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Abstract—Finger-vein scanners or vein-based biometrics in
general are becoming more and more popular. Commercial off-
the-shelf �nger-vein scanners usually capture only one �nger
from the palmar side using transillumination. Most scanners
have a contact area and a �nger-shaped support where the �nger
has to be placed onto in order to prevent misplacements of the
�nger including shifts, planar rotation and tilts. However, this is
not able to prevent rotation of the �nger along its longitudinal
axis (also called non-planar �nger rotation). This kind of �nger
rotation poses a severe problem in �nger-vein recognition as the
resulting vein image may represent entirely different patterns
due to the perspective projection. We evaluated the robustness
of several �nger-vein recognition schemes against longitudinal
�nger rotation. Therefore, we established a �nger-vein data set
exhibiting longitudinal �nger rotation in steps of 1° covering
a range of � 90°. Our experimental results con�rm that the
performance of most of the simple recognition schemes rapidly
decreases for more than10° of rotation, while more advanced
schemes are able to handle up to30°.

I. I NTRODUCTION

Vascular pattern based biometrics, commonly denoted as
vein biometrics, provide several advantages over other, well-
established biometric recognition systems. Especially hand-
and �nger-vein based systems tend to replace �ngerprint based
ones in some application areas. Vein based systems rely on the
structure of the vascular pattern formed by the blood vessels
inside the human body tissue, which becomes visible in near-
infrared (NIR) light only. This vessel structure is within the
human body and thus vein based systems are insensitive to
abrasion and skin surface conditions. Moreover, a liveness
detection can be performed easily [KZ12].

However, �nger-vein recognition systems are far from being
perfect in terms of accuracy, reliability and usability. Their
recognition performance may suffer from different internal and
external factors which might lead to a lower performance. In-
ternal factors include the con�guration of the scanner itself, the
illumination source and the NIR camera. Most of the internal
and external factors impacting the �nger-vein recognition
performance can be ruled out by means of adding components
to the scanner or tuning the scanner settings. External factors
can be divided into environmental ones, including ambient
light, dust or dirt on the sensor, high humidity, electromagnetic
radiation, etc. and factors regarding the presentation of the
�nger to the scanner device. The latter includes �nger move-

ment during acquisition and �nger misplacement in general.
Some of the environmental factors can be ruled out by using
additional components for the vein scanner, e.g. the in�uence
ambient light can be reduced by installing an NIR pass-through
�lter. However, especially tilt and rotation of the �nger along
its longitudinal axis (which are a form or �nger misplacement)
are hard to tackle. While the tilt can be avoided to a certain
extent, as soon as there is only one �nger to be captured, it is
hard to avoid rotation of the �nger along its longitudinal axis,
especially for touchless �nger-vein scanners, but not restricted
to touchless operation. Hence, this is one of the main factors
in�uencing the recognition performance of �nger-vein systems
in practical applications and it would be desirable if �nger vein
recognition schemes are able to tolerate such a rotation at least
to a certain extent. To the best of our knowledge no systematic
investigation of this particular problem has been performed
so far. The analysis of these and other factors impacting the
recognition performance of �nger-vein recognition systems
can be summarised as robustness analysis.

Some authors state that there is the problem of �nger
rotation along the longitudinal axis, which is also called
out-plane �nger rotation or non-planar rotation, while others
claim that their recognition scheme is able to tolerate this
up to a certain degree. Matsuda et al. [Ma16] claim that
their recognition scheme is robust against this kind of �nger
misplacement. They did experiments and showed that their
scheme is robust against these rotations up to� 30°, but their
test data set, which is not publicly available, only consisted
of vein images captured from 5 different people. Chen et al.
[Ch18] proposed an approach to correct different types of
�nger deformations based on a �nger geometric analysis. Their
work includes �nger rotation along the longitudinal axis as
well (they call it type 3 deformation). They showed that by
a non-linear correction of the �nger rotation the recognition
performance can be improved. However, they only estimate the
amount of deformation, i.e. the rotation angle, while there is no
ground-truth information of the actual rotation angle available.

The main contribution of our work is a systematic robust-
ness evaluation of several �nger vein recognition schemes
against the �nger's longitudinal rotation. In order to investigate
the impact of longitudinal �nger rotation a suitable data set
is needed. Unfortunately, there is no such data set available,
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mainly because a speci�cally designed �nger-vein scanner
device is mandatory to acquire one. Thus, we established a
�nger rotation data set, exhibiting transillumination �nger-vein
images captured in different rotation angles in1° steps in a
range of� 90° starting from the palmar view. This data set was
captured using our custom designed, multi-perspective �nger-
vein scanner device and will be made publicly available in
the future. Our experimental results show that longitudinal
�nger rotation poses a severe problem for most �nger-vein
recognition schemes.

The rest of this paper is organised as follows: Section II
illustrates the problem of the �nger's longitudinal rotation in
detail. Section III presents our multi-perspective �nger-vein
scanner device and the �nger rotation data set. Section IV
describes the experimental set-up and presents the performance
evaluation results together with a results discussion. Section
V concludes this paper along with an outlook on future work.

II. T HE LONGITUDINAL FINGER ROTATION PROBLEM

Usually, �nger-vein scanners are designed to capture only
one �nger at a time. For these scanners, �nger misplacements
are a severe problem. There are different types of misplace-
ment: shifts of the �nger in x- and y-direction (planar shifts),
shifts of the �nger in z-direction, in-plane (planar) rotation of
the �nger, tilts of the �nger and rotation around the �nger's
longitudinal axis. The planar shifts as well as the planar
rotations can be reduced by guiding walls alongside the �nger,
end tips or a �nger-shaped support. Shifts of the �nger in z-
direction are usually not a problem if the sensor has a surface
where the �nger has to be placed onto. Remaining planar shifts
and rotations can be compensated in software by aligning the
images based on the �nger outline. Tilts of the �nger can
be avoided by using capacitive or pressure-sensitive sensors
on the scanner surface which detect if the �nger is placed
correctly. However, rotations around the �nger's longitudinal
axis cannot be detected reliably by most available commercial
available sensors. This problem could be avoided if the sensors
would not only acquire one �nger, but require the subject to
place the full hand or at least more than one �nger, as proposed
by Kauba et al. in [KPU18], on the sensor. Fig. 1 shows
an example of the longitudinal �nger rotation, also called
non-planar rotation or out-plane rotation by some authors,
using an off-the-shelf commercial �nger vein scanner. In a
supervised acquisition scenario, the supervisor can tell the user
to place his �nger correctly. However, if the acquisition is not
supervised, such longitudinal rotations of the �nger impose
a severe problem. This problem gets worse if the scanner is
designed to operate in a contact-less way and does not have a
contact surface.

The captured image is a projection of the �nger situated in a
3D space onto a 2D plane. This principle is depicted in Fig. 2.
If the �nger is rotated around its longitudinal axis, the vein
patterns look different due to the change in the perspective
or the projection, respectively. This projective transformation
cannot be reverted using translation or rotation on the images,
but can be compensated to some degree if either the rotation

Figure 1. Finger rotation example using a commercial scanner (rotation
counter-clockwise)

angle is known or can be estimated. Estimating the rotation
from a single image can be a challenging task. If the angle
of rotation increases, some vein lines might merge due to the
perspective projection. In this case, there is no way to revert
the effects caused by the longitudinal �nger rotation. Thus, it
would be desirable if the recognition scheme is robust against
longitudinal �nger rotation, at least to a certain extent. To the
best of our knowledge, until now the robustness against �nger
rotation has not been systematically evaluated.

III. PLUSVEIN-FINGER ROTATION DATA SET

The �nger rotation data set has been acquired using our
custom designed multi-perspective �nger vein scanner, shown
in Fig. 3. The image sensor is an NIR enhanced industrial
camera (IDS Imaging UI-1240ML-NIR), equipped with a 9
mm wide-angle-lens (Fujion HF9HA-1b) and a NIR long-
pass �lter (Midopt LP780). Five 808 nm NIR laser modules
form the light source, positioned on the opposite side of the
camera (transillumination), including an integrated automatic
brightness control to achieve an optimal image contrast. To
capture different perspectives or rotation angles, the camera
and the illuminator rotate around the �nger which is placed at
the axis of rotation. This rotation principle is depicted in Fig. 4.
The �nger is stabilised with the help of a �nger-tip shaped hole
on the �nger end and a height-adjustable �nger trunk plate on
the �nger trunk. All parts except the camera, lens, �lter and the
laser modules were designed and manufactured by ourselves.

The data set itself contains a total of 252 unique �ngers
from 63 different subjects, four �ngers (right and left index
and middle �nger, respectively) per subject. Video sequences
with a rotation speed adjusted to the frame rate were captured
such that frames in1° steps can be extracted in a range of
� 90° starting from the palmar view, by rotating the scanner
around the �nger's longitudinal axis. This leads to the same
output images as if the �nger would rotate itself. The capture
process was repeated5 times per �nger. For each degree of
rotation there are1260 images, resulting in228060 images
in total. Fig. 5 shows some example images in10° steps
and the corresponding extracted �nger veins using Maximum
Curvature [MNM07]. It becomes clearly visible that the ex-
tracted vein patterns are distinct among the different views
(note the highlighted areas in the bottom row of the �gure).



Figure 2. Finger longitudinal axis rotation principle: a schematic �nger cross section showing �ve veins (blue dots) rotated from� 30° (left) to +30 ° (right)
in 10° steps. The projection (bottom row) of the vein pattern is different according to the rotation angle following a non-linear transformation
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Figure 3. The scanner itself (originally published in [PKU18], © 2018 IEEE)
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Figure 4. Principle of the multi-perspective �nger vein scanner

The gender distribution of the volunteers is balanced. Among
the 63 subjects 36 of the subjects are male, the remaining 27
are female. The youngest subject was 18, the oldest one 79.
The image resolution is650� 1280pixels.

IV. EXPERIMENTS

a) Recognition Tool-chain::Fig. 6 shows the compon-
ents of a biometric recognition system: The biometric trait
is captured by a biometric sensor and afterwards processed
in the recognition tool-chain which consists of preprocessing
(ROI (region of interest) extraction and image enhancement),

feature extraction and comparison. The input of our tool-chain
are the videos captured by our mulit-perspecitve �nger vein
scanner. At �rst the frames corresponding to1° steps are
extracted from the video sequences. Afterwards each image is
processed individually: the ROI is extracted and the the �nger
outline detected by the help of an edge detection algorithms.
Then a straight centre line is �tted into the �nger. Based on
this centre line, the �nger is aligned (rotated and shifted)
such that it is in horizontal position in the middle of the
image. The area outside the �nger is masked out (pixels set to
black) and a rectangular ROI is �t inside the �nger area. The
ROI images have a size of300 � 1100 pixels. To improve
the visibility of the vein pattern we useHigh Frequency
Emphasis Filtering (HFE), Circular Gabor Filter (CGF)
and simpleCLAHE (local histogram equalisation) as prepro-
cessing. We opted for three well-established binarisation type
feature extraction methods as well as two key-point based
method.Maximum Curvature (MC) [MNM07], Principal
Curvature (PC) [Ch09] andGabor Filter (GF) [KZ12] aim
to extract the vein pattern from the background resulting in
a binary image, followed by a comparison of these binary
images. Comparing the binary feature images is done using
a correlation measure, calculated between the input images
and in x- and y-direction shifted and rotated versions of the
reference image. In addition, two key-point based recognition
schemes, aSIFT [KRU14] based technique with additional
key-point �ltering andDeformation-Tolerant Feature-Point
Matching (DTFPM) proposed by Matsuda et al. [Ma16] are
used. For more details on the preprocessing methods please
refer to [KRU14].

b) Evaluation Protocol:: To quantify the performance,
the EER as well as the FMR1000 (the lowestFNMR for
FMR � 0:1%) and the ZeroFMR (the lowestFNMR for
FMR = 0% ) are used. For calculating the genuine scores,
all possible genuine comparisons are performed, which are
63� 4 � 5 � 5 = 6300 comparisons. For calculating the impostor
scores, only the �rst image of a �nger is compared against the
�rst image of all other �ngers, resulting in4� 63� 63 = 15876
compares, so22176 compares in total. An implementation
of the complete processing tool-chain as well as the scores
and detailed results are available at: http://www.wavelab.at/
sources/Prommegger18b/.

c) Experimental Results::Table I lists the baseline
performance results for the different �nger-vein recognition



Figure 5. Top: example images in 10° steps, from left to right: -30°, -20°, -10°, 0°, 10°, 20°, 30°, bottom: corresponding extracted MC features with two
highlighted vein paths.

PC MC DTFPM SIFT GF
EER [%] 0.48 0.59 1.15 1.53 3.14

FMR1000 [%] 0.79 0.83 2.54 4.88 5.40
ZeroFMR[%] 1.51 1.31 3.93 6.43 7.82

Table I
BASELINE PERFORMANCE RESULTS(PALMAR VIEW, 0°) FOR THE

DIFFERENT RECOGNITION SCHEMES

schemes at the palmar view (0°). PC achieves the best recog-
nition performance with an EER of0:48%, followed by MC,
DTFPM and SIFT while GF performs worst.

In order to quantify the robustness against longitudinal
�nger rotations, the images captured in the different angles
from � 90° to 90° in 1° steps are compared against the
palmar view (rotation of0°). The trend of the absolute EER
is shown in Fig. 7 left column. The relative performance
degradation (RPD)

�
EER rotated � EER palmar

EER palmar

�
is depicted in

the right column. The bottom row shows the area of� 25°
from the palmar view in more detail. Note that the RPD is
calculated with respect to its baseline EER of each recognition
scheme. As a result of this, the maximum RPD is limited
by RP Dmax = EER max � EER baseleine

EER baseline
where EER max is

� 50%.
MC (red line with triangular marker) and PC (green line

with square marker) show a similar performance: up to a
rotation angle of� 10° the EER rises just above1% which

corresponds to a relative performance decrease about100%.
With increasing rotation angle, the recognition performance
diminishes at a higher rate. At� 10° the EER reaches2%,
between� 20° and� 25° the EER jumps above10%. Around
� 30° the EER exceeds30%, at � 45° already 45%, i.e.
recognition is no longer meaningful. DTFPM (brown line with
star marker) has a higher baseline EER (1:15%) at the palmar
view but its EER increases most gently, leading to the best
robustness against �nger rotation. At� 10° the performance
degradation is only30% (EER: 1:53%). Starting from� 17°
DTFPM outperforms all other schemes. At� 30° its EER is
still below 7%. Matsuda et al. [Ma16] reported a baseline
EER of 0:152% and a relative performance degradation of
230% (EER: 0:501%) at � 30°. However, neither their data
set nor an implementation of their proposed approach is
available. With our full re-implementation we are able to
con�rm their claimed robustness against �nger rotation, but
with a relative performance degradation of500% instead of
230%. SIFT (blue line with diamond marker) is more robust
against �nger rotation than PC and MC, too. However, its
baseline EER is higher than the one of DTFPM. GF (black
line with cross marker) has the highest baseline EER (3:18%)
and a similar relative performance degradation as MC and
PC. Due to its high baseline EER, itsRP Dmax is lower
than RP Dmax for PC and MC. FMR1000 and ZeroFMR,
visualized in Fig. 8, follow the same trend as the EER: �rst,
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the increase is relatively small and starts to rise sharply at
� 15� . FMR1000 exhibits values close to100 from � 45°
onwards for all algorithms evaluated, ZeroFMR already at
� 35°. DTFPM shows the best results for both, FMR1000 and
ZeroFMR. Consequently, a longitudinal �nger rotation angle
of � 30° poses a severe problem for all evaluated schemes
except DTFPM. A rotation angle of more than� 45°makes
recognition nearly impossible.

To assist the reader in comparing the performance values
at different rotation angles, Tab. II lists the EER per rotation
angle from0° - � 45°. The best EER for every rotation angle
is highlightedbold. This table con�rms that up to a certain
rotation, the well established vein pattern based algorithms
show the best performance. It can be seen that if the rotation
exceeds a certain angle, key-point based algorithms, especially
DTFPM, outperform traditional approaches.

Tab. III lists the relative performance degradation for the
same rotation angles. With respect to RPD, DTFPM performs
best followed by SIFT. Although GF shows the lowest RPD
for � 45°; it has the worst recognition rate of all feature
types, with an EER of� 50%. The low RPD is due to the
highest baseline result compared to the other feature types.
The two tables (Tab. II and Tab. III) clearly show that the
evaluated key-point based algorithms are more tolerant against
�nger rotation than the vein pattern based ones. The key-point
based algorithms match relevant key-points against each other
instead of comparing binarised vein structures. If the detection
and matching of theses points is insensitive to changes in the
vein patterns due to longitudinal �nger rotation, the results of a
comparison in a biometric recognition system is less sensitive
as well.

Tab. IV is the inverse of Tab. III and shows rotation angle
at which a certain performance drop is hit. While vein pattern
based algorithms (MC, PC, GF) reach100 performance de-

crease around� 10� , key-point based systems tolerate higher
rotation angles, e.g. DTFPM reaches a RPD of100%at 14°.
The further the �nger is rotated, the more pronounced this
trend becomes: the relative performance decrease of SIFT and
especially DTFPM is lower than the one of PC, MC and GF.
DTFPM exceeds a RPD of500%at 28° whereas for PC, MC
and GF this performance decrease is already achieved just
above� 15� .

V. CONCLUSION

We investigated the problem of �nger rotation around its
longitudinal axis, also called non-planar or out-plane rotation
of the �nger in the scope of �nger-vein recognition. This kind
of �nger misplacement poses a severe problem for practical
applications of �nger-vein scanners, including most of the
available off-the-shelf single �nger commercial �nger vein
scanners, as this rotation cannot be prevented by means of the
scanner hardware construction and is hard to be compensated
afterwards by image preprocessing (assuming that the rotation
angle is not known). We established a new �nger rotation
data set comprising �nger-vein images captured in1° steps
of longitudinal rotation in a range of� 90° starting from the
palmar view.

Our performance evaluation results con�rm, that longitud-
inal �nger rotation is a severe problem for the recognition
performance of �nger-vein systems. All recognition schemes
are able to tolerate up to� 10° of rotation at a relative
performance loss of less than120%. The key-point based
algorithms DTFPM and SIFT are more robust against �nger
rotation, but their baseline performance is worse compared
to PC and MC. GF generally performs worst. However, for
rotation angles more than30°, which can occur in practical
applications of �nger-vein scanners, the recognition perform-
ance drops dramatically. This problem gets even worse for



Figure 7. Trend of performance indicators across the different rotation angles from� 90° to 90° (0° corresponds to the palmar view), left: absolute EER
values, right: relative change of EER in %. The bottom row shows a more detailed view from� 25° to 25°.

� 0° � 5° � 10° � 15° � 20° � 25° � 30° � 45°
PC 0.48 0.60 1.04 1.96 5.38 13.43 27.14 46.50
MC 0.59 0.62 1.07 2.92 8.88 22.34 37.91 46.82

DTFPM 1.15 1.07 1.53 2.03 2.91 4.49 6.97 19.26
SIFT 1.53 1.53 2.49 3.90 5.59 8.53 12.61 30.15
GF 3.14 3.62 5.36 11.03 22.70 37.86 46.06 50.46

Table II
EER AT SPECIFIC ROTATION ANGLES[%]

� 0° � 5° � 10° � 15° � 20° � 25° � 30° � 45°
PC 0% 26% 119% 312% 1031% 2727% 5610% 9684%
MC 0% 7% 83% 399% 1416% 3715% 6373% 7894%

DTFPM 0% 0% 33% 76% 153% 290% 505% 1573%
SIFT 0% 0% 63% 155% 266% 459% 726% 1876%
GF 0% 15% 71% 252% 624% 1107% 1369% 1509%

Table III
RELATIVE PERFORMANCE DEGRADATION AT SPECIFIC ROTATION ANGLES [%]



Figure 8. Trend of performance indicators across the different rotation angles from� 90° to 90° (0° corresponds to the palmar view), left: FMR1000, right
ZeroFMR in %

10% 25% 50% 100% 200% 300% 400% 500%
PC � 1° � 3° � 5° � 8° � 12° � 13° � 15° � 16°
MC � 5° � 6° � 8° � 9° � 12° � 13° � 14° � 15°

DTFPM � 7° � 8° � 11° � 14° � 19° � 23° � 26° � 28°
SIFT � 4° � 4° � 8° � 12° � 16° � 20° � 23° � 25°
GF � 4° � 5° � 7° � 9° � 12° � 14° � 16° � 17°

Table IV
ROTATION ANGLE AT WHICH A CERTAIN RELATIVE PERFORMANCE DEGRADATION IS HIT

touchless �nger-vein scanners with more degrees of freedom
during image acquisition.

If only the planar �nger-vein images are available, the abil-
ity of a recognition scheme to cope with longitudinal rotation
of the �nger is very limited due to the perspective mapping
during imaging. One way to make �nger-vein recognition more
robust against �nger rotation is by improving the scanner
hardware, e.g by mounting an additional �nger positioning
support where the whole hand is placed on a kind of shelf such
that the rotation of the �nger can be restricted. Another option
is using stereo or 3D camera systems, which is bene�cial for
touchless scanners anyway, in order to estimate the rotation
angle of the �nger and compensate for the rotation by applying
a perspective transform. Another way is trying to estimate the
rotation angle and compensate the rotation like Chen et al.
[Ch18] proposed, which will be evaluated in our future work.

For our data set the exact longitudinal �nger rotation is
known. This information can be used to perform a systematic
evaluation of the approach in [Ch18]. A further approach is
to correct the perspective distortion by applying a non-linear
transform using the known rotation angle. We will evaluate
the recognition performance which can be retained at certain
rotation angles for both approaches in order to determine
the maximum possible rotation angle at which a reasonable

recognition is still feasible.
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