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Longitudinal Finger Rotation - Deformation
Detection and Correction

Bernhard Prommegger, Christof Kauba, Michael Linortner and Andreas Uhl

Abstract—Finger vein biometrics is becoming more and more popular. However, longitudinal finger rotation, which can easily occur in
practical applications, causes severe problems as the resulting vein structure is deformed in a non-linear way. These problems will
become even more important in the future, as finger vein scanners are evolving towards contact-less acquisition. This paper provides a
systematic evaluation regarding the influence of longitudinal rotation on the performance of finger vein recognition systems and the
degree to which the deformations can be corrected. It presents two novel approaches to correct the longitudinal rotation, one based on
the known rotation angle. The second one compensates the rotational deformation by applying a rotation correction in both directions
using a pre-defined angle combined with score level fusion and works without any knowledge of the actual rotation angle. During the
experiments, the aforementioned approaches and two additional are applied: one correcting the deformations based on an analysis of
the geometric shape of the finger and the second one applying an elliptic pattern normalization of the region of interest. The
experimental results confirm the negative impact of longitudinal rotation on the recognition performance and prove that its correction
noticeably improves the performance again.

Index Terms—Finger vein recognition, longitudinal finger rotation, finger rotation detection, finger rotation correction, biometric fusion.
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1 INTRODUCTION

VASCULAR pattern based biometric systems, commonly
denoted as vein biometrics, offer several advantages

over other well-established biometric recognition systems.
In particular, hand and finger vein systems have become
a serious alternative to fingerprint based ones for several
applications. Vein based systems use the structure of the
blood vessels inside the human body, which becomes visible
under near-infrared (NIR) light. As the vein structure is
located inside the human body, it is resistant to abrasion
and external influences on the skin. Furthermore, a lifeness
detection to detect presentation attacks can be performed
easily [1].

The performance of finger vein recognition systems suf-
fers from different internal and external factors. Internal
factors include the design and configuration of the sen-
sor itself, especially the NIR light source and the camera
module. External factors include environmental conditions
(e.g. temperature and humidity) and deformations due to
misplacement of the finger, typically including shifts, tilt,
bending and longitudinal rotation which will be further
examined in this work.

Performance degradations caused by various types of
finger misplacement are not new and have been addressed
in several publications. The need for a robust finger vein
image normalisation including rotational alignment has al-
ready been mentioned by Kumar and Zhou in 2012 [1].
Chen et al. [2] state that deformation correction can be
done either during pre-processing, feature extraction or
comparison. Moreover, the physical design of the sensor
can help to avoid misplacements of the finger. In [3] the au-
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thors showed, that longitudinal finger rotation has a severe
influence on the recognition performance of a finger vein
recognition system. There are several approaches that try to
reduce the influence of these issues during the processing
of the vein patterns. Kumar and Zhou [1] introduced a
finger alignment based on the finger boundary to overcome
finger translation and rotation. Lee et al. [4] proposed a
system utilizing a minutia based alignment together with
local binary patterns as feature extraction method. Huang et
al. [5] improved the resistance against longitudinal rotation
by applying an elliptic pattern normalization to the input
images. Matsuda et al. [6] proposed a feature-point based
recognition system introducing a finger-shape model and
a non-rigid registration method. They achieved robustness
against longitudinal rotation up to ±30°. Yang et al. [7] in-
troduced a finger vein recognition framework including an
anatomy structure analysis based vein extraction algorithm
and integration matching strategy. Chen et al. [2] introduced
an approach that detects different types of finger defor-
mation by analysing the shape of the finger, e.g. around
the longitudinal axis, and corrects them using linear and
non-linear transformations. Besides these software based
solutions, there are some hardware-based ones which aim
to prevent finger misplacements in the first place, during
acquisition, rather than correcting them afterwards. Kauba
et al. [8] presented a finger vein scanner that captures three
fingers at once and requires the subject to place the fingers
in a flat, aligned position on a finger shaped guiding surface.
This reduces longitudinal finger rotation, planar finger rota-
tion as well as finger shifts to a minimum. To the best of our
knowledge, there is no method that satisfactory solves the
problem of longitudinal finger rotation. Problems resulting
from finger misplacements, e.g. longitudinal rotation, will
receive more attention in the future as finger vein systems
evolve towards contact-less operation.
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Fig. 1. Definition of the axes of a finger in a three-dimensional space

The main contribution of our work is the systematic
analysis to which extent a longitudinal finger rotation can
be compensated and which impact such a correction has
on the recognition accuracy of the finger vein recognition
system. This analysis extends the authors previous work [3],
[9]. Therefore, we evaluate four different methods to correct
the longitudinal rotaion, where the first and the last on are
proposed in this work:

1) A correction using the actual rotation angle pro-
vided by the data set and a circular projective
correction. This approach has not been applied in
finger vein recognition and serves as a reference for
the effectiveness of the other rotation compensation
methods.

2) A method proposed by Chen et al. [2] that analyses
the geometric shape of the finger and corrects the
deformations based on the results.

3) Elliptic pattern normalization of the region of inter-
est as proposed by Huang et al. in [5].

4) A new method proposed in this article that com-
pensates the rotational deformations without the
knowledge of the actual rotation angle by applying
a rotation correction in both directions using a pre-
defined angle combined with score level fusion.

To verify the effectiveness of the proposed approach (4), it
is also applied on two commonly used finger vein data sets,
namely UTFVP [10] and SDUMLA-HMT [11].

The rest of this paper is organized as follows: Longi-
tudinal finger rotation and its problems caused for finger
vein recognition systems are described in more detail in
Section 2. Section 3 explains all details of the used rotation
compensation methods. Section 4 explains the processing
tool-chain and the used data set together with the exper-
imental set-up. Furthermore it includes the experimental
results together with a discussion. Section 5 concludes the
paper along with an outlook on future work.

2 LONGITUDINAL FINGER ROTATION

While capturing finger vein images, the finger’s placement
on the scanner is not necessarily done in an optimal way.
Such misplacements result in deformations of the vein struc-
ture, affecting the performance of a finger vein recognition
system. Fig. 1 shows the orientations of the x, y and z axis
with respect to the finger. The different types of misplace-

Fig. 2. Finger rotation example using a commercial off-the-shelf scanner
(rotation counter-clockwise, originally published in [3])

ments include:

• shifts of the finger in x- and y-direction (planar shifts)
• shifts of the finger in z-direction (distance to the

camera, scaling)
• planar rotation of the finger (in the xy-plane)
• tilts of the finger (finger tip and finger root are not in

the same xy-plane)
• finger bending and
• rotation around the longitudinal axis of the finger (y-

axis).

As described in the authors’ previous work [3], some of the
problematic misplacements can be reduced or even com-
pletely prevented during acquisition by adding simple sup-
port structures on the scanner, e.g. guiding walls to prevent
planar shifts. Moreover, they can be corrected by the biomet-
ric processing chain during pre-processing (finger alignment
during ROI extraction) or feature extraction and compari-
son (using x- and y-direction shifted and rotated versions
of the extracted templates). Almost all currently available
commercial off-the-shelf (COTS) sensors are equipped with
such support structures, but most of them are still not able
to prevent a rotation around the y-axis (longitudinal finger
rotation). Thus, longitudinal finger rotation cannot be ruled
out and poses a severe problem to finger vein recognition
systems. Fig. 2 shows an example of the longitudinal fin-
ger rotation while using a COTS scanner. In a supervised
acquisition scenario, the user can be guided to place the
finger correctly. However, in unsupervised operation of the
scanner, such longitudinal rotations are highly likely to
occur. As finger vein scanner development tends towards
contact-less operation, the problem of finger misplacement
is getting more serious due the increased degrees of freedom
and the inability to use guiding structures.

The captured vein structure is a projection of the vessel
structure in the 3D space onto a 2D plane. If the finger
is rotated along its longitudinal axis, the vein pattern is
deformed according to a non-linear transformation. Fig. 3.
shows the effect of longitudinal finger rotation on the vein
pattern. The finger cross section (top row) is rotated from -
30° to +30°. As a result of this rotation, the projected pattern
of the veins (bottom row) changes as well. Depending on
the relative position of the veins to each other and the
rotation angle, some of the captured veins might merge into
a single one. The vein structures of -30° (left), 0° (middle)
and 30° (right) are completely different. Widely used vein
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Fig. 3. Longtitudinal finger rotation principle: A schematic finger cross section showing five veins (blue dots) rotated from -30° (left) to +30° (right) in
10° steps. The projection (bottom row) of the vein pattern is different according to the rotation angle following a non-linear transformation (originally
published in [3]).

recognition schemes can handle such deformations only
to a certain extent [3]. If the deformations caused by the
longitudinal rotation are corrected, the negative impact can
be reduced, but not completely mitigated.

3 FINGER ROTATION COMPENSATION

As longitudinal finger rotation decreases the performance of
a finger vein recognition system, it is beneficial to compen-
sate the deformations caused by this rotation. In this study,
four different approaches to tackle this problem are dis-
cussed and analysed. The first approach which has not been
applied in finger vein recognition sp far assumes that the
longitudinal rotation angle is known and compensates the
deformation by applying a non-linear transformation in the
opposite direction. This kind of analysis was only possible
because the PLUSVein Finger Rotation data set (PLUSVein-FR)
provides the actual angle of the longitudinal finger rotation.
The results of this method can be used as a reference for
the evaluation of the effectiveness of the other rotation
correction methods as the results of this method will be
close to the possible best achievable results. The second
approach, proposed by Chen et al. [2], tries to detect the
finger rotation by analysing the finger shape and again
correcting it using a non-linear transformation. The third
method applies an elliptic pattern normalization (EPN) [5]
of the acquired image to reduce the deformations. The last
approach is a novel approach proposed by the authors. It
applies a rotation compensation in both directions using a
fixed angle together with a maximum rule score level fusion.
Its main advantage is that no prior knowledge of the actual
rotation angle is required.

3.1 Rotation Compensation for Known Rotation Angle
For an accurate correction of the vein pattern the position of
the veins in the 2D image as well as the shape of the finger
and the depth of the veins within the finger has to be known.
As this information is not available in general, both need to
be estimated. We approximate the shape of the finger as
a circle like Matsuda et al. did in [6]. We further assume,
that the veins are located on the skin surface instead of
underneath the skin. Therefore, the vein pattern is projected
back on the outer circle of the finger. Fig. 4 depicts this
principle. The left image shows a schematic cross section of
a finger acquired with a longitudinal rotation ϕrotate = 25°.
The blue dots represent the veins in their proper position,
the red ones those that are projected onto the skin. The

Fig. 4. Principle of rotation correction with known rotation angle. Left:
finger rotated with 25°. The blue points depict the veins inside the
finger, the red points the veins projected on the finger shape. The bar
below is the projected vein pattern. Middle: the finger rotated into the
palmar view. The bar below is the rotation corrected vein pattern, which
corresponds to the veins estimated on the finger surface. On the right
side the vein patterns are visualized below each other. From top to
bottom: rotated vein pattern, corrected vein pattern, corrected pattern
shifted for the highest correlation to the palmar pattern (bottom row).

bar below is a visualization of the vein pattern, where the
black areas correspond to the veins. In the middle image,
the finger is rotated back into the ideal palmar position
(ϕrotate = 0°). It is clearly visible that the blue and red dots
are not perfectly aligned with each other. From top to bot-
tom, the right side shows the vein patterns of the acquired
image (same as on the left side), the rotated pattern (same as
in the middle), a shifted version of the rotated pattern and
the original pattern that would have been acquired without
the presence of longitudinal rotation. The rotation corrected
pattern is clearly more similar to the original pattern than
the acquired one. The additional shift is applied to achieve
a higher correlation between the corrected patterns and the
original one.

The position of a pixel within the vein pattern is defined
by its x-coordinate xr and the corresponding y-coordinate
yr, which is calculated by (1)

yr =
√
r2 − x2r (1)

where r is the approximated radius of the finger. r is half
the finger width, which corresponds to half of the height of
the extracted finger ROI. The rotation back into the palmar
view is calculated by applying the rotation matrix given in
(2).
[
xp
yp

]
=

[
cos(−ϕrotate) −sin(−ϕrotate)
sin(−ϕrotate) cos(−ϕrotate)

]
∗
[
xr
yr

]
(2)
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xp and yp are the corrected coordinates of the vein pixel
in the palmar view and ϕrotate is the rotation angle. If the
veins are located on the skin surface and the finger radius
is known exactly, this method is accurate. In practice, the
blood vessels are inside the finger and the finger outline
detection my not be completely accurate, thus there remains
a small deviation.

3.2 Geometric Shape Analysis Based Finger Rotation
Deformation Detection and Correction
Chen et al. [2] proposed a method to detect and correct
finger deformations based on a geometric shape analysis
(GADC). They distinguished three types of finger defor-
mations: finger tilt, finger bending and longitudinal finger
rotation. In this work only longitudinal finger rotation,
which Chen et al. called a type 3 deformation, is discussed.
For the shape analysis they defined several parameters, on
the basis of which they calculated statistical measures of
the finger. These parameters are described in section 2 of
the original paper. The detection of a type 3 deformation is
based on the bending at the proximal inter-phalangeal joint.
If the absolute difference of the upper and lower angle of
the finger outline at the joint, αupp joint1 and αdown joint1,
is larger than a defined threshold t3rotate, a deformation of
type 3 is present and the image has to be corrected. The
rotation correction is applied either in the one or the other
direction using a fixed sampling scheme. Thus, the same
fixed correction is applied independent of the actual rotation
angle. A detailed description of the rotation detection and
correction scheme can be found in [2].

3.3 Elliptic Pattern Normalization
Huang et al. [5] proposed a normalization of the vein pattern
in the feature space. The method is based on the hypothesis,
that the cross section of a finger approximately resembles
an ellipsis and that the veins which are captured by the
finger vein scanner are located close to the finger surface.
Their normalization essentially corresponds to a rolling of
the finger, which reduces the non-linear deformation of the
vein structure across the entire width of the finger. After this
correction is applied, a horizontal shift of the images during
comparison corresponds to a rotation of the finger. They
applied the elliptic normalization in the feature space using
a vein pattern based feature extraction. As this paper also
investigates algorithms that are not vein pattern based, an
elliptic correction in the feature space is not feasible for all of
them. Therefore, the correction is applied in the image space.
This way the normalization can be used for all algorithms
under investigation. For more details on this method, the
interested reader is referred to the original work [5].

3.4 Rotation Compensation Using a Fixed Angle
In real world scenarios, the longitudinal rotation angle is
unknown and its estimation is a difficult task. Hence, a
method that does not require the rotation angle to correct
the images would be beneficial. As shown in [3], commonly
used recognition schemes tolerate rotations of at least ±10°.
Thus, a system that is able to keep the deformations caused
by the longitudinal rotation within this range is desirable.

Fig. 5. Deviation of the rotated finger to the palmar view with an correc-
tion angle ϕcorr = 20°

The proposed method for correcting longitudinal finger
rotation is based on rotations of the image in both direc-
tions using a fixed compensation angle. The final score is
calculated using a maximum rule score level fusion of the
three comparisons (original, non-rotated image and the two
rotated versions).

It is assumed that the enrolment data is acquired in a
constrained environment. Thus, the longitudinal rotation of
the enrolment data should be close to 0°. During the image
acquisition, the finger can be positioned either correctly (no
rotation) or rotated to the left or to right side. In order to
reduce the rotational deviation between the two samples,
comparisons using the captured sample itself with respect
to the unmodified enrolled sample and its rotated versions
in both directions are applied. The angle of the applied
rotation ϕcorr is defined in advance. The applied rotation
compensation is the same as explained in section 3.1: the
finger is approximated as a circle and the image is projected
on this circle prior to applying the rotation correction.

Fig. 5 illustrates how this approach reduces the rotational
deviation with ϕcorr = 20°. The dashed cyan line shows the
deviation of the rotation for the original data. The dotted
grey lines represent the deviation of the data corrected
with ±ϕcorr. The red line corresponds to the minimum
deviation of all images to the enrolled one. It can be seen
that the rotational angle of the sample compared to the
original deviation is reduced. E.g. if the probe sample is
rotated ϕ = 30° from the enrolled sample, the following
comparisons are done:

1) The probe sample against the unmodified enrolled
sample: rotation angle between the compared im-
ages: 30°.

2) The probe sample against the enrolled image rotated
with ϕcorr: rotation angle of -ϕ + ϕcorr = −30° +
20° = 10°.

3) The probe sample against the enrolled image rotated
with −ϕcorr: rotation angle of -ϕ− ϕcorr = −30° −
20° = 50°.

If ϕcorr = 20°, the deviation does not exceed 10° if the
rotation angle stays within a range of ±30°. This deviation
can be handled by commonly used recognition schemes
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Fig. 6. Basic principle of the multi-perspective finger vein scanner used
to acquire the PLUSVein-FR data set (originally published in [9], © 2018
IEEE)

and thus, the performance degradation can be kept at an
acceptable level. The best choice for ϕcorr depends on the
actual application and the scanner device. The useful range
of ϕcorr is in the range of 5° to 25° for most applications.

4 EXPERIMENTS

During the experiments, the four rotation compensation ap-
proaches described in section 3 are applied on the PLUSVein
finger rotation data set, which is described in the following
subsection. Furthermore, to verify effectiveness of the the
proposed fixed angle method, it is applied on the publicly
available finger vein data sets UTFVP [10] und SDUMLA-
HMT [11].

4.1 PLUSVein Finger Rotation Data Set

The PLUSVein Finger rotation data set (PLUSVein-FR) has
been acquired using a custom designed multi-perspective
finger vein scanner as depicted in Fig. 6. It provides finger
vein images all around the finger (360°) with a resolution
of 1°. The finger is placed in the center of the scanner (axis
of rotation), whereas the NIR camera (right side) and the
NIR illumination unit (left side) are placed on opposite sides
of the finger (light transmission). The different projections
of the finger are acquired by rotating the camera and the
illumination module around the finger.

The data set contains finger images captured from 63
different subjects, 4 fingers per subject, which sums up
to a total of 252 unique fingers. Each finger is acquired
5 times. This results in 1.260 images per perspective. In
this work, we use the perspectives in the range of ±45°
around the palmar view in steps of 1°. For more details on
the data set and the multi-perspective finger vein scanner,
the interested reader is referred to the authors previous
publications [3], [9]. The data set is publicly available for re-
search purposes at http://wavelab.at/sources/PLUSVein-
FingerRotationDataSet.

Data
Acqusition

Pre-
processing

Feature
extraction

Comparison
Result:

GEN / IMP
Biometric

trait (finger)

Recognition tool-chain (software)
Multi-perspective
finger vein scanner

Fig. 7. Basic components of a biometric recognition system (originally
published in [3])

4.2 Recognition Tool-Chain
The components of the recognition tool-chain are visualized
in Fig. 7, which are the same as in the authors previous
work [9]: First, the biometric trait is acquired by the multi-
perspective finger vein scanner as a video sequence. The
subsequent tool-chain consists of pre-processing (ROI (re-
gion of interest) extraction and image enhancement), feature
extraction and comparison. At first the frames correspond-
ing to 1° steps are extracted from the video sequences.
Afterwards each image is processed individually: the ROI
is extracted and the finger outline is detected using an edge
detection algorithm. Then a straight line is fitted to the
center of the finger. Based on this line, the finger is aligned
(rotated and vertically shifted) such that it is in horizontal
position and the center line of the finger is in the middle
of the image. The area outside of the finger lines is masked
out (pixels set to black). Afterwards, the image is cut to a
pre-defined length of 1100 pixels. The height of the finger is
normalized to a height of 300 pixels throughout the whole
length of the finger image. To avoid artifacts at the image
borders, 10 pixels are cut off on each side. The resulting
ROI has a size of 280x1080 pixels. Fig. 8 visualizes this
process. The top image shows the finger with the center
and finger lines, the bottom image shows the final ROI.
Furthermore, to improve the visibility of the vein patterns
High Frequency Emphasis Filtering (HFE) [12], Circular
Gabor Filter (CGF) [13] and simple CLAHE (local histogram
equalisation) [14] are used as pre-processing techniques.
For more details on the pre-processing methods refer to
[15]. This study compares four simple and one advanced
vein pattern based feature extraction methods which is
based on the analysis of the anatomy structure of the veins.
Maximum Curvature (MC) [16], Principal Curvature (PC)
[17], Wide Line Detector (WLD) [5] and Gabor Filter (GF)
[1] aim to extract the vein pattern from the background
resulting in a binary image, followed by a comparison of
these binary images. Comparing the binary feature images
is done using a correlation measure, calculated between
the input images and in x- and y-direction shifted and
rotated versions of the reference image. The more sophisti-
cated vein pattern based method, Finger Vein Recognition
With Anatomy Structure Analysis (ASAVE), proposed by
Yang et al. in [7], is a finger vein recognition framework
which includes an anatomy structure analysis based vein
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Fig. 8. ROI extraction - top: finger line detection. The straight line in
the middle represents the center of the finger at which it is horizontally
aligned. The top and bottom lines are the detected finger outlines which
separate the finger from the background. The region between the lines
is regarded as finger region. Bottom: the finger region is transformed to
a fixed height. Afterwards the ROI, visualized as white square, of a fixed
size is cut out.

Name Subjects Genuine Impostor Total
Subset 1 32 3200 16384 19584
Subset 2 31 3100 15376 18476

Total 63 6300 31760 38060

TABLE 1
Number of comparisons for each subsets

extraction algorithm and an integration matching strategy.
In addition, two keypoint based recognition schemes, a SIFT
[15] based technique with additional keypoint filtering and
Deformation-Tolerant Feature-Point Matching (DTFPM)
proposed by Matsuda et al. [6] are evaluated.

4.3 Evaluation Protocol

To quantify the performance, the EER, the FMR100 (the low-
est FNMR for FMR ≤ 1%), the FMR1000 (the lowest FNMR
for FMR ≤ 0,1%) as well as the ZeroFMR (the lowest FNMR
for FMR = 0%) are used. The data set is divided into two
roughly equal sized subsets. The division is based on the
contained subjects, i.e. all fingers of the same person are in
one subset. Each subset is used to determine the parameters
which are then applied to the other subset. This ensures
a 100% separation of the data used for determining the
optimal parameters and the actual test set. The evaluation
within the subsets follows the test protocol of the FVC2004
[18]: for calculating the genuine scores, all possible genuine
comparisons are performed. For calculating the impostor
scores, only the first image of each finger is compared to
the first image of all other fingers. The resulting number of
comparisons for both subsets are listed in Table 1. The final
results are evaluated based on the combined scores (genuine
and impostor) of both test runs. The parameter optimization
is executed only for the original, unmodified data set. The
same parameter settings are applied for all experiments on
the modified versions of the data sets too.

To quantify the decrease in performance for the rotated
finger vein images, the relative performance degradation

Feature EER FMR100 FMR1000 ZeroFMR
MC 0.37 (±0.09) 0.30 0.43 0.84
PC 0.77 (±0.13) 0.70 1.37 1.92

DTFPM 0.87 (±0.14) 0.83 2.27 6.85
WLD 0.92 (±0.14) 0.92 1.29 2.80

GF 1.02 (±0.15) 1.02 1.70 2.61
SIFT 1.80 (±0.20) 2.05 4.10 6.97

ASAVE 2.96 (±0.25) 3.91 5.74 15.07

TABLE 2
Baseline performance results at the palmar view for the different

recognition schemes ordered by recognition performance.

(RPD), which is calculated as stated in equation (3), is used:

RPD =
EERx − EERref

EERref
. (3)

EERref is the EER of the reference data set and EERx the
EER of the evaluated data set. A RPD of 0 means no change
in performance, a RPD of 1 corresponds to an EER increase
to its doubled value. For a negative RPD, the performance
increased. For the evaluation of the performance increase
due to rotation correction, the relative performance increase
(RPI) as in equation (4) is calculated:

RPI =
EERref − EERx

EERx
. (4)

Again, EERref is the EER of the reference data set and
EERx the EER of the evaluated data set. A RPI of 0 means
no change in the performance, a RPI of 1 corresponds to a
drop in the EER to half of its value. For a negative RPI, the
performance decreased. All values are given in percentage
terms, e.g. 2.35 means 2.35%.

An implementation of the complete tool-chain as well
as the used configuration files and results (EER, FMR100,
FMR1000 and ZeroFMR) are available for download at:
http://www.wavelab.at/sources/Prommegger19a.

4.4 Baseline Results

In order to quantify the change of the recognition perfor-
mance due to rotation correction, the results of the unmod-
ified PLUSVein-FR are calculated. In finger vein recognition
usually the palmar perspective is used [10], [11], [19], [20],
[21], [22]. The performance of the data set achieved at this
view is stated in Table 2. The results are comparable to other
publicly available finger vein data sets: MC achieves the
best recognition rate with an EER of 0.37%, followed by PC,
DTFPM, WLD, GF and SIFT while ASAVE, with an EER of
2.96%, performs worst.

The images captured at the different rotation angles from
-45° to 45° are compared to the palmar view (no rotation, 0°).
The trend of the absolute EER is shown in Fig. 9. MC, PC
and WLD follow the same trend: They start at an EER < 1%
and keep quite a stable performance up to ±15°, where their
EER is still < 1.5%. Higher rotations lead to a fast drop of
the performance. At a rotation of ±45°, their EER is > 40%.
The trend of GF, the fourth of the simple vein pattern based
methods, is similar, but its performance degradation is more
prominent. Both keypoint based methods are more robust
against longitudinal rotation. DTFPM shows the overall
best performance and outperforms all vein pattern based
methods for rotation angles higher than ±30°. At ±45° its
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Fig. 9. Trend of the EER across the different rotation angles (0° corre-
sponds to the palmar view) for the original, unmodified data set from
-45° to 45°.

EER is still < 20%. SIFT outperforms the other methods
starting at ±35° and achieves an EER of < 30% at ±45°. The
more sophisticated ASAVE framework shows no advantage
over the simple vein pattern based methods: It starts at a
higher baseline EER of 3% and its performance degrades
towards higher rotation angles too, arriving at an EER of
about 40% at ±45° as well.

As already shown in [3], all recognition schemes are
able to tolerate a longitudinal finger rotation up to ±10°,
while still achieving an acceptable performance. The EER
values as well as the RPD for selected perspectives are
stated in Table 3. This table lists the performance indicators
for all applied rotation correction methods and recognition
schemes. The RPD is always calculated with respect to
the palmar view (0°) of the same recognition scheme and
rotation correction method. This allows a direct comparison
of the different methods. Since the recognition results for
rotations in both directions are almost symmetrical, the table
only contains values for positive rotation angles.

4.5 Rotation Compensation for Known Rotation Angle

As mentioned in subsection 4.1, for the PLUSVein-FR the
exact angle of the longitudinal finger rotation is known. This
fact can be exploited to apply an actual correction of the
longitudinal finger rotation as described in subsection 3.1.
Fig. 10 depicts the ROI (left side) and the extracted MC
features (right side) for different views. The images in the
top row are from the palmar view, the middle shows the
ones from a 25° rotated finger and the bottom row its
corrected version. It is clearly visible that the vein structure
of the rotated image (middle row) is a deformed version of
the palmar one (top row). The vein structures of the rotation
corrected images in the bottom row are more similar to the
palmar images than the uncorrected ones. The part of the
corrected ROI image that contains no information (due to

Fig. 10. ROI (left) and extracted MC features (right) of sample images of
the PLUSVein-FR. First row: palmar view (0°), second row: 25° rotated
view, bottom row: rotation corrected version of the 25° rotated image.
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Fig. 11. Trend of the EER across the different rotation angles applying
an exact longitudinal finger rotation compensation (0° corresponds to
the reference, palmar view) from -45° to 45°.

the transform) is filled with the average grey level of the
image.

Fig. 11 depicts the trend of the EER for the corrected
images. For all methods, the drop in the recognition per-
formance is less pronounced than without rotation com-
pensation. Again, MC, PC and WLD show a similar trend:
Up to a rotation angle of ±30° the EER stays below 3%.
Even for a rotation of ±45° their EER is still below 9%.
The performance of keypoint based algorithms increases as
well, but not to the same extent as for MC, PC and WLD.
These algorithms are already tolerant against longitudinal
rotation, and thus, the potential for improvement due to
rotation correction is smaller. Neither DTFPM, nor SIFT
outperform the three simple vein pattern based methods.
ASAVE benefits most from this correction: With a maximum
RPD of < 300% over the whole range of ±45°, it exhibits the
lowest performance degradation. Although, due to its low
baseline performance, all methods except SIFT and GF still
outperform ASAVE in terms of absolute EER. Again, GF
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Method
Rotation

angle
No Correction Known Angle GADC EPN Fixed Angle Fixed Angle + EPN

EER RPD EER RPD EER RPD EER RPD EER RPD EER RPD

MC

0° 0.37 — 0.37 — 0.59 — 0.17 — 0.28 — 0.21 —
5° 0.41 13.15 0.34 -8.26 0.81 37.29 0.17 0.97 0.30 6.18 0.16 -23.26
10° 0.63 73.37 0.49 34.51 0.96 62.32 0.25 47.24 0.32 12.37 0.19 -7.75
15° 0.84 130.68 0.52 42.86 1.11 86.94 0.32 84.36 0.38 33.71 0.34 62.80
20° 1.54 320.82 0.62 68.94 2.05 246.62 0.67 286.94 0.62 117.99 0.44 115.50
25° 3.25 788.35 0.99 169.35 4.42 646.06 1.13 555.40 1.00 252.26 0.75 262.02
30° 9.21 2415.79 1.32 260.14 11.66 1866.52 1.99 1051.57 1.46 413.50 1.05 407.75
35° 23.68 6372.16 2.03 453.54 25.21 4152.94 4.61 2570.63 2.55 798.34 1.74 746.51
40° 37.39 10119.38 3.93 974.29 37.85 6284.78 10.88 6205.09 5.19 1724.77 2.88 1296.93
45° 43.84 11882.56 6.69 1728.68 43.51 7239.77 25.19 14500.85 9.66 3299.00 4.62 2145.00

PC

0° 0.77 — 0.77 — 0.86 — 0.51 — 0.65 — 0.46 —
5° 0.75 -2.67 0.76 -0.59 0.78 -9.23 0.51 0.04 0.65 0.00 0.43 -6.94
10° 0.89 15.81 0.87 13.73 0.98 14.36 0.49 -3.45 0.92 41.17 0.41 -10.42
15° 1.13 47.05 1.11 44.97 1.26 46.40 0.52 3.19 0.97 48.53 0.46 0.00
20° 1.65 114.89 1.48 92.45 1.81 110.97 0.81 59.38 1.34 105.15 0.63 37.50
25° 3.26 324.80 1.62 111.15 3.84 346.83 1.21 137.66 1.70 161.28 0.86 87.16
30° 6.52 748.56 2.56 232.94 8.37 873.41 1.94 281.33 2.44 274.26 1.16 152.09
35° 15.36 1897.84 3.93 411.87 17.91 1983.44 3.67 623.05 3.79 481.61 1.78 286.81
40° 30.37 3851.08 6.06 688.84 31.64 3580.94 9.13 1697.57 5.45 736.03 2.84 517.36
45° 43.01 5496.60 8.75 1038.17 42.97 4898.52 20.34 3903.85 8.46 1199.25 3.98 766.32

DTFPM

0° 0.87 — 0.87 — 1.21 — 1.00 — 0.81 — 0.94 —
5° 1.02 17.23 1.16 32.78 1.55 27.63 1.43 43.49 0.98 21.74 1.32 40.58
10° 1.40 60.34 1.35 54.67 1.97 62.64 1.79 79.82 0.98 20.75 1.45 53.82
15° 1.96 124.60 1.52 73.39 2.85 135.10 1.85 85.83 1.44 78.66 1.52 61.62
20° 2.65 203.56 2.00 128.99 3.86 218.31 2.32 132.46 1.89 133.40 1.97 109.50
25° 4.16 375.71 2.38 172.86 5.14 323.97 3.68 269.44 2.87 255.74 3.12 231.59
30° 6.05 591.73 3.31 278.31 7.43 512.76 5.79 480.59 4.35 438.76 5.16 448.71
35° 9.12 943.91 4.53 417.93 10.62 775.74 8.10 711.94 6.78 739.54 7.14 658.74
40° 13.50 1445.01 6.37 628.50 14.70 1111.82 9.78 881.15 9.74 1105.54 8.64 818.49
45° 17.33 1883.09 8.66 891.01 18.35 1413.10 12.81 1184.81 13.83 1612.08 11.50 1122.53

WLD

0° 0.92 — 0.92 — 1.13 — 0.72 — 0.78 — 0.65 —
5° 0.84 -8.61 1.02 9.90 1.28 12.95 0.75 4.51 0.79 2.26 0.57 -12.23
10° 1.10 18.87 1.11 20.42 1.37 20.98 0.84 17.64 1.03 32.92 0.70 7.09
15° 1.38 49.90 1.24 34.32 1.61 42.83 0.91 26.85 1.14 47.12 0.87 33.49
20° 2.30 149.57 1.46 58.43 2.69 137.91 1.31 82.31 1.47 89.50 1.14 75.06
25° 4.25 360.57 2.01 117.74 5.54 390.24 1.92 168.44 2.00 157.62 1.49 128.60
30° 9.29 905.55 2.64 185.55 11.85 949.21 2.89 304.11 2.63 239.51 1.99 204.40
35° 21.26 2202.19 3.88 319.93 23.47 1977.35 5.43 658.91 3.98 413.17 2.60 298.77
40° 35.06 3696.61 6.22 573.82 35.86 3074.41 12.08 1587.46 6.03 677.38 4.12 531.52
45° 43.34 4593.00 8.72 843.73 43.31 3734.29 24.35 3301.41 10.24 1219.98 5.98 815.63

GF

0° 1.02 — 1.02 — 2.15 — 0.40 — 0.76 — 0.38 —
5° 1.50 47.55 1.29 27.41 2.81 30.95 0.60 51.87 1.02 33.54 0.46 20.50
10° 2.34 130.05 1.52 50.01 4.01 86.47 0.67 67.88 1.32 72.96 0.41 7.95
15° 3.90 283.84 1.94 90.97 5.20 142.12 0.97 144.29 1.87 145.91 0.59 53.55
20° 7.16 604.34 2.93 188.74 8.88 313.38 1.77 343.63 2.91 281.76 1.00 161.08
25° 13.57 1234.95 4.80 372.34 15.53 622.82 2.87 620.23 5.02 559.12 1.63 327.61
30° 23.21 2183.73 7.95 681.83 25.30 1077.10 5.57 1300.74 8.32 992.67 2.84 643.92
35° 37.14 3554.99 12.59 1138.61 37.79 1658.20 10.57 2556.57 14.09 1749.70 4.79 1156.47
40° 46.26 4452.59 19.42 1810.58 46.45 2061.23 20.10 4951.93 21.49 2722.22 8.22 2053.95
45° 48.05 4628.08 26.92 2549.20 48.05 2135.60 34.55 8585.07 28.78 3678.84 12.74 3238.87

SIFT

0° 1.80 — 1.80 — 2.02 — 1.32 — 1.54 — 1.25 —
5° 2.30 28.26 2.05 14.14 2.46 22.14 1.42 7.83 1.72 11.83 1.37 9.34
10° 2.56 42.53 2.19 21.80 2.75 36.10 1.80 36.72 2.43 57.96 1.71 36.39
15° 4.11 129.08 2.78 54.57 4.27 111.53 2.40 82.42 3.08 99.82 2.19 75.02
20° 5.51 206.72 3.68 105.09 6.66 229.92 3.46 162.95 3.48 125.56 2.49 99.44
25° 8.65 381.87 4.36 142.66 9.02 347.11 4.25 222.54 5.41 251.16 3.78 202.50
30° 12.69 606.56 5.72 218.46 12.99 543.57 6.16 367.81 8.74 467.17 5.05 303.86
35° 16.32 808.88 8.11 351.76 17.11 747.91 8.70 560.13 11.59 652.31 7.89 531.20
40° 22.96 1178.52 11.81 557.49 23.38 1058.67 11.52 774.49 17.10 1010.00 10.15 711.13
45° 27.77 1446.86 15.70 774.65 27.83 1279.11 16.46 1149.28 22.84 1382.10 15.94 1174.38

ASAVE

0° 2.96 — 2.96 — 3.27 — 1.65 — 1.70 — 1.34 —
5° 3.66 23.83 3.01 1.77 4.12 26.17 1.91 15.41 1.83 8.09 1.46 9.56
10° 5.57 88.29 2.87 -3.02 6.03 84.71 2.70 63.39 2.24 31.89 1.65 23.41
15° 8.12 174.78 2.98 0.70 8.56 162.14 4.29 159.54 2.47 45.53 2.11 58.06
20° 10.54 256.54 3.40 15.04 11.34 247.16 6.44 289.15 3.22 89.84 3.08 130.70
25° 11.87 301.71 3.89 31.63 13.06 299.75 8.19 395.30 5.29 211.86 4.70 251.85
30° 14.57 392.87 4.78 61.84 16.28 398.43 10.01 505.31 9.51 460.02 7.16 435.72
35° 20.66 598.91 5.85 97.88 22.78 597.45 11.40 589.44 15.33 803.39 10.53 687.56
40° 30.83 943.09 7.08 139.41 31.61 867.82 14.61 783.26 19.70 1060.49 15.08 1028.66
45° 38.58 1205.26 11.51 289.26 38.39 1075.56 22.94 1287.11 21.43 1162.75 19.60 1366.53

TABLE 3
Performance results in terms of EER and RPD of all correction methods and recognition schemes. The RPD is always calculated with respect to

the palmar view (0°) of the same recognition scheme and rotation correction method. The highlighted results (bold face) represent the best
recognition rates for a recognition scheme at the specified rotation angle.
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Deviation within
0-5% 5-10% 10-20% >20%

Joint 1 74.80 6.36 9.78 9.06
Joint 2 51.67 27.42 13.20 7.71

TABLE 4
Accuracy of joint detection using a sliding window approach as

proposed in [23]. The percentage is the deviation of the detected joint
relative to the ground truth with respect to the length of the finger.

shows the fastest performance degradation among all algo-
rithms. These results indicate, that especially simple vein
pattern based methods get the most out of the longitudinal
rotation compensation. They are even able to outperform
more sophisticated methods like DTFPM. Keypoint based
methods, which are robust against rotation to some level,
do only benefit from the correction to a small extent.

4.6 Rotation Compensation Using Geometric Shape
Analysis

In this experiment, the performance of the method proposed
in [2] is analysed as described in 3.2. As neither an imple-
mentation nor the data set on which the shape analysis is
based are available, the results on the original data cannot be
reproduced. The main task of this approach is the detection
of the finger lines and joints. For the joint detection, Chen
et al. used a sliding window approach presented in [23].
As this algorithm did not provide satisfactory results for
our data set, the joints as well as the roots and tips of the
finger were marked manually. When comparing the man-
ually determined values with those of the sliding window
approach, large deviations are noticeable. Table 4 states the
results in detail. For joint 1 (proximal inter-phalangeal joint),
75% of the detected joints are within a range of 5% of the
length of the finger (distance between finger root and -tip),
for joint 2 (distal inter-phalangeal joint) only 52% are within
this range. For joint 1 and joint 2, around 9% and nearly 8%
of the detected joint positions are more than 20% off from
the manually selected position, respectively.

The statistical measures obtained for the PLUSVein-FR
are depicted in Table 5. The values differ from the ones by
Chen et al., especially the angle α at the proximal inter-
phalangeal joint is larger. The standard deviations differ as
well: For the distance and diameter ratio values (rroot−tip,
rjoints, rjoint1−tip and rroot−joint1), the obtained one is 10
times higher, for α it is more than 10 times lower. These
differences might result from the difference in the number
of subjects and the subjects’ ethnicity. Their data set consists
of 12 Asian subjects (6 female and 6 male) only, whereas
the PLUSVein-FR consists of 63 (27 female, 36 men) mainly
European people.

Based on this statistical data, the geometric finger analy-
sis to detect the finger rotation is executed for all rotation
angles. Fig. 12 illustrates the number of detected images
exhibiting longitudinal finger rotation. At a rotation angle
of ±30°, less than 6% of the input images are detected
as rotated, whereas for more than 2% a wrong (opposite
direction) rotation is detected. Even at ±45° only 12% of the
images are classified to contain a type 3 deformation. Thus,
this method is clearly not applicable to the PLUSVein-FR.
One reason therefore might be due to the placement of the

Gen Fing Value Min Mean Max Std Dev

M

Idx

rroot−tip 0.97 1.21 1.59 0.091
rjoints 1.06 1.16 1.27 0.040
rjoint1−tip 1.07 1.18 1.38 0.058
rroot−joint1 0.86 1.02 1.16 0.055
α 171.55 176.93 181.89 1.675

Mid

rroot−tip 0.87 1.07 1.34 0.086
rjoints 1.01 1.15 1.28 0.053
rjoint1−tip 0.96 1.18 1.36 0.064
rroot−joint1 0.74 0.91 1.15 0.072
α 164.43 174.24 184.95 2.945

F

Idx

rroot−tip 0.94 1.25 1.63 0.126
rjoints 1.05 1.19 1.32 0.056
rjoint1−tip 1.02 1.20 1.43 0.073
rroot−joint1 0.86 1.04 1.29 0.088
α 170.41 176.62 181.68 2.405

Mid

rroot−tip 0.87 1.07 1.36 0.096
rjoints 1.05 1.18 1.32 0.054
rjoint1−tip 0.99 1.19 1.40 0.062
rroot−joint1 0.73 0.90 1.12 0.073
α 168.81 173.92 182.11 2.329

All All

rroot−tip 0.87 1.15 1.63 0.127
rjoints 1.01 1.17 1.32 0.053
rjoint1−tip 0.96 1.19 1.43 0.065
rroot−joint1 0.73 0.97 1.29 0.095
α 164.43 175.45 184.95 2.739

TABLE 5
Statistical data of the finger geometry on the PLUSVein-FR data set as

defined in Table 2 of [2].

Fig. 12. Number of images with a detected longitudinal finger rotation
(type 3 deformation) using the method presented in [2]. Left y-axis:
absolute number of deformed images detected, right y-axis: value in
percent (the total number of images is 1260)

finger. Chen et al. used a device where the finger is placed
over its entire length on the scanner, while the PLUSVein-
FR was captured with a device where only the fingertip
and the finger trunk rests. The rest of the finger does not
touch any part of the scanner. When placing a finger onto
a surface, the finger is slightly deformed. This deformation
influences the geometric properties on which Chen et al.’s
algorithm is based. Due to the improper rotation detection,
the recognition performance is not significantly improved
compared to the unmodified data set. On the contrary, the
performance even slightly decreases. This result seems to
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Fig. 13. Trend of the EER across the different rotation angles after
applying EPN in the range of -45° to 45°.

be valid as e.g. for the SDUMLA-HMT Chen et al. only
achieved an average RPI of 22% over all 7 investigated
algorithms when applying corrections for all three analysed
finger deformations. For MC, the RPI was 7% only (the EER
decreased from 2.44% to 2.38%). These results indicate, that
the performance gain will be even smaller if only a single
correction is applied. The trend for GADC is basically the
same as for the baseline results in Fig. 9, hence there is
no separate visualization for GADC. However, the perfor-
mance trend for GADC is depicted in the plots of Fig. 17,
where all recognition schemes are compared.

4.7 Rotation Compensation Using Elliptic Pattern Nor-
malization

In this part of the experiment, the EPN as proposed by
Huang et al. [5] and described in subsection 3.3 is applied.
Fig. 13 depicts the trend of the EER for elliptic input image
normalization. The area in which the performance remains
almost stable becomes larger for all recognition schemes.
All algorithms, but especially MC, PC and WLD, show an
increased robustness against longitudinal rotation. For MC,
PC and WLD, the point at which the performance begins
to degrade sharply, shifts to > ±30° and to > ±25° for GF.
For DTFPM and SIFT, the performance curve flattens out
compared to the unmodified data set. The same holds for
ASAVE, which achieves the worst performance in terms of
EER.

4.8 Rotation Compensation Using a Fixed Rotation An-
gle

The last part of the experiments is devoted to the analysis
of the proposed rotation compensation method based on
a fixed rotation angle as described in section 3.4. The top
plot of Fig 14 shows the functional principle using MC
features for ϕcorr = 20. It shows five different lines: one
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Fig. 14. Trend of the EER across the different perspectives applying a
rotation compensation using a fixed rotation angle using MC features.
Top: details for ϕ = 20°, bottom: the influence of varying ϕ from 5° to
25° in steps of 5°.

line for the trend of the EER of the unmodified data set,
two lines for the ±ϕcorr rotated images, the result of the
maximum rule score level fusion from the original and the
two fixed angle corrected scores and as a reference and a
line for the performance using the known rotation angle for
correction. Within the region of ±ϕcorr, the fused results are
equal to the exact correction. Outside this region they stick
to the angle corrected lines. That the performance of the
proposed method is close to the performance of the known
angle approach confirms the effectiveness of the approach.
To show the influence of the pre-defined rotation angle ϕcorr
on the results, it is varied between 5°, 10°, 15°, 20° and 25°
and applied on the PLUSVein-FR. The results are visualized
in the bottom plot of Fig 14: In essence, all curves follow the
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Fig. 15. Trend of the EER across the different perspectives applying a
rotation compensation using a fixed rotation angle using MC features.
Top: fixed angle compensation ϕ = 20°, bottom: fixed angle compensa-
tion combined with EPN.

same trend, but the rotation angle at which the performance
starts to decrease rapidly rises with an increasing ϕcorr.

In the next experiment, the proposed fixed angle ap-
proach is applied on two different data sets with a correction
angle of ϕcorr = 20°: first to the original PLUSVein-FR
and second to the PLUSVein-FR after elliptical pattern nor-
malization has been performed. As all analysed recognition
schemes are able to tolerate rotations to at least ±10° a ϕcorr
of 20° is chosen, which keeps the effective rotation angle
below 10° within a range of ±30°. Fig. 15 shows the results
for both data sets. The top plot visualizes the EER values
for the original data set. By applying the proposed ap-
proach, all evaluated recognition schemes achieve superior
results compared to the original data set. The performance

Fixed Rotation Angle
α EER FMR100 FMR1000 ZeroFMR RPI
— 0.38 (±0.08) 0.23 0.50 2.19 —
±5° 0.14 (±0.05) 0.09 0.14 1.22 174.80
±10° 0.14 (±0.05) 0.10 0.17 1.06 175.60
±15° 0.16 (±0.05) 0.12 0.19 1.37 144.50
±20° 0.24 (±0.06) 0.14 0.42 2.50 57.35
±25° 0.30 (±0.07) 0.24 0.47 1.91 29.56
±30° 0.34 (±0.08) 0.26 0.49 2.08 11.49
±35° 0.50 (±0.09) 0.40 0.89 2.48 -24.14
±40° 1.89 (±0.18) 2.73 6.35 21.13 -79.81
±45° 7.39 (±0.34) 14.72 22.88 34.31 -94.83

Fixed Rotation Angle + EPN
α EER FMR100 FMR1000 ZeroFMR RPI
— 0.35 (±0.08) 0.24 0.56 2.16 —
±5° 0.17 (±0.05) 0.14 0.19 0.66 100.80
±10° 0.21 (±0.06) 0.16 0.24 1.01 67.39
±15° 0.17 (±0.05) 0.12 0.26 1.32 100.80
±20° 0.19 (±0.06) 0.16 0.30 1.35 81.84
±25° 0.21 (±0.06) 0.17 0.24 1.60 66.77
±30° 0.28 (±0.07) 0.19 0.35 1.55 24.90
±35° 0.31 (±0.07) 0.23 0.54 1.81 10.83
±40° 0.61 (±0.10) 0.45 1.61 14.20 -42.79
±45° 0.87 (±0.12) 0.80 1.75 7.60 -59.98

TABLE 6
Evaluation results for the method proposed in Section 3.4 on the

UTFVP data set.

degradation is slower which, leading to flatter EER curves.
Especially vein pattern based methods, namely MC, PC and
WLD, benefit from this approach: there is no sharp drop
in their performance any more: PC’s EER stays below 10%
over the whole range, MC’s and WLD’s below 14%. DTFPM
achieves an EER just above 15% at ±45°, which is worse than
the vein pattern based methods. SIFT and ASAVE arrive
at EERs around 25%, GF at less than 35% for this rota-
tion angle. The results for applying the proposed method
together with EPN, which are depicted at the bottom of
Fig. 15, are even superior. The curves are flatter compared
to the original data set. The EER for PC stays below 5% over
the whole range of ±45°, for MC and WLD below 10%, for
DTFPM below 15% and for GF and SIFT below 20%. For the
worst-performing algorithm, ASAVE, the EER only slightly
exceeds 20%.

4.9 Verification of the Fixed Rotation Angle Approach
To verify the effectiveness of the proposed fixed angle
approach, it is applied on the publicly available UTFVP [10]
and SDUMLA-HMT [11] data sets. Both data sets consist of
finger vein images acquired from the palmar perspective.
Again, we use the original data set and its elliptic normal-
ized version during the experiments. ϕcorr is varied from
5° to 45° in steps of 5°. This part of the experiment is only
performed for MC features.

By visual inspection, the UTFVP data set seems to exhibit
little to no longitudinal rotation, whereas the extent of
longitudinal finger rotation within SDUMLA-HMT seems
to be higher. Table 6 lists the results for the UTFVP data set.
The baseline EER without any rotation correction is 0.38%.
Using the fixed angle correction approach, the EER reaches
its minimum of 0.14% for ϕcorr = 10° and keeps below
0.34% until ϕcorr ≤ 30°. With a further increase of ϕcorr,
the performance drops faster and hits an EER of 7.39%.
FMR100, FMR1000 and ZeroFMR follow approximately the
same trend. The last column shows the RPI with respect to
the baseline EER. At its maximum, the relative performance
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Fixed Rotation Angle
α EER FMR100 FMR1000 ZeroFMR RPI
— 4.19 (±0.13) 5.29 7.01 52.78 —
±5° 3.13 (±0.12) 3.93 5.62 63.36 33.71
±10° 2.41 (±0.10) 2.85 4.30 55.24 73.95
±15° 2.01 (±0.09) 2.41 3.50 51.88 108.10
±20° 1.72 (±0.09) 1.97 3.14 52.10 143.80
±25° 1.62 (±0.09) 1.84 3.11 60.29 157.90
±30° 1.71 (±0.09) 2.02 3.36 56.76 144.40
±35° 2.00 (±0.09) 2.45 4.55 73.00 109.00
±40° 3.96 (±0.13) 6.55 13.49 80.94 5.71
±45° 9.54 (±0.20) 17.94 27.67 85.68 -56.10

Fixed Rotation Angle + EPN
α EER FMR100 FMR1000 ZeroFMR RPI
— 2.18 (±0.10) 2.55 3.63 46.43 —
±5° 1.61 (±0.08) 1.80 2.94 53.17 35.94
±10° 1.49 (±0.08) 1.59 2.38 42.30 46.86
±15° 1.29 (±0.08) 1.36 2.13 40.57 69.41
±20° 1.11 (±0.07) 1.13 1.90 42.40 96.60
±25° 1.05 (±0.07) 1.06 1.94 49.46 108.80
±30° 1.25 (±0.07) 1.36 2.35 47.94 74.25
±35° 1.52 (±0.08) 1.74 2.94 52.21 43.67
±40° 1.82 (±0.09) 2.17 4.05 64.33 20.23
±45° 2.18 (±0.10) 2.93 5.77 61.49 0.12

TABLE 7
Evaluation results for the method proposed in Section 3.4 on the

SDUMLA-HMT data set.

increase is 175%. By applying EPN on the data set the EER
without fixed angle correction arrives at 0.35%, correspond-
ing to an RPI of 20% compared to the baseline performance
on the unchanged data set. When combining both meth-
ods, the best result with an EER of 0.17% is achieved for
ϕcorr = 5°. This corresponds to an RPI of 100% and 145%
compared to the elliptic normalized data set without fixed
angle correction and to the original unmodified data set,
respectively.

The results for the SDUMLA-HMT data set are listed
in Table 7. The baseline EER is 4.19% for the unmodified
data set. By applying the proposed approach with increasing
ϕcorr, the EER steadily drops until ϕcorr = 25° where it
reaches its minimum of 1.62%. If ϕ is further increased,
the EER increases rapidly to an EER around 9.5%. Again,
FMR100, FMR1000 and ZeroFMR show approximately the
same trend. The maximum RPI is 158% for ϕcorr = 25°.
By applying EPN on the data set, the EER arrives at
2.18%, which corresponds to an RPI of 92% compared to
the baseline performance. Combining both methods fur-
ther improves the results, hitting the best performance at
ϕcorr = 25° with an EER of 1.05%. The resulting RPI is
109% and 300% with respect to the elliptic normalized data
set and to the original unmodified data set, respectively.

As the rotation angle of 25°, where the best result is
achieved, seems to be relatively high, we checked the result
for plausibility by visually inspecting the images manually.
It turned out that there are quite a view samples exhibiting
a high degree of longitudinal rotation. Fig. 16 shows such an
example (sample number 2 and 3 of the left ring finger from
subject #6). The top row shows the original images from the
data set. It is clearly visible that the two finger images are
rotated versions of each other. The second and third row
show the ROI of the left and right sample, respectively. The
bottom row is the rotation corrected right image using a
rotation angle of 25°. The vein pattern of the rotated version
of the right image is clearly more similar to sample #2 than
the original features of sample #3.

Fig. 16. Example of two samples from the same finger of the SDUMLA-
HMT data set. Top row: original images, row 2: ROI and extracted
features from the left sample, row 3: right sample, bottom row: rotated
version of the right sample using a rotation angle of 25°

4.10 Comparison of Rotation Compensation Methods

To enable a better comparison of the different rotation cor-
rection approaches’ performance gain for each recognition
scheme, Fig. 17 depicts their trends grouped per scheme. As
all simple vein pattern based methods (MC, PC, WLD, GF)
follow the same general behaviour, only MC is visualized.
Table 8 lists the EER and the RPI with respect to the baseline
performance of the unmodified data set at the palmar view
for all correction / recognition scheme combinations for
some selected perspectives.

The top-left figure gives the performance for MC. Like
all vein pattern based methods, MC highly benefits from
the rotation compensation. Without rotation correction, MC
is able to achieve a relatively stable recognition rates up
to a rotation angle of ±15°. For higher rotation angles, the
performance drops faster, and starts to drop rapidly at ±25°.
At ±45°, the EER is close to 45%. The recognition rate can be
improved noticeably by applying a correction based on the
actual known rotation angle. Hereby, the range, in which the
performance is stable can be increased to ±30°. Even at ±45°
the EER is still around 10%, which corresponds to an RPI of
600%. An application of GADC type 3 correction has no
positive effect at all. On the contrary, the performance even
slightly degrades. Similar to applying a correction using the
known rotation angle, also EPN extends the stable region.
However, starting at a rotation angle of ±30°, the recogni-
tion rate starts to decrease rapidly. Applying the proposed
fixed angle method with a pre-defined rotation correction
angle of ϕcorr = 20° achieves similar results to the known
angle method. The best results are accomplished by com-
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Method
Rotation

angle
No Correction Known Angle GADC EPN Fixed Angle Fixed Angle + EPN
EER RPI EER RPI EER RPI EER RPI EER RPI EER RPI

MC

0° 0.37 — 0.37 — 0.59 -38.28 0.17 112.05 0.28 28.75 0.21 77.65
5° 0.41 — 0.34 23.33 0.81 -49.13 0.17 137.62 0.30 37.19 0.16 161.92

10° 0.63 — 0.49 28.90 0.96 -34.07 0.25 149.68 0.32 98.65 0.19 233.88
15° 0.84 — 0.52 61.47 1.11 -23.84 0.32 165.33 0.38 122.12 0.34 151.72
20° 1.54 — 0.62 149.10 2.05 -25.06 0.67 130.62 0.62 148.55 0.44 246.90
25° 3.25 — 0.99 229.82 4.42 -26.51 1.13 187.42 1.00 224.69 0.75 335.93
30° 9.21 — 1.32 598.55 11.66 -21.04 1.99 363.26 1.46 530.78 1.05 780.21
35° 23.68 — 2.03 1069.22 25.21 -6.07 4.61 413.90 2.55 827.58 1.74 1258.25
40° 37.39 — 3.93 851.27 37.85 -1.21 10.88 243.70 5.19 621.04 2.88 1199.62
45° 43.84 — 6.69 555.26 43.51 0.77 25.19 74.03 9.66 353.88 4.62 848.20

PC

0° 0.77 — 0.77 — 0.86 -10.59 0.51 51.26 0.65 17.98 0.46 67.14
5° 0.75 — 0.76 -2.09 0.78 -4.13 0.51 47.17 0.65 14.83 0.43 74.82

10° 0.89 — 0.87 1.83 0.98 -9.46 0.49 81.44 0.92 -3.22 0.41 116.07
15° 1.13 — 1.11 1.43 1.26 -10.19 0.52 115.55 0.97 16.81 0.46 145.78
20° 1.65 — 1.48 11.66 1.81 -8.93 0.81 103.94 1.34 23.58 0.63 161.22
25° 3.26 — 1.62 101.18 3.84 -15.00 1.21 170.37 1.70 91.82 0.86 279.37
30° 6.52 — 2.56 154.87 8.37 -22.06 1.94 236.61 2.44 167.50 1.16 462.62
35° 15.36 — 3.93 290.30 17.91 -14.27 3.67 317.96 3.79 305.27 1.78 763.27
40° 30.37 — 6.06 400.87 31.64 -4.03 9.13 232.48 5.45 457.58 2.84 969.69
45° 43.01 — 8.75 391.72 42.97 0.11 20.34 111.44 8.46 408.21 3.98 979.76

DTFPM

0° 0.87 — 0.87 — 1.21 -27.93 1.00 -12.34 0.81 8.18 0.94 -7.07
5° 1.02 — 1.16 -11.71 1.55 -33.81 1.43 -28.38 0.98 4.17 1.32 -22.50

10° 1.40 — 1.35 3.66 1.97 -28.95 1.79 -21.83 0.98 43.66 1.45 -3.12
15° 1.96 — 1.52 29.53 2.85 -31.15 1.85 5.95 1.44 36.00 1.52 29.15
20° 2.65 — 2.00 32.56 3.86 -31.27 2.32 14.47 1.89 40.70 1.97 34.66
25° 4.16 — 2.38 74.35 5.14 -19.14 3.68 12.88 2.87 44.67 3.12 33.33
30° 6.05 — 3.31 82.85 7.43 -18.65 5.79 4.44 4.35 38.90 5.16 17.16
35° 9.12 — 4.53 101.55 10.62 -14.09 8.10 12.71 6.78 34.52 7.14 27.86
40° 13.50 — 6.37 112.08 14.70 -8.12 9.78 38.04 9.74 38.64 8.64 56.33
45° 17.33 — 8.66 100.11 18.35 -5.55 12.81 35.31 13.83 25.31 11.50 50.75

WLD

0° 0.92 — 0.92 — 1.13 -18.25 0.72 29.02 0.78 19.02 0.65 41.42
5° 0.84 — 1.02 -16.85 1.28 -33.86 0.75 12.82 0.79 6.36 0.57 47.24

10° 1.10 — 1.11 -1.29 1.37 -19.67 0.84 30.36 1.03 6.43 0.70 56.97
15° 1.38 — 1.24 11.60 1.61 -14.20 0.91 52.46 1.14 21.26 0.87 58.80
20° 2.30 — 1.46 57.53 2.69 -14.24 1.31 76.62 1.47 56.74 1.14 101.62
25° 4.25 — 2.01 111.52 5.54 -23.19 1.92 121.36 2.00 112.78 1.49 184.92
30° 9.29 — 2.64 252.15 11.85 -21.65 2.89 221.04 2.63 252.50 1.99 367.17
35° 21.26 — 3.88 448.23 23.47 -9.40 5.43 291.39 3.98 433.94 2.60 716.45
40° 35.06 — 6.22 463.45 35.86 -2.22 12.08 190.28 6.03 481.27 4.12 750.19
45° 43.34 — 8.72 397.28 43.31 0.06 24.35 78.01 10.24 323.15 5.98 624.84

GF

0° 1.02 — 1.02 — 2.15 -52.71 0.40 155.42 0.76 33.43 0.38 166.30
5° 1.50 — 1.29 15.80 2.81 -46.72 0.60 148.15 1.02 47.42 0.46 226.07

10° 2.34 — 1.52 53.36 4.01 -41.66 0.67 250.00 1.32 77.48 0.41 467.51
15° 3.90 — 1.94 100.99 5.20 -25.04 0.97 301.31 1.87 108.26 0.59 565.66
20° 7.16 — 2.93 143.93 8.88 -19.43 1.77 305.52 2.91 146.17 1.00 618.42
25° 13.57 — 4.80 182.63 15.53 -12.67 2.87 373.42 5.02 170.24 1.63 731.35
30° 23.21 — 7.95 192.10 25.30 -8.26 5.57 316.43 8.32 178.87 2.84 717.49
35° 37.14 — 12.59 195.09 37.79 -1.70 10.57 251.41 14.09 163.65 4.79 674.64
40° 46.26 — 19.42 138.28 46.45 -0.39 20.10 130.17 21.49 115.24 8.22 462.84
45° 48.05 — 26.92 78.47 48.05 0.00 34.55 39.05 28.78 66.95 12.74 277.09

SIFT

0° 1.80 — 1.80 — 2.02 -11.01 1.32 36.31 1.54 16.53 1.25 43.56
5° 2.30 — 2.05 12.36 2.46 -6.56 1.42 62.14 1.72 33.65 1.37 68.40

10° 2.56 — 2.19 17.02 2.75 -6.81 1.80 42.11 2.43 5.15 1.71 50.03
15° 4.11 — 2.78 48.20 4.27 -3.63 2.40 71.17 3.08 33.59 2.19 87.90
20° 5.51 — 3.68 49.55 6.66 -17.27 3.46 58.99 3.48 58.46 2.49 120.77
25° 8.65 — 4.36 98.58 9.02 -4.09 4.25 103.64 5.41 59.91 3.78 128.68
30° 12.69 — 5.72 121.87 12.99 -2.31 6.16 105.87 8.74 45.17 5.05 151.15
35° 16.32 — 8.11 101.19 17.11 -4.61 8.70 87.67 11.59 40.79 7.89 106.71
40° 22.96 — 11.81 94.45 23.38 -1.81 11.52 99.28 17.10 34.22 10.15 126.27
45° 27.77 — 15.70 76.85 27.83 -0.19 16.46 68.78 22.84 21.62 15.94 74.25

ASAVE

0° 2.96 — 2.96 — 3.27 -9.49 1.65 78.74 1.70 74.16 1.34 121.18
5° 3.66 — 3.01 21.68 4.12 -11.16 1.91 91.79 1.83 99.52 1.46 150.00

10° 5.57 — 2.87 94.15 6.03 -7.74 2.70 105.97 2.24 148.63 1.65 237.44
15° 8.12 — 2.98 172.88 8.56 -5.13 4.29 89.24 2.47 228.84 2.11 284.51
20° 10.54 — 3.40 209.91 11.34 -7.05 6.44 63.76 3.22 227.09 3.08 241.82
25° 11.87 — 3.89 205.17 13.06 -9.05 8.19 44.97 5.29 124.34 4.70 152.53
30° 14.57 — 4.78 204.54 16.28 -10.50 10.01 45.54 9.51 53.28 7.16 103.49
35° 20.66 — 5.85 253.19 22.78 -9.30 11.40 81.20 15.33 34.74 10.53 96.29
40° 30.83 — 7.08 335.70 31.61 -2.45 14.61 111.09 19.70 56.54 15.08 104.41
45° 38.58 — 11.51 235.32 38.39 0.49 22.94 68.20 21.43 80.02 19.60 96.86

TABLE 8
Performance results in terms of EER and RPD of all correction methods and recognition schemes. The RPI is always calculated with respect to

the baseline performance of the unmodified data set at the palmar view for all correction / recognition scheme combinations. The highlighted
results (bold face) represent the best recognition rates for a recognition scheme at the specified rotation angle.
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Fig. 17. Trend of the EER across the different perspectives applying different rotation compensation approaches for the same recognition scheme.
Top left: MC, top right: DTFPM, bottom left: SIFT, bottom right: ASAVE

bining the fixed angle method with EPN. This combination
even outperforms the known angle correction method. The
worst EER at -45° is still 8%.

The DTFPM results are visualized in the top-right sub-
plot. DTFPM is designed to be robust against longitudinal
finger rotation. As a result, all curves are shallowed com-
pared to MC. Even using the original, non-corrected data set
yields EERs of< 20% over the whole tested range. Applying
a correction using the known rotation angle doubles the
performance, resulting in a maximum EER of about 10%
at ±45°. Again, the application of GADC yields a slight
deterioration of the performance. Elliptic normalization,
the fixed angle method and the combination of both are
superior to no correction but inferior to the known angle

method. The proposed fixed angle method achieves the best
results among these methods for DTFPM.

Similar to DTFPM, SIFT is more robust against longi-
tudinal finger rotation than vein pattern based methods.
This leads to a similar behaviour for the different correction
methods, although with raised EER rates: A correction using
the known rotation angle flattens the EER curve, achieving
an EER of just above 15% at ±45° (instead of 30% without
correction). GADC does not improve the results at all. The
proposed method also reduces the resulting EERs, but not to
the same extent as the known angle method. EPN achieves
roughly the same recognition rates as the correction using
the known angle. The combination of elliptic normalization
and the fixed angle method achieves the overall best results.
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Rotation
correction

No
Corr

Known
Angle GADC EPN

Fixed
Angle

Fixed Angle
+ EPN

MC 5 2 6 4 3 1
PC 5 2 6 4 3 1

DTFPM 5 1 6 4 2 3
WLD 5 2 6 4 3 1

GF 5 2 6 4 3 1
SIFT 5 2 6 3 4 1

ASAVE 5 1 6 4 3 2

TABLE 9
Ranking of the rotation correction methods under investigation based

on the experimental results per recognition scheme.

The results are depicted in the bottom-left plot.
The bottom-right chart shows the results for ASAVE. The

known angle correction achieves pretty stable results within
the range of ±40° with an EER below 8%. For higher rotation
angles the performance drops sharply until it reaches its
maximum EER of 15% at -45°. Again, GADC does not gain
any performance increase compared to the performance of
the original data set. Elliptic normalization shallows the
EER curve and achieves EERs below 10% up to ±30°. For
higher rotation angles its performance decreases rapidly and
arrives at an EER of 23% at ±45°. The proposed method is
able to keep the recognition rates stable between ±20°. For
higher rotation angles the performance degrades sharply.
Once more, the best results are achieved by using a com-
bination of EPN and the proposed method. Although, for
ASAVE the performance results in this case are noticeable
worse compared to the correction using the known angle.

4.11 Ranking of Rotation Correction Methods
Table 9 gives the ranking of the applied rotation correc-
tion methods per recognition scheme. Regarding the single
approaches, the correction using the known rotation angle
achieves the best results. Although, in practical applications
the known angle method cannot be applied as the rotation
angle is usually not known. Thus, the most appropriate
approach is the proposed fixed angle method on its own.
However, a combination of the proposed approach and
the EPN further improves the results. Especially for vein
pattern based schemes, the results achieved by the proposed
method are only slightly worse than the known angle ap-
proach. Except for SIFT, EPN on its own leads to inferior
results compared to the proposed method. GADC even
degrades the recognition rates compared to applying no
correction.

The results of the different rotation correction ap-
proaches indicate that simple vein pattern based methods
get the most out of rotation correction. MC, PC as well
as WLD outperform all other recognition schemes after
applying a rotation compensation using the exact rotation
angle, elliptic normalization, the fixed angle method or a
combination of the latter two.

4.12 Runtime Evaluation for Fixed Angle Approach
The rotation correction introduces additional processing
steps. Thus, the runtime costs are relevant in a practi-
cal application. As the rotation compensation is applied
during biometric enrolment, the additional cost are two
comparisons and the maximum rule score level fusion at

Method EPN PP FE Comparison Fusion
[ms] [ms] [ms] [ms] [ms]

MC 89.942 29.705 293.114 2.621 0.006
PC 89.942 28.185 4.367 2.452 0.006

DTFPM 89.942 4.842 341.537 3.278 0.006
WLD 89.942 16.179 24.221 2.483 0.006

GF 89.942 84.456 6.107 2.472 0.006
SIFT 89.942 83.569 23.076 2.761 0.006

ASAVE 89.942 17.887 113.711 2.560 0.006

TABLE 10
The average time of cost for every relevant step in the recognition

tool-chain.

Method No Correction Fixed Angle Fixed Angle + EPN
[s] [s] Increase [%] [s] Increase [%]

MC 0.325 0.331 1.61 0.421 29.25
PC 0.035 0.040 14.03 0.130 270.98

DTFPM 0.350 0.356 1.88 0.446 27.60
WLD 0.043 0.048 11.60 0.138 221.34

GF 0.093 0.098 5.32 0.188 102.00
SIFT 0.109 0.115 5.05 0.205 87.26

ASAVE 0.134 0.139 3.82 0.229 70.86

TABLE 11
The average time of cost for a single comparison using no rotation

correction, the fixed angle approach and the fixed angle approach after
applying EPN.

the biometric recognition. If the approach is combined with
EPN, this step needs to be considered too. Note, that the
implementations of the recognition algorithms used in these
experiments are not optimized for runtime performance.
Hence, the determined durations are only indicators for the
additional costs imposed due to the proposed approach.
Table 10 lists the the average processing times for the dif-
ferent steps in the recognition tool-chain. It can be seen that
the additional runtime of the steps added by this approach
(two comparisons and the maximum score level fusion) is
negligible compared to the other steps. Therefore, the total
duration, as shown in Table 11, is only slightly higher. As
the processing of the elliptical correction takes noticeably
longer, its application increases the overall duration per-
ceptibly. The runtime analysis shows, that the fixed angle
correction approach on its own is suitable for real-time
applications.

5 CONCLUSION

We systematically investigated the extent to which longitu-
dinal finger rotation can be compensated and the impact
of the correction on the recognition accuracy of a finger
vein recognition system. Therefore, we evaluated two novel
correction approaches and two other ones from the liter-
ature. The first approach has not been applied to finger
vein recognition before and exploits the fact that for the
PLUSVein-FR data set the angle of the longitudinal rotation
is known. It applies a rotation compensation using a circular
projection based on this known angle. As second approach
we evaluated a method proposed by Chen et al. [2] that
analyses the geometric shape of the finger and based on
this results, detects deformations and corrects them. The
third approach applies an elliptic pattern normalization as
proposed in [5].

In real world scenarios the longitudinal rotation angle is
unknown and its estimation is a difficult task. The fourth
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approach, is a novel method that is able to correct longitu-
dinal finger rotation deformation without any knowledge or
estimation of the actual angle of rotation, which is its main
advantage.

The results of the known angle approach showed that a
correction of the rotation is possible up to ±30°, achieving
reasonable recognition results. It turned out that especially
vein pattern based algorithms, e.g. MC and PC, benefit from
this rotation correction. The approach based on the geomet-
ric shape analysis, did not achieve satisfactory results on
our data set at all. By applying EPN, all recognition schemes
under investigation achieved superior results compared to
applying no correction. By successfully applying the newly
proposed fixed angle method on three different data sets
(PLUSVein-FR, UTFVP and SDUMLA-HMT), we confirmed
its effectiveness. The analysis of the computational cost
showed, that the fixed angle correction approach is also
suitable for real-time applications. A combination with EPN
further improved the results and achieved the best robust-
ness against longitudinal finger rotation for all recognition
schemes. However, EPN is more computational expensive
than the proposed approach.

We further confirmed that simple, vein pattern based
recognition schemes in combination with our proposed cor-
rection method outperform more sophisticated and complex
recognition algorithms and rotation detection frameworks.
E.g. PC with elliptic normalization and our proposed fixed
angle compensation approach reduces the impact of longi-
tudinal finger rotation noticeably. In biometrics there is a
general trend towards contact-less as well as on-the-move
acquisition. Hence, recognition tool-chains that are robust
against different finger misplacements and the resulting
deformations will become essential.

Our future work will include further analysis of defor-
mations caused by different finger misplacements and the
development of methodologies improving the robustness
against them. Furthermore, we will analyse the presence of
finger rotation in commonly used publicly available finger
vein data sets.
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