09 0.00

ROT Mean 0.08 (±0.05) 0.00 0.08 0.22 0.9 0.08 0.20 0.32 0.04 0.05 0.07 0.09 0.00

Table 5. Recognition performance on the evaluated data sets and its corrected versions: ORI = original data set, ROT = rotation corrected
to 1st image, ROT Mean = rotation corrected to mean of finger. Best achieved EER and RPI values are highlighted in bold.

5. Conclusion

It has been shown previously that longitudinal finger ro-
tation poses a significant problem for many well-established
recognition schemes [13]. This paper investigated on the
presence and degree of longitudinal finger rotation in four
publicly available finger vein data sets. The rotation angle
between different samples of the same finger has been es-
timated based on an empirical approach using a correlation
based comparison of the extracted vein patterns.

PLUSVein-FV3 showed the lowest degree of longitud-
inal finger rotation, followed by UTFVP and FV-USM,
while SDUMLA-HMT exhibited the highest amount. The
degree of longitudinal finger rotation present in the data set
strongly depends on the design of the scanner device, the
acquisition protocol and its supervision. In the PLUSVein-
FV3 data set, the rotation is reduced to a minimum by re-
quiring the subject to place the whole hand flat on the scan-
ner device. The scanners used to acquire UTFVP, FV-USM,
and SDUMLA-HMT were not built to avoid longitudinal
finger rotation. Nevertheless, the small rotation present in
UTFVP and FV-USM suggests that the acquisition protocol
and supervision was very good.

Moreover, we applied a simple rotation correction and
verified the determined rotation angles by comparing the
recognition performance of the original data sets and their
rotation corrected versions. It turned out that the recogni-
tion performance could be improved for all four data sets.
The highest improvement could be achieved for SDUMLA-
HMT and UTFVP with a performance increase of 350%.
Even the correction of the low longitudinal rotation in
PLUSVein-FV3 lead to a performance increase of 50%.

We provide the determined rotation angles for all
four data sets in order to increase the value of
those data sets by augmenting them with this ad-
ditional information. These can be download at:
http://wavelab.at/sources/Prommegger19c.

In our future work we will evaluate the presence of lon-
gitudinal finger rotation and its extent for further data sets
as well as an inter-session analysis of data sets acquired in

multiple sessions.
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