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Towards practical joint decoding of binary
Tardos fingerprinting codes

Peter Meerwald and Teddy Furon

Abstract—The class of joint decoder of fingerprinting codes
is of utmost importance in theoretical papers to establish the
concept of fingerprint capacity [1]–[4]. However, no implementa-
tion supporting a large user base is known to date. This article
presents an iterative decoder which is the first attempt towards
practical large-scale joint decoding. The discriminative feature
of the scores benefits on one hand from the side-information of
previously found users, and on the other hand, from recently
introduced universal linear decoders for compound channels [5].
Neither the code construction nor the decoder make assumptions
about the collusion size and strategy, provided it is a memoryless
and fair attack. The extension to incorporate soft outputs
from the watermarking layer is straightforward. An extensive
experimental work benchmarks the very good performance and
offers a clear comparison with previous state-of-the-art decoders.

Index Terms—Traitor tracing, Tardos codes, fingerprinting,
compound channel.

I. INTRODUCTION

TRAITOR tracing or active fingerprinting has witnessed a
flurry of research efforts since the invention of the now

well-celebrated Tardos codes [6]. The codes of G. Tardos are
order-optimal in the sense that the code length m necessary
to fulfill the following requirements (n users, c colluders,
probability of accusing at least one innocent below Pfp) has
the minimum scaling in Ω(c2 log nP−1

fp ).
A first group of articles analyses such probabilistic finger-

printing codes from the viewpoint of information theory. They
define the worst case attack a collusion of size c can produce,
and also the best defense. The main achievement is a saddle
point theorem in the game between the colluders and the
code designer which establishes the concept of fingerprinting
capacity C(c) [1]–[4]. Roughly speaking, for a collusion of
maximum size c, the maximum number of users exponentially
grows with m with an exponent equal to C(c) to guarantee
vanishing probabilities of error asymptotically as the code
length increases.

Our point of view is much more practical and signal
processing oriented. In traitor tracing applications distinct
codewords of m bits have been hidden in distributed copies
with an appropriate watermarking technique. It implies that
we have no choice on m as it depends on the content size and
the watermarking embedding rate. Each embedded codeword
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links a copy of the content to a particular user. The total
number of users may not be known in advance like, for
instance, in a Video-on-Demand application where clients buy
content sequentially. However, at the time a pirated version is
discovered, we know that the content has been distributed to n
users so far. Our goal is to identify some colluders under the
strict requirement that the probability of accusing innocents is
below Pfp. It is clear that we are not in an asymptotic setup
since m and n are fixed. The encoder and the decoder are
not informed of the collusion size and its attack, therefore
there is no clue whether the actual rate R = m−1 log2 n is
indeed below capacity C(c). After reviewing the construction
of Tardos codes and the collusion attack, Sec. II summarizes
important elements of information theory as guidelines for the
design of our decoder. It motivates the use of joint decoding,
which computes a score per subset of users, as opposed to a
single decoder computing a score per user.

A second group of related research works deals with decod-
ing algorithms. As far as a practical implementation of joint
decoding is concerned, the literature is very scarce. E. Amiri
proposes a pair decoder tractable on a short list of suspects [7,
Sec. 5.3]. The idea is proven to be theoretically well grounded
against two colluders. However, the sorting is in terms of
Hamming distance from the pirated sequence, which seems to
be quite an ad hoc choice; no experimental work is conducted.
K. Nuida also proposes a provably secure joint decoder against
three colluders whose runtime is longer than one hour for a
very small setup (n = 1000, m = 180) [8].

For a single as well as a joint decoder, a primary challenge
is to compute scores that are as discriminative as possible.
The earliest decoders proposed in the literature are single
decoders not adapting the score computation to the collusion
strategy [6], [9]. They rely on an invariance property where,
whatever the collusion process under the marking assumption,
the statistics of scores of the innocents and the colluders
are almost fixed and sufficiently discriminative if the code is
long enough. Being inspired by a recent article on compound
channel theory [5], we first propose a generalized linear single
decoder which is more discriminative but at the cost of higher
complexity. A second approach in the literature aims at first
identifying the collusion process, and then at computing more
discriminative scores for this specific attack [10]. However,
the identifiability of the attack is a crucial issue when the
number of colluders is not known. Again, the application
of the concepts from [5] allows us to get inferences about
the attack sufficient for deriving highly discriminative scores
while avoiding a complete identification of the attack channel.
Sec. III sums up these two families of single decoders and the
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way we have improved them.
A further difficulty in traitor tracing schemes is the thresh-

olding of the scores to reliably accuse users who are part of
the collusion. The value of the threshold is easily set when
the statistics of the scores are known, which is the case when
the above-mentioned invariance property holds. However, for
a general scoring function, these statistics depend on the
collusion process which is not known. Section III-C presents
a simple idea: there are plenty of codewords which have not
been distributed to users. Therefore, it is possible to use them
as instantiations of the codeword of an innocent. We propose
to estimate the threshold yielding the required probability of
false alarm with a rare event estimator.

Section IV focuses on the architecture of our joint de-
coder based on three primitives: channel inference, score
computation, and thresholding. Its iterative nature stems from
two ideas. First, the codeword of a newly accused user is
integrated as a side information for the next iterations and
enables more discriminative score computation. This idea was
already implemented for fingerprinting codes based on error
correcting codes [11]. We present a way to implement it for
Tardos codes by conditioning the probabilities used in the
score function. The second idea is joint decoding based on
the channel inference.

A last difficulty is to have a fast implementation of the
accusation algorithm when facing a large-scale user set. A
main advantage of some fingerprinting schemes based on
error-correcting codes is to offer an accusation procedure with
runtime polynomial in m [11], [12]. In comparison, the well-
known Tardos-Škorić single decoder is based on an exhaustive
search which has complexity Ω(m ·n) [6], [9]. Since in theory
n can asymptotically be in the order of 2mR, decoding of
Tardos codes might be intractable. Again, we do not consider
such a theoretical setup, but we pay attention to maintain
an affordable decoding complexity for orders of magnitude
met in practical applications. Compared to prior art of joint
decoding [7], [8], our algorithm considers user subsets of
bigger size, manages large scale setups, and is faster. Its
iterative nature maintains a tractable complexity because users
that are unlikely to be guilty are pruned out at each step.

Section V presents our experimental investigations. The first
part relies on the marking assumption and compares code
lengths with [13]. This reference reaches very small lengths
thanks to a particular choice of Gauss-Legendre distribution,
but assuming the collusion size is known at the Tardos code
construction. It is interesting to see that our decoder obtains
competitive lengths while keeping the original code construc-
tion. The second part uses the soft outputs of a watermarking
decoder as tested in [14] with the Tardos code and, with error
correction code (ECC) based fingerprinting codes, in [15],
[16]. The number of users ranges from 104 to more than
107. This latter impressive setup comes from [16] where the
authors manage such a large number of users thanks to list
decoding of ECC based fingerprinting. As far as we know, our
paper presents for the first time experimental results on such
a large scale for the Tardos code. Soft watermark decoding
achieves tangible performance enhancements contrary to the
conclusions drawn in [14]. Overall, the comparisons to related

works with their exact setup show the benefits of our decoder:
better decoding performance with a controlled probability of
false alarm and an acceptable runtime.

II. TARDOS CODE AND THE COLLUSION MODEL

We briefly review the construction and some well-known
facts about Tardos codes.

A. Construction

The binary code is composed of n codewords of m bits.
The codeword xj = (xj(1), · · · , xj(m))T identifying user
j ∈ U = [n], where [n] := {1, . . . , n}, is composed of m
binary symbols independently drawn at the code construction
s.t. P(xj(i) = 1) = pi, ∀i ∈ [m]. At initialization, the
auxiliary variables {pi}mi=1 are independent and identically
drawn according to distribution f(p) : [0, 1] → R+. This
distribution is a parameter which is public. G. Tardos originally
proposed in [6] fT (p) ∝ 1/

√
p(1− p) for p ∈ [t, 1− t] where

t� 1 is the cutoff parameter. Both the code Ξ = [x1, . . . ,xn]
and the auxiliary sequence p = (p1, . . . , pm)T must be kept
as secret parameters.

B. Collusion attack over code symbols

The collusion attack or collusion channel describes the
way the c colluders C = {j1, . . . , jc} merge their binary
codewords xj1 , . . . ,xjc to forge the binary pirated sequence
y. We restrict our attention to a memoryless multiple access
channel, which is fair in the sense that all colluders participate
equally in the forgery. This assumption is widely used, and
justified theoretically [1, Sec. 3.2] (in terms of capacity, i.e.
asymptotically with the code length) when the secret key is
only shared between encoder and decoder: The colluders know
neither the codeword of any other user, nor the distribution of
the codewords. This is the case for a Tardos code because p
is secret. Moreover, identifying all the colluders is hopeless
(cf. detect-all scenario, see Sec. II-D) if the attack is not fair
because some colluders might be almost idle [1, Lemma 3.2].

This leads to a 2 × (c + 1) probability transition matrix
[P(Y |Φ)] where Φ =

∑
j∈C Xj is the random variable count-

ing the number of ‘1’ symbols the colluders received out of
c symbols. A common parameter of the collusion attack on
binary codes is denoted by the vector θc = (θc(0), . . . , θc(c))

T

with θc(ϕ) = P(Y = 1|Φ = ϕ). The usual working
assumption, so-called marking assumption [17], imposes that
θc(0) = 1 − θc(c) = 0. The set of collusion attacks that c
colluders can lead under the marking assumption is denoted
by Θc:

Θc = {θ ∈ [0, 1]c+1, θ(0) = 1− θ(c) = 0}. (1)

Examples of attacks following this model are given, for
instance, in [10]. The remainder of the article assumes this
collusion model, except for the simulations on real samples
over an additive white Gaussian noise (AWGN) channel which
are based on the extension presented below.
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Fig. 1. Examples of pdf θ7(y′|6) for the two models with σ2
n = 0.25: [top]

two modes (II-See (2)) with (solid) the interleaving attack (θ(ϕ) = ϕ/c)
and (dashed) the coin-flip attack (θ(ϕ) = 1/2 for 0 < ϕ < c) ; (bottom)
one mode (I-See (3)) with (solid) averaging attack (µ(ϕ) = 2c−1ϕ−1) and
(dashed) set to 0 attack (µ(ϕ) = 0 for 0 < ϕ < c).

C. Collusion attack over real samples

The marking assumption is an unrealistic restriction for
traitor tracing with multimedia content as the colluders are
not limited to the copy-and-paste strategy for each symbol
as described in the previous section. They can merge the
samples of their content versions (audio samples, pixels,
DCT coefficients, etc.) in addition to traditional attempts to
compromise the watermark. This may result in erroneously
decoded symbols or erasures from the watermarking layer.
Relaxing the marking assumption leads to two approaches. In
the combined digit model assumed in [18], [19], the watermark
decoder is indeed composed of multiple binary detectors, one
per symbol of the alphabets: for the binary alphabet, both
symbols may be detected in case of a merge. In [14], [15], the
watermark decoder has a single but scalar output y′. In brief,
this soft decision is clearly negative (positive) if symbol ‘0’
(resp. ‘1’) is detected, and around 0 in case of a merge. This
section extends the model of collusion to this latter approach,
replacing the probability transition 2×(c+1) matrix [P(Y |Φ)]
by c+ 1 probability density functions {θc(y′|ϕ)}cϕ=0.

It is challenging if not impossible to exhibit a model
encompassing all the merging attacks while being relevant
for a majority of watermarking techniques. Our approach is
pragmatic. The sequence y′ ∈ Rm is extracted from the pirated
copy such that y′(i) = 2y(i) − 1 if the signal is perfectly
watermarked with binary symbol y(i). To reflect the merging
attack, the colluders forge values z(i) ∈ [−1, 1] and add noise:
y′(i) = z(i) + n(i) with n(i) ∼ N (0, σ2

n). This would be
the case, as sketched in the left part of Fig. 3, for a spread
spectrum watermarking where a symbol is embedded per block
of content with an antipodal (a.k.a. BPSK, Binary Phase Shift
Keying) modulation of a secret carrier [14], [16].

The colluders have two strategies to agree on z. In the first
strategy, they collude according to the marking assumption
(i.e. they copy-and-paste one of their blocks of samples) and
add noise: z ∈ {−1, 1}m and the probability that z = 1 is

given by the components of θc. This gives the following pdf:

θ(II)
c (y′|ϕ) =

(
θc(ϕ)e

− (y′−1)2

2σ2n + (1− θc(ϕ))e
(y′+1)2

2σ2n

)
/
√

2πσ2
n

(2)
Except for ϕ ∈ {0, c}, the pdfs have a priori two modes (hence
the superscript II). This model is parameterized by (θ, σ2

n).
In the second strategy, the colluders select z(i) = µ(ϕ(i)) ∈

[−1, 1] s.t. the pdf is as follows:

θ(I)
c (y′|ϕ) = e

− (y′−µ(ϕ))2

2σ2n /
√

2πσ2
n . (3)

An equivalent of the marking assumption would impose that
µ(0) = −1 and µ(c) = 1. The pdfs have a unique mode (hence
the superscript I). This model is parameterized by (µ, σ2

n).
Fig. 1 gives some examples of such pdfs.

We use these extended models for collusion inference in
Sec. V-B to show how our algorithm can handle the soft
outputs of a watermarking decoder.

D. Accusation
Denote A ⊂ U the set of users accused by the decoder. The

probability of false positive is defined by Pfp = P(A 6⊂ C). In
practice, a major requirement is to control this feature so that
it is lower than a given significance level.

In a detect-one scenario, A is either a singleton, or the
empty set. A good decoder has a low probability of false
negative defined by Pfn = P(A = ∅). In a detect-many
scenario, several users are accused, and a possible figure of
merit is the number of caught colluders: |A ∩ C|. In the
literature, there exists a third scenario, so-called detect-all,
where a false negative happens if at least one colluder is
missed. This article only considers the first two scenarios.

E. Guidelines from information theory
This article does not pretend to make any new theoretical

contribution, but presents some recent elements to stress
guidelines when designing our practical decoder.

A single decoder computes a score per user. It accuses
users whose score is above a threshold (detect-many sce-
nario) or the user with the biggest score above the threshold
(detect-one scenario). Under both scenarios and provided that
the collusion is fair, the performance of such decoders is
theoretically bounded by the achievable rate RS(f,θc) =
I(X;Y |P,θc) = EP∼f [I(X;Y |p,θc)]. A fundamental result
is that, for a given collusion size c, there exists an equilibrium
(f̆c,S , θ̆c,S) to the max-min game between the colluders (who
select θ) and the code designer (who selects f ) as defined by
maxf minθ∈Θc RS(f,θ) in [2, Th. 4].

A joint decoder computes a score per subset of ` ≤ c users
and accuses the users belonging to subsets whose score is
above a threshold or only the most likely guilty amongst these
users. Under both scenarios and provided that the collusion is
fair, the performance of such decoders is theoretically bounded
by the achievable rate RJ(f,θc) = `−1I(Φ;Y |P,θc) =
`−1EP∼f [I(Φ;Y |p,θc)]. The random variable Φ denotes the
sum of the subset user symbols. Moreover, for a given collu-
sion size c, there also exists an equilibrium (f̆c,J , θ̆c,J) to the
max-min game maxf minθ∈Θc RJ(f,θ) [2, Th. 4].
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Yet, the code designer needs to bet on a collusion size
c′ in order to use the optimal distribution f̆c′,S (or f̆c′,J
if the decoder is joint). Asymptotically, as c → +∞, both
minθ RJ(fT ,θ) and minθ RS(fT ,θ) quickly approach the
equilibrium value of the respective max-min game [2, Fig. 2].
Y.-W. Huang and P. Moulin proved f̆c,J converges to fT , the
distribution originally proposed by G. Tardos [2, Cor. 7].

Despite the division by ` in the expression of RJ(f,θ),
it appears that RS(f,θ) ≤ RJ(f,θ), ∀θ [1, Eq. (3.4)]. This
tells us that a joint decoder is theoretically more powerful
than a single decoder. However, a joint decoder needs to
compute Ω(n`) scores since there are

(
n
`

)
subsets of size

`. This complexity is absolutely intractable for large-scale
applications even for a small `. This explains why, so far,
joint decoders were only considered theoretically to derive
fingerprinting capacity. Our idea is that there is no need
to consider all these subsets since a vast majority is only
composed of innocent users. Our decoder iteratively prunes
out users deemed as innocents and considers the subsets over
the small set of remaining suspects.

This iterative strategy results in a decoder which is a mix
of single and joint decoding. Unfortunately, it prevents us
from taking advantage of the game theory theorems mentioned
above. We cannot find the optimal distribution f and the worst
collusion attack against our decoder. Nevertheless, our decoder
works with any distribution f under the conditions stated in
Sec. III. For all these reasons, the experiments of Sec. V are
done with the most common Tardos distribution fT .

M. Fernandez and M. Soriano proposed an iterative accu-
sation process of an error correcting code based fingerprinting
scheme [11]. Each iteration takes advantage of the codewords
of colluders already identified in the previous iterations. The
same idea is possible with Tardos fingerprinting code. This
is justified by the fact that the side information ∆, defined
as the random variable sum of the already identified colluder
symbols, increases the mutual information: I(Φ;Y |P,θc) ≤
I(Φ;Y |P,θc,∆). Indeed, side information helps more than
joint decoding as proved by [1, Eq. (3.3)].

The above guidelines can be summarized as follows: use
the continuous Tardos distribution fT for code construction,
integrate the codewords of already identified colluders as side
information, and finally use a joint decoder on a short list of
suspects.

III. A SINGLE DECODER BASED ON COMPOUND CHANNEL
THEORY AND RARE EVENT ANALYSIS

This section first reviews some single decoders and presents
new decoders based on compound channel theory and rare
event analysis. The first difficulty is to compute a score per
user such that the colluders are statistically well separated from
the innocents scores. The second difficulty is to set a practical
threshold such that the probability of false positive is under
control.

Detection theory tells us that the score given by the Log-
Likelihood Ratio (LLR):

sj =

m∑

i=1

log
P(y(i)|xj(i),θc)

P(y(i)|θc)
, (4)

is optimally discriminative in the Neyman-Pearson sense to
decide the guiltiness of user j. For the sake of a lighter expres-
sion, we omit the dependence of the involved probabilities on
p(i) (see their computation in Sub. IV-B). Yet, the LLR needs
the knowledge of the true collusion attack θc which prevents
the use of this optimal single decoder in practical settings.
Some papers proposed a so-called ‘Learn and Match’ strategy
using the LLR score tuned on an estimation θ̂ of the attack
channel [10]. Unfortunately, a lack of identifiability obstructs
a direct estimation from (y,p) (see Sec. III-B). Indeed, the
estimation is sound only if c is known, and if the number of
different values taken by p is bigger than1 or equal to c − 1.
This is because P(Y = 1|θ, p) is a polynomial in p of degree
at most c (see (16) with u = 0 and v = 0) going from point
(0, 0) to (1, 1), and we need c − 1 more points to uniquely
identify this polynomial. To overcome this lack of information
about c, an Expectation-Maximization (E.-M.) approach has
been proposed in [10]. Yet, it is not satisfactory since it does
not scale well with the number of users. Moreover, the setting
of the threshold was not addressed.

On the other hand, there are decoders that do not adapt their
score computation to the collusion. This is the case of the score
computation originally proposed by G. Tardos [6], and later
on improved by B. Škorić et al. [9]. It relies on an invariance
property: the statistics of the scores, up to the second order,
do not depend on the collusion attack channel θ, but only
on the collusion size c [20]. Thanks to this invariance w.r.t.
the collusion attack, there exists a threshold τ guaranteeing a
probability of false positive below Pfp while keeping the false
negative away from 1 provided that the code is long enough,
i.e. m = Ω(c2 log nP−1

fp ). However, there is a price to pay:
the scores are clearly less discriminative than the LLR.

Some theoretical papers [21, Sec. V] [1, Sec. 5.2] promote
another criterion, so-called ‘universality’, for the design of de-
coders. The performance (usually evaluated as the achievable
rate or the error exponent) when facing a collusion channel
θc should not be lower than the performance against the
worst attack θ?c . In a sense, it sends a warning to the ‘Learn
and Match’ strategy. Suppose that θc 6= θ?c and that, for
some reasons, the estimation of the collusion attack is of
poor quality. In any case, a mismatch between θ̂ and θc
should not ruin the performance of the decoder to the point
it is even lower than what is achievable under the worst
attack θ?c . The above cited references [1], [21] recommend
the single universal decoder based on the empirical mutual
information I(x;y|p) (or empirical equivocation for joint
decoder). The setting of the threshold depends on the desired
error exponent of the false positive rate. Therefore, it is valid
only asymptotically.

To summarize, there have been two approaches: adaptation
or non-adaptation to the collusion process. The first class is
not very well grounded since the identifiability of the collusion
attack is an issue and the impact of a mismatch has not been
studied. The second approach is more reliable, but with a loss
of discrimination power compared to the optimal LLR. The

1This is the case in this article since we opt for the continuous Tardos
distribution fT .
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next sections present two new decoders belonging to both
approaches based on the compound channel theory.

A. Some elements on compound channels
Recently, in the setup of digital communication through

compound channels, E. Abbe and L. Zheng [5] proposed
universal decoders which are linear, i.e. in essence very simple.
This section summarizes this theory and the next one proposes
two applications for Tardos single decoders.

A compound channel Ψ is a set of channels, here dis-
crete memoryless channels X ∈ X → Y ∈ Y defined
by their probability transition matrix Wψ = [P(Y |X,ψ)]
parameterized by ψ ∈ Ψ. The encoder shares a code book
Ξ = {xj}nj=1 ∈ Xm×n with the decoder. Its construction
is assumed to be a random code realization from a provably
good mass distribution PX . After receiving a channel output
y ∈ Ym, the decoder computes a score per codeword xj ,
j ∈ [n], and yields the message associated with the codeword
with the biggest score. The decoder is linear if the score has
the following structure:

sj =

m∑

i=1

d(xj(i), y(i)), (5)

with d(·, ·) : X × Y → R. For instance, score (4), so-called
MAP decoder in digital communications [5], is linear with
d(x, y) = log(P(y|x, ψ)/P(y|ψ)). However, in the compound
channel setup, the decoder does not know through which
channel of Ψ the codeword has been transmitted, and therefore
it cannot rely on the MAP.

We are especially interested in two results. First, if Ψ is one-
sided with respect to the input distribution (see Def. 1 below),
then the MAP decoder tuned on the worst channel Wψ? is
a linear universal decoder [5, Lemma 5]. If Ψ =

⋃K
k=1 Ψk

with K finite and Ψk one-sided w.r.t. the input distribution
∀k ∈ [K], then the following generalized linear decoder is
universal [5, Th. 1] where the score of a codeword is the
maximum of the K MAP scores tuned on the worst channel
Wψ?k

of each Ψk:

sj = max
k∈[K]

m∑

i=1

log
P(y(i)|xj(i), ψ?k)

P(y(i)|ψ?k)
. (6)

Definition 1 (One-sided set, Def. 3 of [5]): A set Ψ is one-
sided with respect to an input distribution PX if
• the following minimizer is unique:

ψ? = arg min
ψ∈cl(Ψ)

I(PX , ψ), (7)

with I(PX , ψ) the mutual information I(X;Y ) with
(X,Y ) ∼ PX ◦ Wψ (where P ◦ W denotes the joint
distribution with P the distribution of X and W the
conditional distribution), and cl(Ψ) the closure of Ψ,

• and ∀ψ ∈ Ψ,

D(PX ◦Wψ||PX × PY,ψ?) ≥D(PX ◦Wψ||PX ◦Wψ?)+

D(PX ◦Wψ? ||PX × PY,ψ?).
(8)

with D(·||·) the Kullback-Leibler distance, PY,ψ the
marginal of Y induced by PX ◦ Wψ , and PX × PY,ψ
the product of the marginals.

B. Application to single Tardos decoders

Contrary to the code construction phase, it is less critical at
the decoding side to presume that the real collusion size c is
less or equal to a given parameter cmax. This parameter can be
set to the largest number of colluders the fingerprinting code
can handle with a reasonable error probability knowing (m,n).
Another argument is that this assumption is not definitive. If
the decoding fails because the assumption does not hold true,
nothing prevents us to re-launch decoding with a bigger cmax.
Let us assume c ≤ cmax in the sequel.

1) Non-adaption to the collusion process: A first guideline
inspired from the work [5] is straightforward: The collusion
channel belongs to the set

⋃cmax

k=2 Θk as defined in (1), and
thanks to [5, Lemma 4] each convex set Θk is one-sided w.r.t.
any distribution f . According to [5, Th. 1], the decoder should
then be a generalized linear decoder:

sj = max
k∈[2,...,cmax]

m∑

i=1

log
P(y(i)|xj(i),θ?k,f )

P(y(i)|θ?k,f )
, (9)

where θ?k,f = arg minΘk RS(f,θ), ∀k ∈ [2, . . . , cmax]. This
decoder does not adapt its score computation to the collusion
attack.

2) Adaption to the collusion process: The second idea
inspired from the work [5] is more involved as the lack of
identifiability turns to our advantage. The true collusion chan-
nel θc has generated data y distributed as P(y|p,θc). Let us
define the class E(θc) = {θ̃|P(y|p, θ̃) = P(y|p,θc), ∀(y, p) ∈
{0, 1}× [0, 1]}. From [22, Prop. 3], we know that E(θc) is not
restricted to the singleton {θc} because for any c′ > c there
exists one θ̃c′ ∈ E(θc). This is true especially for c′ = cmax.
Asymptotically with the code length, the consistent Maximum
Likelihood Estimator (MLE) parameterized on cmax, as defined
in (18), yields an estimation θ̂cmax ≈ θ̃cmax ∈ E(θc) with
increasing accuracy. This is not an estimation of the true
collusion attack because c 6= cmax a priori. Therefore, we
prefer to refer to θ̂cmax as a collusion inference, and the scoring
uses this inference as follows:

sj =
m∑

i=1

log
P(y(i)|xj(i), θ̂cmax)

P(y(i)|θ̂cmax)
. (10)

Suppose that the MLE tuned on cmax provides a perfect
inference θ̂cmax = θ̃cmax , we then succeed to restrict the
compound channel to the discrete set Ecmax(θc) which we
define as the restriction of E(θc) to collusions of size c̃ ≤
cmax. Appendix A shows that Ecmax(θc) is one-sided w.r.t.
f = fT , and its worst attack is indeed θ̃cmax . Lemma 5
of [5] justifies the use of the MAP decoder (4) tuned on
θ̂cmax . Its application leads to a more efficient decoder since
RS(fT , θ̃cmax) ≥ RS(fT ,θ

?
cmax,fT ). This decoder pertains to

the approach based on score adaptation, with the noticeable
advantages: it is better theoretically grounded and it is far less
complex than the iterative E.-M. decoder of [10].

Figure 2 illustrates the Detection Error Trade-off (DET)
per user for the single decoders discussed so far with m =
512 and c = 5 colluders performing worst-case (i.e. min-
imizing RS(fT ,θ) over Θ5) and majority attack (θ5,maj =
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Fig. 2. DET plot for several decoders; m = 512, c = 5, cmax = 8.
Single (MI) is the decoder based on empirical mutual information [1], Single
(Compound) relates to (9), Single (MAP) is (4), Single is the LLR on
θ̂cmax (10), and Symm. Tardos is the symmetric version of the G. Tardos
scores proposed by B. Škorić et al. in [9].

(0, 0, 0, 1, 1, 1)T ). For this figure, the false positive α(τ) and
the false negative β(τ) are defined per user as follows:

α(τ) = P(s(xinn,y,p) > τ), (11)
β(τ) = P(s(xj1 ,y,p) ≤ τ), (12)

where xinn is a random variable denoting the codeword of an
innocent user and xj1 , the codeword of the first colluder. The
single decoder is tuned on the collusion inference θ̂cmax (with
cmax = 8) and performs almost as good as the MAP decoder
having knowledge of θ. The DET of the symmetric Tardos
score is invariant w.r.t. the collusion attack. The generalized
linear decoder of (9) denoted compound takes little advantage
of the fact that the majority attack is much milder than the
worst attack. For a fair comparison, the single decoder based
on the empirical mutual information [1] assumes a Tardos
distribution uniformly quantized to 10 bins; better results (yet
still below the single decoder) can be obtained when tuned to
the optimal discrete distribution for c = 5 colluders [23].

The similarities between compound channel and fingerprint-
ing has been our main inspiration, however some differences
prevent any claim of optimality. First, in the compound
channel problem, there is a unique codeword that has been
transmitted, whereas in fingerprinting, y is forged from c
codewords like in a multiple access channel. Therefore, the
derived single decoders are provably good for tracing a given
colluder (detect-one scenario), but they might not be the best
when looking for more colluders (detect-many scenario). The
second difference is that the decoder should sometimes refuse
to accuse any user to reduce the possibility of falsely accusing
innocent users. The setting of a threshold is clearly missing
for the moment.

C. Setting the threshold with a rare event analysis
This section explains how we set a threshold τ in accordance

with the required Pfp thanks to a rare event analysis. Our ap-
proach is very different than [21] [1] [3] [6] where a theoretical

development either finds a general threshold suitable when
facing a collusion of size c, or equivalently, where it claims
a reliable decision when the rate is below the capacity which
depends on c. Simone and Škorić recently made a precise
analysis of the pdf of the score of an innocent user [24], but
it needs the collusion attack channel θc. Neither c nor θc is
needed in our threshold estimation, but it only holds for a given
couple (p,y) and a known n. Once these are fixed, the score
sj = s(xj ,y,p) is a deterministic function from {0, 1}m to
R. Since the codewords of the innocent users are i.i.d. and
c� n, we have:

Pfp = 1− (1− P(s(xinn,y,p) > τ))n−c

≈ n · P(s(xinn,y,p) > τ).
(13)

The number of possible codewords can be evaluated as the
number of typical sequences, i.e. in the order of 2mEP∼f [hb(p)],
with hb(p) the entropy in bits of a Bernoulli random variable
B(p). EP∼fT [hb(p)] ≈ 0.557 bits, which leads to a far bigger
number of typical sequences than n (say m ≥ 300 and n ≤
108 in practice). This shows that plenty of codewords have
not been created when a pirate copy is found. Therefore, we
consider them as occurrences of xinn since we are sure that
they have not participated in the forgery of y. The idea is
then to estimate τ s.t. P(s(xinn,y,p) > τ) = n−1Pfp with,
for instance, a Monte Carlo simulation with newly created
codewords.

The difficulty lies in the order of magnitude. Some typical
requirements are n ≈ 106 and Pfp = 10−4, hence an
estimation of τ corresponding to a probability as small as
π = 10−10. This is not tractable with a basic Monte Carlo on
a regular computer because it requires O(π−1) runs. However,
the new estimator based on rare event analysis proposed in [25]
performs remarkably fast within this range of magnitude. It
produces τ̂ and a C-% confidence interval2 [τ−, τ+] with only
O(log(π−1)) runs. In our decoder, we compare the scores to
τ+ (i.e. a pessimistic estimate of τ ) to ensure a total false
positive probability lower than Pfp. Last but not least, this
approach works for any deterministic scoring function s(·),
and is also applied to joint decoding in Sect. IV-C.

IV. ITERATIVE, JOINT DECODING ALGORITHM

This section extends the single decoder based on the collu-
sion inference θcmax towards joint decoding, according to the
guidelines of Sec. II-E. Preliminary results about these key
ideas were first presented in [26] and [27]. The description
below makes references to the lines of the pseudo code
of Algorithm 1.

A. Architecture

The first principle is to iterate the score computation and
include users accused in previous iterations as side-information
to build a more discriminative test. Let USI = ∅ denote the
initially empty set of accused users (line 1). In each iteration
we aim at identifying a (possibly empty) set of users A
(lines 8 & 20) and then update USI with A (line 24).

2In practice, we set C = 95, i.e. we are 95-% sure that the true τ lies in
this interval.
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Second, we additionally compute scores for subsets of t
users of U \ USI, t ≤ cmax (line 13). There are

(|U\USI|
t

)
such

subsets. As n is large, enumerating and computing a score for
each subset is intractable even for small t. The idea here is
to find a restricted set U (t) ⊆ U \ USI of n(t) = |U (t)| users
(line 11) that are the most likely to be guilty and to keep
p(t) =

(
n(t)

t

)
approximately constant from one iteration to

another and within our computation resources. We gradually
reduce n(t) by pruning out users who are unlikely to have
taken part in the collusion when going from single (t = 1)
decoding, to pair (t = 2) decoding, etc. If n(t) = O(n1/t),
then score computation of t-subsets over the restricted user set
is within O(n) just like for the single decoder. By abuse of
notation,

(U(t)

t

)
denotes the set of all t-subsets of U (t) (line 13).

Initially, the single decoder computes the score of all
users (line 6) and accuses those whose score is above the
estimated threshold τ+ (line 8). If this happens, these users
are included in USI (line 24), and the single decoder restarts by
better estimating the collusion inference and computing more
discriminative scores thanks to the side-information. If nobody
is accused, we rank the users according to their ‘single’ score,
i.e. the top-ranked user is most likely to be a colluder, and only
the n(2) first users are included in U (2). This list of suspects
is passed to the joint decoder for t = 2, i.e. a pair decoder.

The joint decoder produces a new list of scores computed
from subsets of t users (line 13), which – according to
theoretical results [1], [3] – are more discriminative as t
increases. Yet, the accusation and the pruning operations at
this stage are more involved than with the single decoder.
Denote T � ⊆ U (t) the t-subset of users with the highest score
(line 15). If this score is above the threshold, the joint decoder
tries to accuse the most likely colluder within T � (lines 17–21
– see Sect. IV-C). Therefore at most one user is accused at
this step (contrary to the single decoder, which may accuse
more than one user). If this happens, USI is updated (line 24),
and the single decoder restarts taking into account this new
side-information. If no accusation can be made by the joint t-
subset decoder, we generate a new and shorter list of suspects
U (t+1) based on the ranking of joint scores (line 11) that is fed
to the subsequent (t+1) joint decoding stage (see Sect. IV-C).

In the detect-one scenario, the algorithm stops after the first
accusation. We restrict the subset size to t ≤ tmax, with tmax =
5. This is not a severe limitation as for moderately large c, the
decoding performance advantage of the joint decoder quickly
vanishes [1]. In the detect-many scenario, iteration stops when
|USI| ≥ cmax or t reaches min(tmax, cmax−|USI|) and no further
accusation can be made. The set USI then contains the user
indices to be accused. Alg. 1 gives the architecture of the
accusation process for the catch-many scenario.

The next sections describe the score computation, the prun-
ing and the accusation, and the inference of the collusion
process in more detail.

B. Score computation

This section extends the scoring (10) of the single decoder
to joint decoding. Denote by ΞE the set of codewords of the
users of set E . For a t-subset T , the accusation is formulated

Algorithm 1 Iterative Joint Tardos Decoder.

Require: y, Ξ, p, cmax, tmax ≤ cmax, n(t), Pfp

1: U ← {j|1 ≤ j ≤ n}, USI ← ∅
2: repeat
3: t← 1
4: θ̂cmax ← infer(y,p,USI, cmax)
5: W← weights(y,p, θ̂cmax ,USI)
6: s← scores(U \ USI,Ξ,W)
7: τ+ ← threshold(p,W, Pfp, n, t)
8: A ← {j ∈ U \ USI|sj > τ+}
9: while A = ∅ and t < min(tmax, cmax − |USI|) do

10: t← t+ 1
11: U (t) ← top(s,U \ USI, n(t))
12: W← weights(y,p, θ̂cmax ,USI)
13: s← scores(

(U(t)

t

)
,Ξ,W)

14: τ+ ← threshold(p,W, Pfp, n, t)
15: T � ← arg max

T ⊂U(t),|T |=t
sT

16: if sT � > τ+ then
17: for all j ∈ T � and while A = ∅ do
18: W← weights(y,p, θ̂cmax ,USI ∪ (T � \ {j}))
19: τ+′ ← threshold(p,W, Pfp, n, 1)
20: if score({j},Ξ,W) > τ+′ then A ← {j}
21: end for
22: end if
23: end while
24: USI ← USI ∪ A
25: until A = ∅ or |USI| ≥ cmax

26: return USI

as a hypothesis test based on the observations (ΞT ,y,p) and
on the side-information USI to decide between H0 (all j ∈
T are innocent) and H1 (all j ∈ T are guilty). The joint
score of subset T , sT = s(ΞT ,y,p,ΞUSI), is just the LLR
tuned on the inference θ̂cmax of the collusion process. This
description encompasses single scores (10) for t = 1 (lines 6
& 20) and joint scores for t > 1 (line 13). In the latter case,
the alternative hypothesis H1 should indeed be: there is at
least one j ∈ T who is guilty. But this composite hypothesis
test has a complexity in O(2t) per t-subset. Our approach is
suboptimal for t > 1 but less complex.

The sequences p, y and the codewords of the codebook Ξ
are composed of independent random variables thanks to the
code construction and the memoryless nature of the collusion.
Moreover, the collusion only depends on the number of ‘1’
symbols present in the codewords of a subset. Denote by ϕ
and δ the accumulated codewords corresponding to T and
USI: ϕ =

∑
j∈T xj and δ =

∑
j∈USI xj . We have ∀i ∈ [m],

0 ≤ ϕ(i) ≤ t and 0 ≤ δ(i) ≤ nSI, where nSI = |USI| . Thanks
to the linear structure of the decoder, the score for a subset T
of t users is simply:

sT =
m∑

i=1

W (ϕ(i), i), (14)

where W (j, i) is the entry in row j and column i of a (t +
1) ×m weight matrix W which is pre-computed (procedure
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weights() in Alg. 1) from (y,p) taking into account the side
information USI so that ∀(ϕ, i) ∈ {0, . . . , t} × {1, . . . ,m}:

W (ϕ, i) = log
P(y(i)|(ϕ, t), (δ(i), nSI), p(i), θ̂cmax)

P(y(i)|(δ(i), nSI), p(i), θ̂cmax)
. (15)

For indices s.t. y(i) = 1, both the numerator and the denomi-
nator share a generic formula, P (ϕ(i)+δ(i), t+nSI, p(i), θ̂cmax)
and P (δ(i), nSI, p(i), θ̂cmax) respectively, with

P (u, v, p, θ̂cmax) =

cmax−v+u∑

k=u

(
θ̂cmax(k)·

(
cmax − v
k − u

)
pk−u(1− p)cmax−v−k+u

)
.

(16)
In words, this expression gives the probability that y = 1
knowing that the symbol ‘1’ has been distributed to users
with probability p, the collusion model θ̂cmax , and the identity
of v colluders who have u symbols ‘1’ and v − u symbols
‘0’. For indices s.t. y(i) = 0 in (15), the numerator and the
denominator need to be ‘mirrored’: (P → 1− P ).

At iterations based on the single decoder (lines 6 & 20), t =
1 and ϕ = xj for user j. If nobody has been deemed guilty
so far, then δ(i) = nSI = 0, ∀i ∈ [m]. This score is defined if
t+nSI ≤ cmax. Therefore, for a given size of side-information,
we cannot conceive a score for subsets of size bigger than
cmax − nSI. This implies that in the detect-many scenario, the
maximal number of iterations depends on how fast USI grows.

The procedure scores() in Alg. 1 outputs a list of scores
given a set of subsets of t users (which is the set of users if
t = 1 for single decoding), the code matrix and the weight
matrix W. We assume there is a deterministic way to browse
all the t-subsets; in practice, this is done by the revolving door
procedure [27].

C. Ranking users and accusation

In order to built the set U (t), we need to rank the users
based on the previous scores. We record the highest score for
each user:

sj = max
T :j∈T

sT . (17)

This step is not needed if the scores come from a single
decoder. The procedure top() (line 11) ranks users according
to their highest subset score and prunes the suspect list to the
first n(t) users.

Suppose Tinn is a t-subset composed of innocent users.
Using rare event analysis, τ+ is a pessimistic estimation of τ
(see Sect. III-C) s.t. P(s(ΞTinn ,y,p,ΞUSI) > τ+) ≤

(
n
t

)−1
Pfp.

This is the procedure threshold(p,W, Pfp, n, t) applied
with t = 1 (lines 7 & 19) or t ≥ 1 (line 14). Let T � denote
the t-subset with the highest score (line 15). If sT � > τ+,
then T � contains at least one colluder with a high probability.
This holds for any scoring function, and especially with the
one explained in Sect. IV-B even if it is not optimal.

We accuse at most one user in T �. We compute the
following single score s(xj ,y,p,ΞUSI∪(T �\{j})), and we
accuse user j if it is bigger than τ+′, with τ+′ s.t.
P(s(xinn,y,p,ΞUSI∪(T �\{j})) > τ+′) ≤ n−1Pfp (line 19).
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Fig. 3. Attack channel and collusion model inference.

This method is suggested in [1, Sec. 5.3]. The order in which
we screen the users of T � has little importance. In practice,
we focus on the users appearing more frequently in the highest
subsets of (17).

D. Inference of the collusion process

The MLE infers about the collusion process (line 4):

θ̂cmax = arg max
θ∈Θcmax

logP(y|p,USI,θ). (18)

Whenever a user is deemed guilty, the user is added to side-
information and we re-run the parameter estimation to refine
the collusion inference. Our soft decision decoding method
resorts to the noise-aware collusion models (2) and (3) and
sets

θ̂cmax = arg max
θ∈{θ̂(II)

cmax
,θ̂

(I)
cmax
}
P(y′|p,USI,θ). (19)

This is illustrated in the right part of Fig. 3. Notice that models
I and II share the same number of parameters, therefore,
there is no risk of over-fitting. Replacing (18) by (19) in the
collusion inference step is the only change to the decoding
algorithms we make to handle collusion attacks over real
samples.

V. EXPERIMENTAL RESULTS

We have implemented the Tardos decoders in C++3. Single
and joint score computation is implemented efficiently using
pre-computed lookup tables, cf. (14) and (15), and aggregation
techniques described in [26]. For a code length of m = 1024
more than 106 single and about 105 joint scores, respectively,
can be computed per second on a single core of a regular
Intel Core2 2.6 GHz CPU. To control the runtime, the joint
decoders are confined to 5-subset decoding (tmax = 5) and
around p(t) ≈ 4.5 · 106 computed subsets per joint decoding
stage. An iterative decoding experiment can be executed on a
PC within a couple of minutes, given enough memory, see
[27] for details. To experimentally verify the false-positive
rate controlled by rare-event analysis, up to 3 · 104 tests per
parameter setting have been performed on a cluster of PCs.

First, we compare the performance of the proposed decoders
under marking assumption. Finally, we lift this unrealistic
restriction and turn to a more practical assessment using soft-
decision decoding.

Unless explicitly noted, the terms single and joint de-
coder refer to the decoders conditioned on the inference of

3Source code is available at http://www.irisa.fr/texmex/people/furon/src.
html.
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Fig. 4. Code length vs. Pe for n = 106 users and different number of
colluders performing worst-case attack against a single decoder; cmax = 8.

the collusion process θ̂cmax , cf. (10) and (14). Further, we
consider the MAP decoders assuming knowledge of θc and
the compound channel decoder, cf. (9), tuned on the worst-
case attack θ?k,fT , ∀k ∈ [2, . . . , cmax]. As a baseline for a
performance comparison, we always include symmetric Tardos
score computation [9] with a threshold controlled by rare-event
analysis (see Sec. III-C).

A. Decoding performance under marking assumption

1) Detect-one scenario: Here the aim is to catch at most
one colluder – this is the tracing scenario most commonly
considered in the literature. We compare our single and
joint decoder performance against the results provided by
Nuida et al. [13] (which are the best as far as we know) and,
as a second reference, the symmetric Tardos decoder.

The experimental setup considers n = 106 users and
c ∈ {2, 3, 4, 6, 8} colluders performing worst-case attack [22]
against a single decoder. In Fig. 4, we plot the empirical
probability of error Pe = Pfp + Pfn obtained by running
104 experiments for each setting versus the code length m.
The false-positive error is controlled by thresholding based
on rare-event simulation, Pfp = 10−3, which is confirmed
experimentally. Evidently, for a given probability of error, the
joint decoder succeeds in reducing the required code length
over the single decoder, especially for larger collusions.

Table I compares the code length to obtain an error rate of
Pe = 10−3 for our proposed Tardos decoders and the symmet-
ric Tardos decoder with the results reported by Nuida et al. [13,
Table 4] under marking assumption. Except for c = 2, the
proposed decoders can substantially reduce the required code
length and the joint decoder improves the results of the single
decoder. Note that Nuida’s results give analytic code length
assuming a particular number of colluders for constructing the
code but the collusion attack is arbitrary (i.e. not necessary
fair) whereas our results are experimental estimates based
on worst-case attack against a single decoder and without
knowing c at the code construction. Results with c known
are provided in [27] and show a slightly better performance:
the required code length of the joint decoder is then slightly
shorter than Nuida’s code in case c = 2.

2) Detect-many scenario: We now consider the more realis-
tic case where the code length m is fixed and the false-negative

TABLE I
CODE LENGTH COMPARISON FOR THE DETECT-ONE SCENARIO: n = 106 ,

WORST-CASE ATTACK AGAINST A SINGLE DECODER, Pe = 10−3 .

Colluders
(c)

Nuida et al.
[13]

Symm.
Tardos

Proposed (cmax = 8)
Single Joint

2 253 ∼ 416 ∼ 368 ∼ 304
3 877 ∼ 864 ∼ 776 ∼ 584
4 1454 ∼ 1472 ∼ 1152 ∼ 904
6 3640 ∼ 2944 ∼ 2304 ∼ 1616
8 6815 ∼ 5248 ∼ 3712 ∼ 2688

error rate is only a minor concern4 while the false-positive
probability is critical to avoid an accusation of an innocent.
The aim is to identify as many colluders as possible.

Figures 5(a)–5(d) show the average number of identified
colluders by different decoding approaches. The experimental
setup considers n = 106 users, code length m = 2048,
and several collusion attacks (worst-case, i.e. minimizing the
achievable rate of a single or joint decoder, interleaving and
majority which is a rather mild attack) carried out by two to
eight colluders. The global probability of a false positive error
is fixed to Pfp = 10−3.

As expected, the MAP single decoder knowing θc provides
the best decoding performance amongst the single decoders,
yet is unobtainable in practice. The symmetric Tardos decoder
performs poorly but evenly against all attacks; the single
decoder based on the compound channel (9) improves the
results only slightly.

The joint decoders consistently achieve to identify most
colluders – with a dramatic margin in case the traitors choose
the worst-case attack against a single decoder. This attack
bothers the very first step of our decoder, but as soon as some
side information is available or a joint decoder is used, this is
no longer the worst case attack. Finding the worst case attack
against our iterative decoder is indeed difficult. A good guess
is the interleaving attack which is asymptotically the worst
case against the joint decoder [2]. The experiments show that
it reduces the performance of the joint decoders substantially
for large c.

The decoder based on the inference θ̂cmax and the true MAP
are different when c is lower than cmax. However, this is not a
great concern in practice for a fixed m: for small c, the code
is long enough to face the collusion even if the score is less
discriminative than the ideal MAP; for big c the score of our
decoder gets closer to the ideal MAP.

B. Decoding performance of the soft decoder

We assess the performance of the soft decision decoders
proposed in Sec. II-C in two tracing scenarios: (i) Kuribayashi
considers in [14] n = 104 users and code length m = 104,
(ii) a large-scale setup with 33 554 432 users and m = 7 440
where Jourdas and Moulin [16] provide results for their
high-rate random-like fingerprinting code under averaging and
interleaving attack.

In Fig. 6, we compare the average number of identified col-
luders for the single and joint decoder using different estimates

4A tracing schemes rightly accusing a colluder half of the time might be
enough to dissuade dishonest users.
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(b) Worst-Case Attack against Joint Decoder
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Fig. 5. Decoder comparison in the detect-many tracing scenario: n = 106,
m = 2048, Pfp = 10−3, cmax = 8. (Best viewed in color.)

of the collusion process. A simple approach, termed hard
decision decoding in the sequel, first thresholds y′ (to quantize
y′(i) into 0 if y′(i) < 0 and 1 otherwise), and then employs the
collusion process inference θ̂cmax of (18) on the hard outputs.
The term soft relates to the noise-aware decoders relying on
θ̂

(I)

cmax
or θ̂

(II)

cmax
chosen adaptively based on the likelihood of

the two models (see (19)). All plots also show the results for
the (hard-thresholding) symmetric Tardos decoder. The false-
positive rate is set to 10−4. Extensive experiments (3 · 104

test runs) have been carried out to validate the accusation
threshold obtained by rare-event simulation. As expected, soft
decoding offers substantial gains in decoding performance.
The margin between the single and joint decoders depends
on the collusion strategy. Dramatic improvements can be seen
when the collusion chooses the worst-case attack against a
single decoder, cf. Fig. 6(a). On the other hand, the gain is
negligible when averaging is performed.

Note that the attacks in (a)–(c) pertain to the copy-and paste
attacks while Fig. 6(d) shows the linear averaging attack.

Comparison with the results provided in [14] for the ma-
jority attack is difficult: (i) they were obtained for Nuida’s
discrete code construction [13] tuned on c = 7 colluders,
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Fig. 6. Kuribayashi setup: n = 104, m = 104, Pfp = 10−4, c = 10,
cmax = 20; worst-case, interleaving, majority and averaging attack followed
by AWGN (−4, . . . , 10 dB SNR).

and (ii) the false-positive rate of [14] does not seem to be
under control for the symmetric Tardos code. We suggest
to use the hard symmetric Tardos decoder [9] as a baseline
for performance comparison. By replacing the accusation
thresholds proposed in [14] with a rare-event simulation, we
are able to fix the false-alarm rate in case of the symmetric
Tardos code. Furthermore, the decoding results given in [14]
for the discrete variant of the fingerprinting code (i.e. Nuida’s
construction) could be significantly improved by rare-event
simulation based thresholding. Contrary to the claim of [14],
soft decision decoding always provides a performance benefit
over the hard decoders.

In Fig. 7 we illustrate the decoding performance when
dealing with a large user base. We consider averaging and
interleaving attacks by c = 2, . . . , 12 and c = 2, . . . , 8
colluders (cmax = 12 and cmax = 8, respectively) followed
by AWGN with variance σ2

n = 1. The global false-positive
rate is set to 10−3. The benefit of the soft decoding approach
is clearly evident. Joint decoding provides only a very limited
increase in the number of identified colluders. For comparison,
Jourdas & Moulin indicate an error rate of Pe = 0.0074 for
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Fig. 7. Jourdas & Moulin setup: n = 33 554 432, m = 7440, Pfp = 10−3,
averaging and interleaving attack followed by AWGN (0 dB SNR).

c = 10 colluders in the first, and Pe = 0.004 for c = 5
colluders in the second setting for a detect-one scenario [16].

In [28], Pfp = 0.0016 and Pfn = 0.044 are given for the first
experiment (Fig. 7(a)) by introducing a threshold to control
the false-positive rate. Our soft joint decoder achieves a Pfn =
0.046 for Pfp = 10−3 (for c = 10 colluders), catching 2.6
traitors on average.

In the second experiment (see Fig. 7(b)), our joint decoder
compares more favorably: with the given code length, all c = 5
colluders can be identified and for a collusion size c = 8, 4.5
traitors are accused without observing any decoding failure in
3 · 103 tests.

C. Runtime Analysis

Single decoding can be efficiently implemented to compute
more than one million scores for a code of length m = 1024
per second. Its complexity is in O(m · n). Selecting the n(t)

most likely guilty users can be efficiently done with the max-
heap algorithm. Yet, it consumes a substantial parts of the
runtime for small m. The runtime contribution of score compu-
tation for the joint decoding stages is in O(m·p(t)) and clearly
depends on the size of the pruned list of suspects. However,
the computation of the score per subset is independent of the
subset size t thanks to the revolving door enumeration method
of the subsets5. Restricting p(t) and tmax keeps the joint
decoding approach computationally tractable. Better decoding
performance can be obtained using higher values at the cost
of a substantial increase in runtime. Experiments have shown
that even the moderate settings (p(t) ≈ 4.5 ·106 and tmax = 5)
achieve a considerable gain of the joint over the single decoder
for several collusion channels.

Thresholding accounts for more than half of the runtime in
the experimental setups investigated in this work. However,
this is not a serious issue for applications with a large user
base or when p(t) becomes large. Thresholding depends on

5In each step ϕ is updated by replacing one user’s codeword. See [27] for
details.

the subset size t because a large number of random codeword
combinations must be generated and because we seek lower
probability level in O(Pfp/n

t). Therefore, the complexity is
in O(m · t2 · log n) according to [25]. There are no more than
cmax such iteration with t ≤ cmax, so that the complexity of
the thresholding is in O(m · log n) and the global complexity
of our decoder stays in O(m · n).

More details about the runtime of our implementation are
given in [27]. Note that results have been obtained with a
single CPU core although a parallel implementation can be
easily achieved.

VI. CONCLUSION

Decoding fingerprinting codes in practice means to trace
guilty persons over a large set of users while having no
information about the size nor the strategy of the collusion.
This must be done reliably by guaranteeing a controlled
probability of false alarm.

Our decoder implements provably good concepts of infor-
mation theory (joint decoding, side information, linear decoder
for compound channels) and statistics (estimation of extreme
quantile of a rare event). Its extension to soft output decoding
is straightforward as it does not change the architecture. Very
competitive results have been obtained experimentally.

Since the proposed iterative method is neither just a single
decoder nor completely a joint decoder (it only considers
subsets over a short list of suspects), it is rather difficult to
find the best distribution for code construction and its worst
case attack. Experiments show that the interleaving attack is
indeed more dangerous than the worst-case attack against a
single decoder.
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APPENDIX

We prove that Ecmax(θc) = {θ̃k|k ≤ cmax,P(y|p, θ̃k) =
P(y|p,θc), ∀(y, p) ∈ {0, 1} × [0, 1]} is one sided w.r.t. some
p ∈ [0, 1] and thus w.r.t. the expectation over f if f(p) > 0
for at least one of these values of p. The collusion channels
of this set share the property that P(Y = 1|p, θ̃k) = q(p) ≥
0,∀p ∈ [0, 1]. From [22, Eq. (20)]:

P(Y = 1|X = 1, p, θ̃k) = q(p) + k−1(1− p)q′(p)(20)
P(Y = 1|X = 0, p, θ̃k) = q(p)− k−1pq′(p) (21)

Take (θ̃kA , θ̃kB ) ∈ Ecmax(θc)
2 s.t. kA < kB . We first show

that R(f, θ̃kA) ≥ R(f, θ̃kB ) so that θ̃cmax is a minimizer
of R(f,θ) over Ecmax(θc). Denote by (µ1, µ2) the following
conditional probability distributions:

µ1(y, x|p) = P(Y = y|p) = q(p)y(1− q(p))(1−y) (22)
µ2(y, x|p) = P(Y = y|X = x, p, θ̃kA). (23)

Then, P(Y |X, p, θ̃kB ) = (1 − λ)µ1(Y,X|p) + λµ2(Y,X|p),
∀p ∈ [0, 1], with λ = kA/kB < 1. The mutual information
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is a convex function of P(Y |X, p) for fixed P(X|p) so that,
once integrated over f(p), we have

R(f, θ̃kB ) ≤ (1− λ) · 0 + λ ·R(f, θ̃kA) ≤ R(f, θ̃kA). (24)

The second inequality turns to be an equality if only if
R(f, θ̃kA) = 0. It means that kA colluders succeed to nullify
the mutual information between X and Y for any p s.t.
f(p) > 0. Then, θ̃cmax is not a unique minimizer. This
can happen if kA is big enough, but it is impossible for
distributions s.t. f(p) > 0 for some p < 1/kA, see [22, Sec. 4].
This especially holds for fT .

We now prove that (8) holds ∀θ ∈ Ecmax(θc). This is
equivalent to

R(f, θ̃k)−D(P(Y,X|θ̃k)||P(Y,X|θ̃cmax))−R(f, θ̃cmax) ≥ 0,
(25)

where the LHS is of the form EP∼f [g(P )] with g(0) = g(1) =
0. After developing the expressions for 0 < p < 1, we find
that:

g(p) = (k−1 − c−1
max)p(1− p) ·(

q′(p) log

(
1 +

1− p
cmax

q′(p)
q(p)

)

+ q′(p) log

(
1 +

p

cmax

q′(p)
1− q(p)

)

− q′(p) log

(
1− 1− p

cmax

q′(p)
1− q(p)

)

− q′(p) log

(
1− p

cmax

q′(p)
q(p)

))
(26)

The four terms inside parenthesis are not negative because
x log(1 + γx) ≥ 0 for γ > 0 and x > −γ−1. Since k < cmax,
we obtain g(p) ≥ 0 and (8) after expectation over f .
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