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Abstract—Finger-vein scanners or vein-based biometrics in ment during acquisition and nger misplacement in general.
general are becoming more and more popular. Commercial off- Some of the environmental factors can be ruled out by using
the-shelf nger-vein scanners usually capture only one nger aqgitional components for the vein scanner, e.g. the in uence

from the palmar side using transillumination. Most scanners - . . .
have a contact area and a nger-shaped support where the nger ambient light can be reduced by installing an NIR pass-through

has to be placed onto in order to prevent misplacements of the Iter. However, especially tilt and rotation of the nger along
nger including shifts, planar rotation and tilts. However, this is  its longitudinal axis (which are a form or nger misplacement)

not able to prevent rotation of the nger along its longitudinal  are hard to tackle. While the tilt can be avoided to a certain
axis (also called non-planar nger rotation). This kind of nger extent, as soon as there is only one nger to be captured, it is

rotation poses a severe problem in nger-vein recognition as the hard t id rotati fth | its | itudinal axi
resulting vein image may represent entirely different patterns ard to avoid rotation ot the nger along Its longitudinal axis,

due to the perspective projection. We evaluated the robustness €specially for touchless nger-vein scanners, but not restricted
of several nger-vein recognition schemes against longitudinal to touchless operation. Hence, this is one of the main factors

nger rotation. Therefore, we established a nger-vein data set in uencing the recognition performance of nger-vein systems
exhibiting longitudinal nger rotation in steps of 1° covering j, hractical applications and it would be desirable if nger vein
a range of 90°. Our experimental results conrm that the " ;
performance of most of the simple recognition schemes rapidly recognlthn schemes are able to tolerate such a rotation at Iegst
decreases for more than10° of rotation, while more advanced tO @ certain extent. To the best of our knowledge no systematic
schemes are able to handle up t@0°. investigation of this particular problem has been performed
so far. The analysis of these and other factors impacting the
recognition performance of nger-vein recognition systems
Vascular pattern based biometrics, commonly denoted @ be summarised as robustness analysis.
vein biometrics, provide several advantages over other, well-Some authors state that there is the problem of nger
established biometric recognition systems. Especially handtation along the longitudinal axis, which is also called
and nger-vein based systems tend to replace ngerprint basedt-plane nger rotation or non-planar rotation, while others
ones in some application areas. Vein based systems rely ondlem that their recognition scheme is able to tolerate this
structure of the vascular pattern formed by the blood vessels to a certain degree. Matsuda et al. [Mal6] claim that
inside the human body tissue, which becomes visible in ne#eir recognition scheme is robust against this kind of nger
infrared (NIR) light only. This vessel structure is within themisplacement. They did experiments and showed that their
human body and thus vein based systems are insensitivestbeme is robust against these rotations up 36°, but their
abrasion and skin surface conditions. Moreover, a livenegst data set, which is not publicly available, only consisted
detection can be performed easily [KZ12]. of vein images captured from 5 different people. Chen et al.
However, nger-vein recognition systems are far from beinffCh18] proposed an approach to correct different types of
perfect in terms of accuracy, reliability and usability. Theimger deformations based on a nger geometric analysis. Their
recognition performance may suffer from different internal andork includes nger rotation along the longitudinal axis as
external factors which might lead to a lower performance. Invell (they call it type 3 deformation). They showed that by
ternal factors include the con guration of the scanner itself, the non-linear correction of the nger rotation the recognition
illumination source and the NIR camera. Most of the interngerformance can be improved. However, they only estimate the
and external factors impacting the nger-vein recognitiomamount of deformation, i.e. the rotation angle, while there is no
performance can be ruled out by means of adding componegtsund-truth information of the actual rotation angle available.
to the scanner or tuning the scanner settings. External factordhe main contribution of our work is a systematic robust-
can be divided into environmental ones, including ambieness evaluation of several nger vein recognition schemes
light, dust or dirt on the sensor, high humidity, electromagnetagainst the nger's longitudinal rotation. In order to investigate
radiation, etc. and factors regarding the presentation of tthee impact of longitudinal nger rotation a suitable data set
nger to the scanner device. The latter includes nger movas needed. Unfortunately, there is no such data set available,

I. INTRODUCTION

< *HVHOOVFKDIW I«U ,QIRUPDW



mainly because a specically designed nger-vein scanne
device is mandatory to acquire one. Thus, we established
nger rotation data set, exhibiting transillumination nger-vein
images captured in different rotation angleslhsteps in a
range of 90° starting from the palmar view. This data set was
captured using our custom designed, multi-perspective nge
vein scanner device and will be made publicly available i :
the future. Our experimental results show that Iongitudins/,?“ %
nger rotation poses a severe problem for most nger-vei
recognition schemes.

The rest of this paper is organised as follows: Section Il _ _ _ , _
illustrates the problem of the nger's longitudinal rotation insg%”n't‘; r-lcll o C'lz('vr\‘,?seer) rotation example using a commercial scanner (rotation
detail. Section Ill presents our multi-perspective nger-vein
scanner device and the nger rotation data set. Section IV
describes the experimental set-up and presents the performanugle is known or can be estimated. Estimating the rotation
evaluation results together with a results discussion. Sectipbam a single image can be a challenging task. If the angle
V concludes this paper along with an outlook on future worlef rotation increases, some vein lines might merge due to the
perspective projection. In this case, there is no way to revert
the effects caused by the longitudinal nger rotation. Thus, it

Usually, nger-vein scanners are designed to capture onlyould be desirable if the recognition scheme is robust against
one nger at a time. For these scanners, nger misplacemenmgitudinal nger rotation, at least to a certain extent. To the
are a severe problem. There are different types of misplaggst of our knowledge, until now the robustness against nger
ment: shifts of the nger in x- and y-direction (planar shifts)rotation has not been systematically evaluated.
shifts of the nger in z-direction, in-plane (planar) rotation of
the nger, tilts of the nger and rotation around the nger's llI. PLUSVEIN-FINGER ROTATION DATA SET
longitudinal axis. The planar shifts as well as the planar The nger rotation data set has been acquired using our
rotations can be reduced by guiding walls alongside the ngemistom designed multi-perspective nger vein scanner, shown
end tips or a nger-shaped support. Shifts of the nger in zin Fig. 3. The image sensor is an NIR enhanced industrial
direction are usually not a problem if the sensor has a surfazamera (IDS Imaging Ul-1240ML-NIR), equipped with a 9
where the nger has to be placed onto. Remaining planar shiften wide-angle-lens (Fujion HF9HA-1b) and a NIR long-
and rotations can be compensated in software by aligning thess Iter (Midopt LP780). Five 808 nm NIR laser modules
images based on the nger outline. Tilts of the nger cariorm the light source, positioned on the opposite side of the
be avoided by using capacitive or pressure-sensitive senstamera (transillumination), including an integrated automatic
on the scanner surface which detect if the nger is placdatightness control to achieve an optimal image contrast. To
correctly. However, rotations around the nger's longitudinatapture different perspectives or rotation angles, the camera
axis cannot be detected reliably by most available commercaald the illuminator rotate around the nger which is placed at
available sensors. This problem could be avoided if the senstirs axis of rotation. This rotation principle is depicted in Fig. 4.
would not only acquire one nger, but require the subject tdhe nger is stabilised with the help of a nger-tip shaped hole
place the full hand or at least more than one nger, as proposed the nger end and a height-adjustable nger trunk plate on
by Kauba et al. in [KPU18], on the sensor. Fig. 1 showthe nger trunk. All parts except the camera, lens, lter and the
an example of the longitudinal nger rotation, also calledaser modules were designed and manufactured by ourselves.
non-planar rotation or out-plane rotation by some authors,The data set itself contains a total of 252 unique ngers
using an off-the-shelf commercial nger vein scanner. In #om 63 different subjects, four ngers (right and left index
supervised acquisition scenario, the supervisor can tell the uaed middle nger, respectively) per subject. Video sequences
to place his nger correctly. However, if the acquisition is nowith a rotation speed adjusted to the frame rate were captured
supervised, such longitudinal rotations of the nger impossuch that frames irl® steps can be extracted in a range of
a severe problem. This problem gets worse if the scanner i90° starting from the palmar view, by rotating the scanner
designed to operate in a contact-less way and does not haw@und the nger's longitudinal axis. This leads to the same
contact surface. output images as if the nger would rotate itself. The capture

The captured image is a projection of the nger situated inrocess was repeatégtimes per nger. For each degree of
3D space onto a 2D plane. This principle is depicted in Fig. fotation there arel260 images, resulting ir28060images
If the nger is rotated around its longitudinal axis, the veirin total. Fig. 5 shows some example imagesléf steps
patterns look different due to the change in the perspectigad the corresponding extracted nger veins using Maximum
or the projection, respectively. This projective transformatioBurvature [MNMO7]. It becomes clearly visible that the ex-
cannot be reverted using translation or rotation on the imagéscted vein patterns are distinct among the different views
but can be compensated to some degree if either the rotatfonte the highlighted areas in the bottom row of the gure).

mofiria

mofiria

mofiria

Il. THE LONGITUDINAL FINGER ROTATION PROBLEM



Figure 2. Finger longitudinal axis rotation principle: a schematic nger cross section showing ve veins (blue dots) rotated3®drfeft) to +30 ° (right)
in 10° steps. The projection (bottom row) of the vein pattern is different according to the rotation angle following a non-linear transformation

feature extraction and comparison. The input of our tool-chain
' i — are the videos captured by our mullt-pe_rspecnve nger vein
: - Finger-Trunk scanner. At rst the frames corresponding 18 steps are
L] o SR L Stabilizer (Plate) extracted from the video sequences. Afterwards each image is

Finger-Ti
processed individually: the ROI is extracted and the the nger
outline detected by the help of an edge detection algorithms.
| , Then a straight centre line is tted into the nger. Based on
i——> D B ‘ this centre line, the nger is aligned (rotated and shifted)
) - i ' such that it is in horizontal position in the middle of the
image. The area outside the nger is masked out (pixels set to

N 1 black) and a rectangular ROI is t inside the nger area. The
; - By . ROI images have a size &00 1100 pixels. To improve
_‘\ N - the visibility of the vein pattern we uskligh Frequency

; o Emphasis Filtering (HFE), Circular Gabor Filter (CGF)

and simpleCLAHE (local histogram equalisation) as prepro-
G . cessing. We opted for three well-established binarisation type

feature extraction methods as well as two key-point based

Figure 3. The scanner itself (originally published in [PKU18], © 2018 IEEEMethod. Maximum Curvature (MC) [MNMO7], Principal

Curvature (PC) [Ch09] andGabor Filter (GF) [KZ12] aim
to extract the vein pattern from the background resulting in
Camera a binary image, followed by a comparison of these binary
] ] images. Comparing the binary feature images is done using
L\ | a correlation measure, calculated between the input images
A and in x- and y-direction shifted and rotated versions of the
G | reference image. In addition, two key-point based recognition
i schemes, &IFT [KRU14] based technique with additional
Finger key-point Itering and Deformation-Tolerant Feature-Point
“a Matching (DTFPM) proposed by Matsuda et al. [Ma16] are
used. For more details on the preprocessing methods please
NIR Illuminatior refer to [KRU14].

b) Evaluation Protocol:: To quantify the performance,
the EER as well as the FMR1000 (the lowd¥IMR for
FMR 0:1%) and the ZeroFMR (the lowedENMR for

The gender distribution of the volunteers is balanced. AmofigMR = 0%) are used. For calculating the genuine scores,

the 63 subjects 36 of the subjects are male, the remaining 37 Possible genuine comparisons are performed, which are
are female. The youngest subject was 18, the oldest one 8.4 5 5 = 6300 comparisons. For calculating the impostor

Figure 4. Principle of the multi-perspective nger vein scanner

The image resolution i§50 1280 pixels. scores, only the rstimage of a nger is compared against the
rst image of all other ngers, resulting ift 63 63 = 15876
IV. EXPERIMENTS compares, s®2176 compares in total. An implementation

a) Recognition Tool-chain::Fig. 6 shows the compon- of the co_mplete processing t_ool-chain as well as the scores
ents of a biometric recognition system: The biometric trafind detailed results are available at: http://www.wavelab.at/
is captured by a biometric sensor and afterwards procesSyrces/Prommegger18b/.
in the recognition tool-chain which consists of preprocessing c¢) Experimental Results::Table | lists the baseline
(ROI (region of interest) extraction and image enhancemenpgrformance results for the different nger-vein recognition



Figure 5. Top: example images in 10° steps, from left to right: -30°, -20°, -10°, 0°, 10°, 20°, 30°, bottom: corresponding extracted MC features with two

highlighted vein paths.

PC | MC | DTFPM | SIFT | GF .
EER [9%] 048 1059 1 115 153 314 cqrre;ponds_to a relgtlve performance decrgase akfo
FMR1000 [%] | 0.79 | 0.83 | 254 | 4.88 | 5.40 With increasing rotation angle, the recognition performance
ZeroFMR[%] | 151 ] 131 ] 393 | 643 | 7.82 diminishes at a higher rate. At10° the EER reache&%,
Table | between 20° and 25° the EER jumps abov&0% Around
BASELINE PERFORMANCE RESULTL{PALMAR VIEW,0°) FOR THE 30° the EER exceedgotyq at 450 a|ready 45(%], |e

DIFFERENT RECOGNITION SCHEMES recognition is no longer meaningful. DTEPM (brown line with

star marker) has a higher baseline EARL$%) at the palmar
view but its EER increases most gently, leading to the best

schemes at the palmar vie®°}. PC achieves the best recogfobustness against nger rotation. At10° the performance
nition performance with an EER @48% followed by MC, degradation is only80% (EER: 1:53%). Starting from 17°
DTFPM and SIFT while GF performs worst. DTFPM outperforms all other schemes. ABC° its EER is
fill below 7%. Matsuda et al. [Mal6] reported a baseline

nger rotations, the images captured in the different ang| RO of 0:152% anod a relative performance degradation of
from 9C° to 90° in 1° steps are compared against the30% (EER: 0:501%) at 30°. However, neither their data

palmar view (rotation of°). The trend of the absolute EERSE! NOr an implementation of their proposed approach is

is shown in Fig. 7 left column. The relative performanc@vailable. With our full re-implementation we are able to
degradation (RPD) EER roaed  EER paimar is depicted in con rm their claimed robustness against nger rotation, but

: EER paimar . Wwith a relative performance degradation 530% instead of
the right column. The .bottom row .ShOWS the area d5 .230% SIFT (blue line with diamond marker) is more robust
from the palmar view in more detail. Note that the RPD IS qainst nger rotation than PC and MC, too. However, its
calculated with respect to its baseline EER of each recogniti aseline EER is higher than the one of ,DTFPM. GF (b,lack
scheme. As a result of this, the maximum RPD is limitefi, yith cross marker) has the highest baseline E&Ra%)
by ROPDmaX - EER baseline where EER max s and a similar relative performance degradation as MC and

S0% . ) ) ~ PC. Due to its high baseline EER, iBPDnax is lower
MC (red line with triangular marker) and PC (green ling,5, RPD e for PC and MC. FMR1000 and ZeroFMR,

with square marker) show a similar performance: up 10 \#gyalized in Fig. 8, follow the same trend as the EER: rst,
rotation angle of 10° the EER rises just abov&% which

In order to quantify the robustness against Iongitudin§
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Figure 6. Basic components of a biometric recognition system

the increase is relatively small and starts to rise sharply @ease around 10 , key-point based systems tolerate higher
15 . FMR1000 exhibits values close tb00O from 45° rotation angles, e.g. DTFPM reaches a RPOLO0% at 14°.
onwards for all algorithms evaluated, ZeroFMR already dthe further the nger is rotated, the more pronounced this
35°. DTFPM shows the best results for both, FMR1000 artdend becomes: the relative performance decrease of SIFT and
ZeroFMR. Consequently, a longitudinal nger rotation anglespecially DTFPM is lower than the one of PC, MC and GF.
of 30° poses a severe problem for all evaluated schem@3FPM exceeds a RPD &00%at 28° whereas for PC, MC
except DTFPM. A rotation angle of more thard5°makes and GF this performance decrease is already achieved just

recognition nearly impossible. above 15.
To assist the reader in comparing the performance values
at different rotation angles, Tab. Il lists the EER per rotation V. CONCLUSION

angle from0° - 45°. The best EER for every rotation angle e investigated the problem of nger rotation around its
is _highlightedbold. This table conrms that up to a certain|ongitudinal axis, also called non-planar or out-plane rotation
rotation, the well established vein pattern based algorithrgfthe nger in the scope of nger-vein recognition. This kind
show the best performance. It can be seen that if the rotatign nger misplacement poses a severe problem for practical
exceeds a certain angle, key-point based algorithms, especigfiplications of nger-vein scanners, including most of the
DTFPM, outperform traditional approaches. available off-the-shelf single nger commercial nger vein
Tab. Ill lists the relative performance degradation for thecanners, as this rotation cannot be prevented by means of the
same rotation angles. With respect to RPD, DTFPM perforrggsanner hardware construction and is hard to be compensated
best followed by SIFT. Although GF shows the lowest RPRfterwards by image preprocessing (assuming that the rotation
for 45° it has the worst recognition rate of all featureangle is not known). We established a new nger rotation
types, with an EER of 50% The low RPD is due to the data set comprising nger-vein images capturedlisteps
highest baseline result compared to the other feature typeslongitudinal rotation in a range of 90° starting from the
The two tables (Tab. Il and Tab. Ill) clearly show that th@almar view.
evaluated key-point based algorithms are more tolerant againsbur performance evaluation results con rm, that longitud-
nger rotation than the vein pattern based ones. The key-pointl nger rotation is a severe problem for the recognition
based algorithms match relevant key-points against each othefformance of nger-vein systems. All recognition schemes
instead of comparing binarised vein structures. If the detectigre able to tolerate up to 10° of rotation at a relative
and matching of theses points is insensitive to changes in fh&formance loss of less thatR0% The key-point based
vein patterns due to longitudinal nger rotation, the results of algorithms DTFPM and SIFT are more robust against nger
comparison in a biometric recognition system is less sensitiustation, but their baseline performance is worse compared
as well. to PC and MC. GF generally performs worst. However, for
Tab. IV is the inverse of Tab. Il and shows rotation angleotation angles more thaB0°, which can occur in practical
at which a certain performance drop is hit. While vein pattempplications of nger-vein scanners, the recognition perform-
based algorithms (MC, PC, GF) readB0 performance de- ance drops dramatically. This problem gets even worse for



55

10000 B g g “ePC g gt
50 e Pm o leMc o
. P 5§£;¢n 9000 - \ |+DTFPM| ! 1
45 _, o 1 ot s s eSIET <
$ X oot we-ta L oF | A
40 / ? ;4
/ .2 7000
35 1 £
o]
— [}
X 30 | & o000
Q: 5
B ox | % 5000
= z
4000
20 1 =
g
15 1 & 3000 ¢4
5
10 1 B~ 2000
5 1 1000
0 , , , , | R | | T T 0 , , , , 2 VN aulll | | |
90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90 -90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90
Finger Rotation [°] o Finger Rotation [°]
— : E 500 —
-=-PC 2 -a-PC )
- MC ;% 400 b‘. - MC
~DTFPM = ’ —+~DTFPM /
S -¢-SIFT £ 300 -¢-SIFT
- ——GF éﬁ ——GF
= © 200
H T g 100
= ! =
0 ‘ ‘ ‘4 [T ‘ ‘ ‘ ‘ ”5 0 2
25 -20 -15 -10 -5 0 5 10 15 20 25 @& -25 -20 -15 -10 -5 0 5 10 15 20 25

Finger Rotation [°] Finger Rotation [°]

Figure 7. Trend of performance indicators across the different rotation angles fAihto 90° (0° corresponds to the palmar view), left: absolute EER
values, right: relative change of EER in %. The bottom row shows a more detailed view f&hto 25°.

0° 5° 10° 15° 20° 25° 30° 45°
PC 0.48 | 0.60 | 1.04 1.96 5.38 | 13.43 | 27.14 | 46.50
MC 0.59 | 0.62 | 1.07 2.92 8.88 | 22.34 | 37.91 | 46.82
DTFPM | 1.15| 1.07 | 1.53 2.03 291 | 4.49 6.97 | 19.26
SIFT 153 | 153 | 249 3.90 5.59 8.53 | 12.61 | 30.15
GF 3.14 | 362 | 536 | 11.03 | 22.70 | 37.86 | 46.06 | 50.46

Table Il
EERAT SPECIFIC ROTATION ANGLES[%]

0° 5° 10° 15° 20° 25° 30° 45°
PC 0% | 26% | 119% | 312% | 1031% | 2727% | 5610% | 9684%
MC 0% 7% 83% | 399% | 1416% | 3715% | 6373% | 7894%
DTFPM | 0% 0% 33% 76% 153% 290% 505% | 1573%
SIFT 0% 0% 63% | 155% | 266% | 459% | 726% | 1876%
GF 0% | 15% | 71% | 252% | 624% | 1107% | 1369% | 150%%

Table IlI
RELATIVE PERFORMANCE DEGRADATION AT SPECIFIC ROTATION ANGLE [%]
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Figure 8. Trend of performance indicators across the different rotation angles fBffhto 90° (0° corresponds to the palmar view), left: FMR1000, right
ZeroFMR in %

10% | 25% | 50% | 100% | 200% | 300% | 400% | 500%

PC 1° 3° 5° 8° 12° 13° 15° 16°

MC 5° 6° 8° 9° 12° 13° 14° 15°

DTFPM 7° 8° 11° 14 19° 23 26° 28

SIFT 4° 4° 8° 12° 16° 20° 23° 25°

GF 4° 5° 7° 9° 12° 14° 16° 17°
Table IV

ROTATION ANGLE AT WHICH A CERTAIN RELATIVE PERFORMANCE DEGRAATION IS HIT

touchless nger-vein scanners with more degrees of freedaecognition is still feasible.
during image acquisition.

If only the planar nger-vein images are available, the abil-
ity of a recognition scheme to cope with longitudinal rotation ) ] ) )
of the nger is very limited due to the perspective mapping 'MiS Project has received funding from the European
during imaging. One way to make nger-vein recognition morg)nlon‘s Horizon 2020 research and innovation program under
robust against nger rotation is by improving the scanné#'@nt agreement No. 700259.
hardware, e.g by mounting an additional nger positioning
support where the whole hand is placed on a kind of shelf such
that the rotation of the nger can be restricted. Another option
is using stereo or 3D camera systems, which is bene cial br
touchless scanners anyway, in order to estimate the rotation
angle of the nger and compensate for the rotation by applyin
a perspective transform. Another way is trying to estimate theh18l
rotation angle and compensate the rotation like Chen et al.
[Ch18] proposed, which will be evaluated in our future workKPU18]

For our data set the exact longitudinal nger rotation is in Finger-Vein Recognition? In: Proceedings of the Interna-
known..This information can'be used to perform a systema;ic Ei)osnleé 'fggnfg;errafset :Jtthgem;:}etrizcoslgpecial Interest Group (BI-
te(;l?:l(l;?rtel?:? tﬁfetggr:r?ep;g\ellghdIlsq[()[?ﬂgiSI]Dy'AEi;ET;Tr?g; Zpr?g?ﬁ?:eL%RUM] Kauba, Christof; Rei’s_sig| Jak())/’bg Uhl, Andreas: Ere-procegsing

cascades and fusion in nger vein recognition. In: Proceedings
transform using the known rotation angle. We will evaluate of the International Conference of the Biometrics Special Interest
the recognition performance which can be retained at certain Group (BIOSIG'14). Darmstadt, Germany, sep 2014.
rotation angles for both approaches in order to determiiKeZ 12 Kumar, Ajay: Zhou, Yingbo: Human identi cation using nger
the maximum possible rotation angle at which a reasonable
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