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Abstract. For the first time, the feasibility of creating morphed templates for at-
tacking vascular biometrics is investigated, in particular finger vein recognition
schemes generating binary vascular patterns are addressed. A conducted vulner-
ability analysis reveals that (i) the extent of vulnerability, (ii) the type of most
vulnerable recognition scheme, and (iii) the preferred way to construct the mor-
phed template for a given target template depends on the employed sensor. It turns
out that targeted template doppelgaenger selection is important for an attack suc-
cess. The identified threat level in terms of IAPMR is often found to be > 0.8 for
several sensor / template generation scheme / morphing technique combinations.
Thus, the risk as imposed by such attacks can be said to be considerable.

1 Introduction

Since the introduction of the “magic passport” [1] concept, the threat of using morphed
facial portrait images in ID documents has been discussed in depth. As this threat has
been considered a serious one since, we have observed an explosion of work dedicated
to face morphing (detection) consequently [2, 3]. Apart from the face modality, the
threat originating from morphed samples or templates of other modalities is less obvi-
ous, as there is no connection with ID documents and no corresponding inclusion of
morphed sample image data. As a consequence, we have seen only a single proposal
for fingerprint morphing using traditional model-based techniques [4] and its potential
detection [5, 6], and a second proposal for fingerprint morphing using learning-based
schemes (i.e. GANs [7]). For iris recognition, a first work deals with the construction
of morphed iris codes [8], later also image-level iris morphing has been demonstrated
[9]. Also, a suggestion for systematic analysis of biometric system vulnerability with
respect to morphing attacks [10] addressed face and iris morphing attacks. Recently,
sample-oriented generation of morphed fingervein sample data has been explored to-
gether with a demonstration of the feasibility of using these data as presentation attack
artefacts [11].

In this work, we investigate the feasibility of creating morphed vascular binary tem-
plates, in particular we deal with finger vein recognition systems. Based on the morphed
finger vein templates we conduct a vulnerability analysis of five different recognition
systems. The actual threat of such data is illustrated in Fig. 1 - the most efficient attacks
inject such morphed templates into the database, replacing the templates of a legiti-
mate user, thus allowing the legitimate user as well as the attacker to authenticate to the
biometric system based on the morphed templates.



Fig. 1: Main point of morphed template attack against a biometric system.

The principle of the attack is visualised in Fig. 2: The attacker’s template is f1 and
there is no corresponding template stored in the database. Therefore the attacker can
not authenticate him/herself with the system via f1 (“failed”). Template f2 is computed
from a sample of a legitimate user. The authentication is successful because the user’s
template t1 is stored in the database and the similarity score derived in the comparison
is higher than the threshold. As the attacker has full access to all database templates,
he/she aims to morph his/her template f1 with a template derived from a legitimate
users’ sample, in this case, t1.
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Fig. 2: Working principle of attacking the template database.

The attacker then replaces template t1 with the resulting morphed template fMorph

in the database. This approach allows both, the attacker and the legitimate user, to au-
thenticate successfully via their finger veins in the future, as both extracted templates
f1 and f2 should be close enough to the morphed template fMorph in the database.

Another attack option is to replace a template retrieved from the database for the
comparison process by a morphed template achieving the same effect, but this attack is
much less static and requires dynamic injection into the data transfer from the database
or into an ongoing template comparison process, respectively. Also, for this attack we



do not really require a morphed template, injecting the attackers template directly is
sufficient to make the attack work.

The remainder of the paper is organised as follows. In Section 2, we will demon-
strate how a digitally morphed template can be created from two binary finger vein
templates. Section 3 explains the experimental setup to conduct the vulnerability anal-
ysis, including the definition of the used recognition software and finger vein datasets,
respectively, and defining the way how to actually assess the vulnerability. This section
also contains an explanation how we aim to reveal the existence of morphed templates
in a database. Experimental results are presented and discussed in Section 4, while we
conclude the paper in Section 5.

2 Morphing of Binary Finger Vein Templates

Morphing is defined originally as the transformation of one image into another and in-
volves two parts: cross dissolving and warping. Cross dissolving is linear interpolation
to fade from one image to another in terms of grayscale or colour value. Consider-
ing two samples Sample1 and Sample2, we interpolate a value from 0 to 1 and use
Sample1∗α+Sample2∗(1−α) as the value of the new pixel in the morphed sample.
α is called “blending factor” and defines the respective contribution of Sample1 and
Sample2 to the morphed sample (this has been applied to finger vein samples in [11]).

However, we aim at binary templates but not at grayscale samples, and the original
concept of morphing needs to be adapted correspondingly as we cannot rely on particu-
lar landmarks and interpolation of binary values is hardly possible in meaningful man-
ner. In particular, it makes sense to consider the way how the similarity of two binary
templates is determined during template comparison. Contrasting to e.g. iris code com-
parisons, where binary codes are compared under left-right shifting them against each
other and taking the minimum resulting Hamming distance as their similarity value, in
comparing vascular binary features typically the “Miura Matcher” [12] is being em-
ployed. In this comparison algorithm, two binary templates are correlated against each
other computing the maximum among two-dimensional shifts of rotated template ver-
sions. The correlation is computed on the center region of the templates, the so-called
“kernel” (see Fig. 4).

We define the following template morphing approaches (in fact, these are more
template fusion schemes):

– Template OR (XOR): This approach applies a logical OR to the two vascular sam-
ples f1 and f2: fmorph = f1∨f2 without any alignment between the two templates.
Note the ∨ is the fundamental operation for all template morphing variants, the sole
difference is the type of alignment that is applied between the two. Fig. 3 illustrates
the simple XOR process and outcome.

– (Template) Rotation: The Miura Matcher uses a rotation compensation in the tem-
plate comparison process, which we use to determine under which rotation param-
eter the similarity between the two templates to be morphed is maximal. Thus we
rotate one of the two templates by that parameter, and use nearest neighbour in-
terpolation and cropping to result in an identical template size. Finally, the rotated
template and the second one are fused by logical OR.



Fig. 3: Two MC binary templates from the MMCBNU dataset and their XOR morphed
template.

– (Kernel) Alignment: The approach is to determine how to align the kernel (i.e.
central area according to the Miura Matcher) of a template to a second template, so
that the similarity is highest. To do this, we employ the Miura Matcher to compute
the convolution matrix and filter the result for the highest value, corresponding to
the alignment with the highest similarity, and to return the optimal shift parameters
(in two directions). This process is repeated for different rotations to obtain the op-
timal kernel alignment and shift parameters for the subsequent morphing process.
Fig. 4 illustrates the kernel of a template and its aligned OR fusion with another
template.

Fig. 4: The kernel of a MC template from the MMCBNU dataset (in blue), and its
morphing with a second template (in blue overlay and binary).

– F(ull) Alignment: This approach is an extended version of the previous (Kernel)
Alignment approach. The difference is that we no longer consider the kernel alone
but rotate and shift the entire template to optimise similarity, before template OR is
being applied. Fig. 5 illustrates the process and highlights the difference to (Kernel)
Alignment.

Fig. 5: A rotated and shifted MC template from the MMCBNU dataset, and its morphing
with a second template (in blue overlay and binary).



For the envisioned attack, typically an attacker does not just morph his/her template
with an arbitrary template in the database. We have an attacker template, say f1, and
need to select a suited template t1 in the database from a legitimate subject to result
in the best possible recognition result for both subjects. There is work on this topic for
facial portrait data called “how to find the suited doppelgaenger” [13], but in the finger
vein setting, we only need to consider a smaller set of requirements for a suited “dop-
pelgaenger” finger vein template. In order to investigate the role this selection plays,
we have chosen two approaches: First, in “similar” mode, we select t1 as the closest
template of a different subject contained in the dataset determined in terms of Miura
Matcher template comparison score using a particular recognition system. Second, in
“unsimilar” mode, we select t1 as the most distinct sample to f1 in the same sense.

3 Experimental Settings

3.1 Assessment Criteria

The vulnerability of a biometric recognition system to attacks is determined by the
Impostor Attack Presentation Match Rate (IAPMR) introduced in ISO/IEC 30107-3
[14]. IAPMR is defined as the proportion of attack presentations using the same type
of presentation attack instruments in which the target reference matches. This general
measure has been adapted to the specific morphing scenario [15] resulting in the Mated
Morph Presentation Match Rate (MMPMR), which covers the fact that not one target
subject (contained in the morphed reference) is compared to others - but for a successful
morph attack, both data subjects that previously contributed to the morphed image are
expected to match. However, as we have found both involved subjects to be symmetri-
cally represented (which is to be expected due to the symmetric XOR construction of
the morphs), we resort to the simpler IAPMR for result reporting.

To investigate the importance of the actual template used to create the morph, we
discriminate three IAPMR variants:

– IAPMR1 determines IAPMR by considering template comparison scores for which
the morphed template is compared to template t1 only, i.e. the template of the le-
gitimate user that has actually been used to create the morph.

– IAPMRn determines IAPMR by considering template comparison scores for which
the morphed template is compared to all templates of the subject from which t1 has
been derived.

– IAPMRn−1 determines IAPMR by considering template comparison scores for
which the morphed template is compared to all templates of the subject from which
t1 has been acquired except for template t1.

For defining a “successful” template comparison in the context of IAPMR, we first
compute the EER of the corresponding dataset / recognition scheme combination and
use the corresponding threshold in the decision. Subsequently, we start with the first
template of the first subject, determine its most similar and dissimilar template in the
database (from different subjects) and generate the corresponding morphs. Then we
compute the template comparisons between all templates of the first subject and the



generated morphs and check if the result adheres to the threshold (i.e. a successful
attack has been conducted). The results increase the correspondings counters and we
proceed to the next template of the first subject. This procedure is conducted for all
subjects.

3.2 Data and Recognition Software

For the experiments, four publicly available finger vein databases were used. The data
sets under investigation are:

– The Finger Vein Universiti Sains Malaysia Database (FV-USM [16]): Contains
5904 palmar finger vein images, exhibiting a resolution of 640x480 pixels, acquired
from 123 subjects. All of them participated in 2 acquisition sessions where each
time 4 fingers per subject and 6 images per finger were captured by a custom built
capturing device.

– The Multimedia Chonbuk National University Database (MMCBNU 6000 [17]):
The 6000 palmar light transmission finger vein images, exhibiting a resolution of
640x480 pixels, contained in this dataset were acquired from 100 subjects. From
all of them 6 fingers per subject and 10 images per finger were captured in a single
session utilizing a capturing system based on a modified webcam.

– The University of Twente Finger Vascular Pattern Database (UTFVP [18]) con-
tains six fingers (ring, middle and index finger from both hands) from 60 volunteers
in two sessions. At each session, two palmar samples per finger were captured (re-
sulting in 4 samples per finger). The samples have an original resolution of 672x380
pixels, while their region of interest (RoI) is 672x285 pixels.

– The PLUSVein-FV3 Palmar LED Finger Vein Data Set (PLUS [19]) contains pal-
mar images from the ring, middle and index finger of the left and right hand (5
samples per finger) and have been acquired using an open access capturing device
[20]. Here, only LED illuminated images are used, the resolution of the single fin-
ger RoI cropped from the 3-finger capture is 736x192 pixels.

The finger detection, finger alignment and RoI extraction for UTFVP and PLUS
is done as described in [21]. After pre-processing and feature extraction, the result-
ing binary templates are used to perform the experiments. We conducted these ex-
periments by applying the PLUS OpenVein Finger- and Hand-Vein Toolkit (http:
//www.wavelab.at/sources/OpenVein-Toolkit/ [22]). We selected five
techniques based on the binary vessel structure. The extraction schemes used are Wide
Line Detector (WLD) [23], Isotropic Undecimated Wavelet Transform (IUWT) [24], Ga-
bor Filter (Gabor) [25], Maximum Curvature (MC) [12], and Principal Curvature (PC)
[26]. These binary feature templates are subsequently compared using a correlation-
based approach proposed in [12], the so called Miura Matcher.

4 Experimental Results

The experimental section is split into two parts - first, we conduct a threat analysis, i.e.,
we experiment if the generated morphed templates are a real threat to the biometric



system in question, and here we discriminate different data sets and template genera-
tion schemes. Second, we investigate if a database maintainer can check the database
for eventual morphs, i.e. if we can reliably discriminate morphs from real legitimate
templates.

4.1 Threat Evaluation

We explain the results for each IAPMR variant looking at Table 1 (left). The results
are based on the FV-USM dataset (123 subjects and 12 samples per finger). For feature
extraction we use Maximum Curvature, and for the morphing procedure, we use the
XOR Approach. For IAPMR1, we note that the attack is successful in all cases, no
matter if the most similar or dissimilar template has been used (the accordance of the
template in the morph and the attacking one is sufficient to guarantee the attack is
working).

FV-USM (MC Rec.)
Similar Unsimilar

IAPMR1 1 1
IAPMRn−1 0.449 0.263
IAPMRn 0.461 0.279

MMCBMU (PC Rec.)
Similar Unsimilar

IAPMR1 1 1
IAPMRn−1 0.180 0.139
IAPMRn 0.193 0.154

UTFVP (PC Rec.)
Similar Unsimilar

IAPMR1 1 1
IAPMRn−1 0.965 0.918
IAPMRn 0.967 0.922

Table 1: IAPMR results of three datasets using XOR Morphing.

The situation is different for IAPMRn−1 and IAPMRn. While both values are rather
similar (slightly higher for IAPMRn as the identical template as used in the morph
is also considered in the comparison process, among the other ones), there is a clear
difference between similar and unsimilar template selection in the morph construction,
and IAPMR differs by a factor a bit lower than 2. Therefore, in the following, we will
present results for IAPMRn only but discriminate between the similar and unsimilar
template selection process, respectively.

In Fig. 6, we present the overall results for the FV-USM dataset. For the similar
doppelgaenger template selection, results follow a clear trend: MC, IUWT, and WLD
template generation techniques exhibit a lower IAPMR value (still around 0.40 - 0.45)
while PC and GF are most subsceptible to the morphing attack (top IAPMR values are
between 0.6 and 0.7). There is also a clear ranking with respect to successful morph-
ing techniques: XOR and Rotation work best, while the Kernel Alignment approach is
worst.

For the unsimilar doppelgaenger selection scheme, results are different. While the
most vulnerable template generation schemes are still PC and GF, their highest IAPMR
values are around 0.4. Contrasting to before, in unsimilar mode the best morphing tech-
niques are Alignment and Falignment. Thus, results clearly confirm that the doppel-
gaenger selection strategy is of high importance for a successful attack, and that differ-
ent template generation schemes are fairly different in how far they are vulnerable to
template morphing attacks. The former fact also implies, that the attack can be made
much more effective if an entire dataset is compromised (as we can select the most sim-
ilar doppelgaenger), as opposed to the case if only a single template is compromised.



Fig. 6: FV-USM dataset: IAPMRn results of all template types and morphing ap-
proaches in similar (up) and unsimilar (low) mode, respectively.

Now let us look into the question if the results are stable across different datasets
(i.e. finger vein sensors). Table 1 (middle, for MMCBMU data) reveals a different be-
haviour as compared to Table 1 (left). We notice rather low IAPMRn−1 and IAPMRn

values and the difference between similar and unsimilar template selection for the mor-
phing process is rather negligible.

Fig. 7 shows the overview results of the MMCBMU dataset. We clearly observe,
that the situation is different as compared to the FV-USM dataset. Here, it is only GF
template generation which is highly vulnerable by the morphing attack (with IAPMRn

being almost 1.0), and PC is much less vulnerable (actually, here PC is the least vul-
nerable template generation scheme). For the similar doppelgaenger template selection
scheme, there is no significant winner in terms of best morphing approach.

Fig. 7: MMCBMU dataset: IAPMRn results of all template types and morphing ap-
proaches in similar (up) and unsimilar (low) mode, respectively.

When comparing the similar to the unsimilar template selection results, the general
trend is almost identical. GF is most vulnerable (with IAPMRn at 0.7), while the other
template generation schemes are between 0.1 and 0.3 in terms of IAPMRn. It is also
interesting to note that for the MMCBMU dataset, the doppelgaenger template selec-
tion variant chosen is by far less important for the resulting threat (except for GF), as
compared to the FV-USM dataset.

Table 1 (right) shows exemplary results for the UTFVP dataset, shown in similar
way as Table 1 for the FV-USM and MMCBMU datasets. respectively. Constrasting



to the results for FV-USM (but in accordance to those for MMCBMU), here we do
not observe a large difference between IAPMR for the similar and unsimilar template
selection approach, respectively, while all displayed IAPMR variants are on a very high
level (which on the other hand does not correspond to results for MMCBMU data).

Again, a summary of the results for the UTFVP dataset is displayed in Fig. 8, we
again observe different behaviour as compared to the previous dataset. PC is most sub-
sceptible (with IAPMRn close to 1.0), while IUWT and GF still reach IAPMRn of
0.45 - 0.6. For the similar template selection mode there is no clear winner in terms of
morphing generation (Rotation is often pretty well performing).

Fig. 8: UTFVP dataset: IAPMRn results of all template types and morphing approaches
in similar (up) and unsimilar (low) mode, respectively.

The unsimilar template selection mode results in lower IAPMRn values, but not
as clear as e.g. for FV-USM data. In this setting, Falignment is the best performing
morphing approach. PC can still reach IAPMRn of> 0.9, so for this setting an arbitrary
template can be selected for the morph.

Fig. 9: PLUS dataset: IAPMRn results of all template types and morphing approaches
in similar (up) and unsimilar (low) mode, respectively.

The last dataset we consider is the PLUS dataset as shown in Fig. 9. We notice
that these data is most vulnerable to the attacks considered. In similar as well as in
unsimilar template selection mode, IAPMRn of 0.9 - 1.0 is achieved for PC, GF, and
IUWT template generation schemes. MC is still between 0.4 and 0.8 IAPMRn for all



variants and only WLD exhibits some resistance against morphing attacks, still with an
IAPMRn between 0.3 and 0.4 for all settings investigated.

Overall, it is difficult to identify overall trends. MC and WLD template generation
techniques seem to be least subsceptible to the morphing attacks under investigation,
but there is a clear interference between dataset properties and most vulnerable tem-
plate generation scheme. While a best morphing approach is difficult to figure out, the
Alignment approach is often seen as the worst performing one. In general, targeted
template selection to identify the most similar doppelgänger template pays off in most
cases.

4.2 Detecting Morphed Templates

This subsection deals with the vulnerability assessment of the database itself. As the
logical OR operation used in all morphing approaches increases the number of white
pixels, this number could serve as a simple criterion to identify morphed templates. We
consider to following criterion for the number of white pixels (wPixels) with x serving
as variable threshold.

#wPixels ≤ x · StdDev(#wPixels) +Mean(#wPixels)

When applying this criterion with x = 2, the number of false positive morph detec-
tions is low for all template generation schemes (averaged across all datasets, compare
Table 2: 4% - 5%).

MC PC GF IUWT WLD
False positives 0.04 0.04 0.05 0.05 0.05

Table 2: The average probabilities across all datasets that a feature is falsely detected as
morph at a threshold of x = 2.

On the other hand, the correct morph identification rate is very high for all template
generation schemes as displayed in Table 3. For the XOR, Rotation and Falignment
approaches we detect more than 0.96 of all morphs. This shows that we can easily
identify morphs by looking at the number of white pixels. In contrast, morphs that we
generate using the Alignment approach can “only” be identified with a probability of
0.66. This is due to the fact that in this technique, we only fuse the kernel with the input
template which reduces the number of white pixels in the generated morph.

Approach MC PC GF IUWT WLD
XOR 1.00 0.97 0.98 0.97 0.99
Rotation 1.00 0.97 0.98 0.98 0.99
Alignment 0.84 0.55 0.62 0.63 0.68
Full Alignment 1.00 0.93 0.93 0.94 0.98

Table 3: The probabilities across all datasets that a morph is correctly detected at a
threshold of x = 2.

Based on these results, the database maintainer is able to run regular checks across
the database to identify morphed templates of the type discussed. Therefore, the con-
struction of morphed templates needs to be refined in order to mitigate the problems
caused by the highly increased number of white pixels.



5 Conclusion & Future Work
We have investigated the feasibility of creating morphed templates for attacking finger
vein recognition schemes by replacing templates in the database by morphed ones. A
conducted vulnerability analysis reveals that (i) the extent of vulnerability and (ii) the
type of most vulnerable template generation scheme depends on the employed sensor.
We have also found that the similarity of the two templates involved in the morph is
crucial, so a random selection should be avoided. The optimal method how to generate
the morph for a given target template is also found to be sensor dependent. Thus, there
is no general rule for an attacker how to conduct an attack of the described type, but for
most sensor / template generation scheme we were able to identify a morphing scheme
with a significant threat level.

Future work includes the refinement of the morphing techniques to avoid the consid-
erable increase of white pixels (which can be exploited to identify morphed templates
of the type discussed). Also the consideration of other template generation schemes,
including deep-learning based ones, is of importance as the current investigation is re-
stricted to binary template types.
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