
c© Springer Verlag. The copyright for this contribution is held by Springer Verlag. The original
publication is available at www.springerlink.com.



Towards Joint Tardos Decoding: The
‘Don Quixote’ Algorithm

Peter Meerwald? and Teddy Furon

INRIA Rennes Bretagne Atlantique,
Campus de Beaulieu, Rennes, France

{peter.meerwald, teddy.furon}@inria.fr

Abstract. ‘Don Quixote’ is a new accusation process for Tardos traitor
tracing codes which is, as far as we know, the first practical implementa-
tion of joint decoding. The first key idea is to iteratively prune the list of
potential colluders to keep the computational effort tractable while going
from single, to pair,. . . to t-subset joint decoding. At the same time, we
include users accused in previous iterations as side-information to build
a more discriminative test. The second idea, coming from the field of
mismatched decoders and compound channels, is to use a linear decoder
based on the worst case perceived collusion channel. The decoder is tested
under two accusation policies: to catch one colluder, or to catch as many
colluders as possible. The probability of false positive is controlled thanks
to a rare event estimator. We describe a fast implementation supporting
millions of users and compare our results with two recent fingerprinting
codes.
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1 Introduction

Traitor tracing or passive fingerprinting has witnessed a flurry of research efforts
since the invention of the now well-celebrated Tardos codes [13]. The codes of
G. Tardos are optimal in the sense that the code length m necessary to fulfill the
following requirements (n users, c colluders, probability of accusing an innocent
below Pfp) has the minimum scaling in O(c2 log nP−1

fp ). The accusation process
(more precisely its symmetric version proposed by B. Skoric et al. [12]) is based
on a scoring per user, so-called accusation sum, whose statistics only depend on
the collusion size c, but not on the collusion attack (e.g. minority vote, majority
vote, interleaving, etc). The alternative accusation strategy has also been tested:
the accusation process estimates the collusion attack in order to resort to a
matched scoring which is more discriminative [10].

However, these two previous strategies pertain to the same family: the single
decoders, i.e. processes computing a score per user independently of the other
? Funded by national project ANR MEDIEVALS ANR-07-AM-005.



2 Peter Meerwald and Teddy Furon

codewords and finally accusing users whose score is above a given threshold. An-
other family is that of the joint decoders, i.e. processes computing a score per
subset of t users. As far as we know, K. Nuida was the first to propose and exper-
iment some sort of a joint decoder [7]. The accusation algorithm only works for
very limited collusion size and it doesn’t scale well when the number of users n is
more than some hundreds. Indeed, so far joint decoders are of particular interest
only in theoretical analysis of fingerprinting. P. Moulin [6], and, independently,
E. Amiri and G. Tardos [2] show that the capacity of fingerprinting is given by
a maxmin game whose pay-off is the mutual information I(Y ;Xc|P ) · c−1 where
Y is a r.v. representing the symbol decoded from the pirated copy, P is the r.v.
denoting the secret of the code, and Xc = {Xj1 , . . . , Xjc} is the set of the c
symbols assigned to the colluders.

Both papers proposed a joint decoder based on the empirical mutual infor-
mation computed on the joint type of the observations (y,ϕ,p) where ϕ =∑t
k=1 xjk (termed accumulated codeword in the sequel) for the t-subset of users

{j1, . . . , jt}, t ≤ c. Note that these papers are theoretical studies and that they
do not contain any experiment. A practical implementation is hampered by two
drawbacks: this is not a linear decoder [1, Def. 1] and the complexity is propor-
tional to

(
n
t

)
, the number of t-subsets, i.e. in O(nt). In the quest of practical

implementations of this theoretical decoder, ‘Don Quixote’ is a milestone based
on two key ideas: (i) there is no need to compute a score for all t-subsets if we
can invent a mechanism preselecting a small number of suspects who are the
most likely guilty users; (ii) a linear decoder allowing a fast implementation of
the scoring function.

These ideas are indeed not easily translated into practical algorithms. In
real life scenarios such as Video-on-Demand portals, m bits are in copies of a
movie, which are afterwards distributed to n clients (the parameters (m,n) vary
from one Work to another). The collusion size c is neither known at the code
construction nor at the accusation side. Therefore, one never knows how the rate
m−1 log n compares to the theoretical capacity which depends on c. However,
for (i), we need to identify suspects whenever it is possible (i.e. when the rate
is below capacity) while guaranteeing a probability of false alarm Pfp. Efficient
linear decoders pertaining to (ii) are based on likelihood ratio, which can’t be
computed in practice since we do not know the collusion strategy. Fortunately,
information theorist have recently come up with a very elegant solution providing
universal linear decoders performing well (i.e. capacity achieving) over a family of
channels while ignoring the active channel [1]. This theory of compound channel
fits very well with the traitor tracing framework.

2 Structure of the Don Quixote algorithm

Before detailing the structure of the proposed decoder, let us briefly remind
the construction of a Tardos code. Let (m,n) be the length and the size of the
code. First, draw randomly m variables p = (p(1), . . . , p(m))T s.t. p i.i.d.∼ f(p).
Then draw randomly and independently the elements of the j-th codeword xj =
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Fig. 1. Overview of the iterative, side-informed joint Tardos fingerprint decoder.

(xj(1), . . . , xj(m)) s.t. P(xj(i) = 1) = p(i). We chose the pdf f(p) recommended
by G. Tardos.

The iterative architecture of our joint decoder is sketched in Figure 1. For
sake of clarity, we postpone details about the computation of scores and the
thresholding (shaded blocks of Fig. 1) to the next sections. The decoder can be
employed in catch-one and catch-many traitor tracing scenarios [14]. In the first
case, our iterative decoder simply stops after the first accusation; in the later
case, the decoder stops when cmax accusations have been made or when no further
accusations can safely be made using the tmax-subset decoder (2 ≤ tmax ≤ cmax).

2.1 Iterative, joint decoding

The theoretical papers [2, 6] tell us that scores computed from subsets of t users
are more discriminative as t increases, provided that t ≤ c, c being the real
collusion size. Discriminative means that scores of subsets of innocent users are
statistically more separated from scores for guilty users – the Kullback-Leibler
distance between their pdf is significantly higher. Our point is that, indeed,
hybrid subsets containing κ colluders and t − κ innocents have also greater
scores in expectation as κ increases. Therefore, by pruning out users involved in
subsets of small score, we are likely maintaining a list of suspects with a good
number of colluders.

At the beginning, X is the set of n codewords or users. The t-th iteration of
our algorithm takes a set of codewords X (t) ⊆ X and computes the scores for
each subset of t codewords from X (t). Denote n(t) = |X (t)|, there are then

(
n(t)

t

)
=

O((n(t))t) scores to be computed. For instance, in the first iteration, X (1) = X
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Subset size (t) 2 3 4 5 6 7 8

Users suspected (p(t)) 3 000 300 103 58 41 33 29

Computed subsets
`

p(t)

t

´
4 498 500 4 455 100 4 421 275 4 582 116 4 496 388 4 272 048 4 292 145

Total subsets
`

n
t

´ ∼ 1011 ∼ 1017 ∼ 1022 ∼ 1027 ∼ 1033 ∼ 1038 ∼ 1043

Table 1. Maximal number p(t) of suspected users input to the joint t-subset decoder
versus total number of subsets without pruning out users for n = 106.

and the scores are just the n(1) = n outputs of a single decoder. We assume
to have the computation power scaling as O(n) such that this first iteration is
feasible. The key idea is to gradually reduce n(t) such that the computation of
scores remains tractable. For instance, if n(t) = O(n1/t) then the t-th iteration
relies on a O(n) scores computation just like the first iteration.

During each iteration, some users might be deemed guilty (cf. Section 2.4)
and added to the side information (cf. Section 3.1).

The main operation is to construct the subset X (t+1) of suspects to be passed
to the following iteration. Suspects are users so far neither accused nor declared
as innocent. The users get ranked (with guilty users most likely placed in top
positions) and the first n(t+1) users compose the set X (t+1) while the others
are discarded (i.e. considered as innocents). The (t + 1)-th iteration starts by
computing scores for subset of size t+ 1 from X (t+1), see Section 3.3 for details.
For t > 1, the size n(t+1) ≤ p(t+1) where p(t+1) is the upper size and runtime
limit that our computer can handle. Table 1 gives values s.t. the number of
subsets is kept approximately constant at about 4 500 000. The choices for p(t)

are presumably not optimal – other values may allow a better distribution of
resources – but a necessaary trade-off between the computational effort and the
decoding performance.

2.2 Pruning out

First iteration. The first iteration computes a score per user: the bigger the
score, the more likely the user is a colluder. If some conditions are met, users with
the highest scores might be accused (cf. Section 2.4). Users are ranked according
to their score in decreasing order. The first n(2) ≤ p(2) users are included in the
set X (2).
t-th iteration, t > 1. Once the scores for all t-subsets are computed, they are
ranked in decreasing order. Again, if accusations can be safely made, some users
from the first-ranked subset are deemed guilty. The others are included in set
X (t+1). The algorithm browses down the sorted list of subsets and includes their
users in X (t+1) if they have not been already included and if they have not been
accused. This stops when n(t+1) = p(t+1) (the users are listed in arbitrary order
in a t-subset, therefore for the last subset under suspicion, the last users might
be relaxed while the first are suspected) or when the last subset of the sorted
list has been analyzed.



Towards Joint Tardos Decoding 5

 1

 10

 100

 1000

 10000

Single
Decoder

Pair
Decoder

Triple
Decoder

Quadruple
Decoder

S
u

s
p

e
c
t 

L
is

ts

 

3000

300

103

Accusation

Pruned

Pruned

Pruned

Example 1
Example 2
Example 3

Fig. 2. Examples of the iterative decoding and pruning process for c = 4.

Figure 2 illustrates the iterative decoding and pruning process where the
positions of the colluders are marked with different symbols in three examples.
The first stage denoted single decoder represents the list of suspects/users ranked
according to their accusation scores after single decoding. Since no user’s score
is above the accusation threshold, the process continues in the following itera-
tion. Only suspects ranked within the first 3 000 positions are passed to the pair
decoder and the illustration shows the suspect list ranked after computing the
scores of user pairs. Users within a pair are ordered according to the criterion
defined in Section 2.4. After pruning – now the list is limited to 300 positions –
the remaining suspects are fed to the triple decoder. Note that the positions of
the colluders generally move towards the top of the list (the bottom of the illus-
tration) with each iteration as shown in the examples. This observation allows
us to reduce the suspect list at each iteration while likely retaining the collud-
ers. On the other hand, colluders may be discarded, as visualized in Examples 2
& 3. Pruning is the necessary trade-off to reduce the computational burden of
the decoder. The users of the subset whose score is the highest and above the
threshold are framed in the illustration. Their top-ranked user is accused and
added to the side information.

2.3 Enumerating all t-subsets

The joint t-subset decoder has to enumerate all
(
n(t)

t

)
subsets and compute the

corresponding scores. One way to implement the generation of all t-subsets of
X (t) is the revolving door algorithm1 [9] which changes exactly one element of
the subset at each enumeration step.

In particular, the score of the k-th t-subset tk only depends on the accumu-
lated codewords ϕk =

∑
j`∈tk

xj` . The revolving door is initialized with the first

1 Termed algorithm R by Knuth [5, Chap. 7.2.1.3].
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Fig. 3. Illustration of the revolving door algorithm for t = 4.

subset t1 = {j1, . . . , jt} whose accumulated codeword is ϕ1. At each step, the
algorithm replaces one user j† ∈ tk with a new user j? and computes the updated
code sequence relating to the combination tk+1 as ϕk+1 = ϕk−xj† +xj? . Fig. 3
provides an illustration. The benefit of the resolving door is that the computa-
tional effort to generate a t-subset and its associated accumulated codeword is
independent of size t.

2.4 Accusation

Let t� denote the subset with the highest score. We accuse one user of the t-
subset t�, only if its score is greater than a threshold: st� > τ . The computation
of threshold τ is explained hereafter in Section 3.4. The thresholding operation
ensures that subsets with score above τ contain at least one colluder with a very
high probability. Assume now that this condition is met. Obviously, for the first
iteration, t = 1 and the single user in subset t� is accused. For t > 1, we propose
the following method. In order to identify and accuse the most probable traitor
in t�, we record for each user j ∈ X (t) the subset leading to that user’s highest
score:

t�j = arg max
t

{st | j ∈ t} . (1)

Next, we count how often each user jk ∈ t� appears in the recorded subsets
{t�j}j∈X (t) and denote this value ajk . Finally, we accuse the user j� appearing
most often:

j� = arg max
j∈t�

aj . (2)

3 Technical details

This section describes four remaining operations: side-information, inferences
about the collusion model, scoring, and the thresholding.
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3.1 Side Information

The knowledge of the identity of some colluders is beneficial in two operations:
derivation of better inferences about the collusion channel, and derivation of
more discriminative scores. It is well known in estimation and detection theory
that conditioning (i.e. to side-inform with prior knowledge) is always helpful
on average. Denote by XSI the set of accused users (subscript SI denotes Side
Information). At the beginning, XSI = ∅. If a user is accused as described in
Section 2.4, then he is removed from X (t) and included into XSI. If nobody is
accused, then iteration (t + 1) starts with X (t+1). If someone is accused, then
iteration t is not over. Since new side information is available, we can benefit from
it right away. A new inference process is run with the new XSI, and the scores
for t-subsets are computed again with the new inference, the new conditioning
XSI and over the new set X (t). The t-th iteration breaks this loop whenever no
additional colluder is identified.

3.2 Inferences about the collusion model

A long tradition in Tardos traitor tracing codes is to model the attack led
by c colluders by a vector θ(c) = (θ(c)0 , θ

(c)
1 , . . . , θ

(c)
c ) where θ

(c)
σ = P(yi =

1|∑c
k=1 xjk(i) = σ) [10]. In words, when the colluders have σ symbols ‘1’ over c,

they flip a coin of bias θ(c)σ to decide whether they put symbol ‘1’ or a ‘0’ in the
pirated sequence. The marking assumption holds if θ(c)0 = 1−θ(c)c = 0. The main
difficulty is that θ(c) cannot be estimated from the observations (y,p) since, for
any integer c′ > c there exists θ(c′) s.t. P(y = 1|p,θ(c′)) = P(y = 1|p,θ(c)),∀p ∈
(0, 1). We call θ(c′) the equivalent attack of θ(c) of size c′. The parameter of the
model cannot be identified except if we were knowing the collusion size c. We
chose the maximum log-likelihood estimator (MLE) for a given ĉ:

θ̂
(ĉ)

= arg max
θ∈[0,1]ĉ+1 s.t. θ(0)(ĉ)=0,θ(ĉ)(ĉ)=1

log P(y|p,XSI,θ), (3)

with P(y|p,θ) =
∏m
i=1 P(y(i)|p(i),XSI,θ). Section 3.3 details the computation of

this likelihood. However, due to the lack of identifiability, this approach cannot

estimate c, but only θ̂
(ĉ)

for a given ĉ. For a long enough code, the MLE accu-
rately finds θ(c) if ĉ = c, or its equivalent attack of size ĉ if ĉ > c; yet there is no
way to distinguish the two cases.

We have experimentally noticed that scores based on θ̂
(ĉ)

are only slightly
less powerful than the optimal ones (based on the real θ(c)) provided that ĉ is
bigger than the real c. Therefore, we assume that c < cmax and set ĉ = cmax. We
estimate not the real collusion parameter but its equivalent attack of size cmax

(this is why we rather speak of collusion inference than collusion estimation).
The theory of compound channel justifies this approach. Suppose c < cmax

and consider the family of collusions {θ(c′)}cmax

c′=c gathering the real collusion
θ(c) and its equivalent attacks of size from c + 1 to cmax. It can be shown2

2 The journal version of this paper contains the proof.
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that this family is a one-sided compound channel [1, Def. 3, Eq.(8)]. Therefore
by [1, Lemma 5], we know that a good (i.e. information theorists say capacity
achieving) linear decoder is the maximum likelihood decoder tuned on the worst
element of the family, which is in our case the collusion θ(cmax).

3.3 Score computation

The score is just the log-likelihood ratio tuned on the inference θ̂
(cmax)

. We give
its most generic expression for a subset t of t users and side information XSI

containing nSI codewords of already accused users. Denote by ρ and ϕ the ac-
cumulated codewords of XSI and t: ρ =

∑
j∈XSI

xj and ϕ =
∑
j∈t xj . We have

∀i ∈ [m], 0 ≤ ρ(i) ≤ nSI and 0 ≤ ϕ(i) ≤ t.
DenoteH0 the hypothesis where subset t is composed of innocent users. Then

y is statistically independent from its codewords which in turn only depend on
p: H0 : P(y, {xj}j∈t|p, θ̂(cmax)

,XSI) = P(y|p,θ,XSI)P({xj}j∈t|p) (4)

Denote H1 the alternative where subset t is composed of colluders. Then y is
statistically dependent of its codewords:

H1 : P(y, {xj}j∈t|p, θ̂(cmax)
,XSI) = P(y|{xj}j∈t,p, θ̂(cmax)

,XSI)P({xj}j∈t|p)
(5)

All these sequences are composed of independent r.v. thanks to the code con-
struction and the memoryless nature of the collusion. Moreover, the collusion
only depends on the number of symbol ‘1’ present in the codewords of a sub-
set, i.e. the accumulated codeword. Therefore, the score of subset t is just the
log-ratio of the two previous probability expressions which simplifies to:

s =
∑
y(i)=1

log
α(i)
β(i)

+
∑
y(i)=0

log
1− α(i)
1− β(i)

, (6)

with the following expressions:

α(i) = P(y = 1|(ϕ(i), t), (ρ(i), nSI), p(i), θ̂
(cmax)

) = P (ϕ(i) + ρ(i), t+ nSI, p(i), θ̂
(cmax)

)

β(i) = P(y = 1|(ρ(i), nSI), p(i), θ̂
(cmax)

) = P (ρ(i), nSI, p(i), θ̂
(cmax)

)

and function P (·) is defined by:

P (u, v, p, θ̂
(cmax)

) =
cmax−v+u∑
σ=u

θ̂(σ)(cmax)

(
cmax − v
σ − u

)
pσ−u(1− p)cmax−v−σ+u (7)

This expression is compact, involved, but very generic. In words, it gives the
probability that y = 1 knowing that the symbol ‘1’ has been distributed to users

with probability p, the collusion model θ̂
(cmax)

, and the identity of v colluders
who have u symbol ‘1’ and v − u symbol ‘0’ at this index.
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The inference on the collusion model searches for a θ(cmax) maximizing the
following likelihood:

log P(y|p,θ,XSI) =
∑
y(i)=1

log βi +
∑
y(i)=0

log 1− βi. (8)

In the first iteration, a single decoder is used: t = 1 and ϕ = xj for user j.
If nobody has been deemed guilty so far, then ρ(i) = nSI = 0, ∀i ∈ [m]. The
t-th iteration works on subsets of size t. However, our scoring is only defined if
t+nSI ≤ cmax. Therefore, for a given size of side-information, we cannot conceive
score for subset of size bigger than tmax = cmax − nSI. This implies that in the
catch-all scenario, the maximal number of iterations depends on how fast XSI

grows.

3.4 Thresholding

The issue here is the translation of the scores into probabilities. At a given itera-
tion and a given state of the side information, all the subset scores are computed
in the same deterministic way. The idea is to generate subsets composed of new
codewords and to compute their scores. We are then sure to observe scores of
subset of innocents since these codewords have not been used to forge y. With
a Monte Carlo simulation, we can estimate the probability that the score of an
innocent subset is bigger than threshold τ , or the other way around, the thresh-
old τ such that this probability is below ε. This approach works whatever the
way scores are computed.

In the first iteration, the subset is just a singleton, the codeword of one user,
and that user is either innocent either guilty. Therefore, users whose scores are
above the threshold are accused and included in XSI. Denote Pfp the total proba-
bility of false positive, i.e. accusing at least one innocent, and ε the probability of
wrongly accusing a given innocent user. Since the codewords are i.i.d. and c� n,
we have Pfp = 1 − (1 − ε)n−c ≈ nε. Pfp is stipulated in the requirements and
we fix ε = Pfp/n. In the t-th iteration (t > 1), the same Monte Carlo simulation
over subsets of size t is run. It estimates the threshold s.t. the score of a subset
of innocents is greater than τ only with a probability ε. In other words, scores
above τ indicate subset with at least one colluder. A further analysis identifies
and accuses the most likely one among the t users (cf. Section 2.4). Again, ε
should be set as low as Pfp/(n

t) to control the total probability of false alarm.
The only problem is that a large n implies a very low probability ε for both

cases (t = 1 and t > 1), and a Monte Carlo simulation is then bad at estimating
accurately threshold τ . This is the reason why we implemented an numerical
estimator based on rare event analysis [3].

4 Experimental results

The Tardos decoder is implemented in C++ and compiled using GNU g++
version 4.4.5 on a x86 Ubuntu/Linux 10.10 system with -O3 -march=native
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-fomit-frame-pointer -mfpmath=sse. The estimation of θ uses approximate
vectorized single-precision floating point arithmetic and Shigeo Mitsunari’s fast
approximative log() function3; the remaining components are implemented with
double-precision. Pseudo-random numbers are generated with the SIMD-oriented
Fast Mersenne Twister (dSFMT)4 [11].

All runtime results are reported for a single core of a x86 Intel Core2 CPU
(E6700) clocked at 2.6 GHz with 2 GB of memory running Ubuntu/Linux 10.10.

The joint decoder receives lists of suspects whose length are upper bounded
by values of Table 1.

4.1 Catch-one scenario

Here the aim is to catch the most like colluder – this is the tracing scenario most
commonly considered in the literature. We compare our single and joint decoder
performance against the results provided by Nuida et al. [8]. These authors
assumed that c is known for the code construction and the decoding. For a fair
comparison, our decoder uses this assumption: cmax = c.

The experimental setup considers n = 1 000 000 users and c ∈ {2, 3, 4, 6, 8}
colluders performing worst-case attack [4]. In Fig. 4, we plot the empirical prob-
ability of error Pe = Pfp + Pfn obtained by running at least 10 000 experiments
for each setting versus the code length m. The false-positive error is controlled
by thresholding based on rare-event simulation, Pfp = 10−3. For shorter code
length, almost exclusively false-negative errors occur. As expected, we observe
a huge decoding performance improvement for the joint decoder over the sin-
gle decoder. The advantage is much more pronounced when a larger number of
colluders collaborates.

Table 2 compares the code length to obtain an error rate of Pe = Pfp +
Pfn = 10−3 for our proposed Tardos decoders with the results reported by
Nuida et al. [8] under marking assumption. While the joint decoder only marginally
improves the decoding performance for two colluders, it almost halves the code
length for four colluders.

The column hypothetical of Table 2 reports simulation results of a joint de-
coder that knows the identity of the colluders and just computes scoring and
thresholding for the colluders. The simulation allows to judge the performance
gap between the proposed joint decoder operating on a pruned list of suspects
(potentially discarding colluders) and the unconstrained joint decoder.

Figure 5 (a) shows in which iteration the first out of c = 4 colluders is
successfully identified for varying code length, Pfp = 10−3. The benefit of joint
decoding is best seen for intermediate code lengths between m = 352 and m =
864. For longer codes the single decoder is sufficient to make the first accusation.
Figure 5 (b) illustrates the average runtime in seconds for score computation and

3 Available from http://homepage1.nifty.com/herumi/soft/fmath.html, version of
February 16, 2010.

4 Available from http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/, ver-
sion 2.1
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Colluders (c) Nuida et al. [8]
Proposed Decoder

Hypothetical
Single Joint

2 253 ∼ 344 ∼ 232 ∼ 232

3 877 ∼ 752 ∼ 512 ∼ 400

4 1454 ∼ 1120 ∼ 784 ∼ 720

6 3640 ∼ 2304 ∼ 1568 ∼ 1440

8 6815 ∼ 3712 ∼ 2688 ∼ 2432

Table 2. Code length comparison for n = 106, worst-case attack, Pe = 10−3.

thresholding for the single and joint decoders in that scenario. For short code
length all decoding stages (up to t = 4) have to be run – often unsuccessfully.
A significant amount of the execution time is spent in thresholding relative to
scoring for the number of computed subsets,

(
p(t)

t

) ∼ 4 500 000.

In Fig. 6 we plot the probability of correctly identifying one colluder and the
iteration number leading to this accusation. This time, we vary the number of
score computations performed in each iteration from 105 to 109 by controlling the
suspect list sizes {p(t)}. The rightmost results relate to the hypothetical joint de-
coder which does not have to enumerate all combinations but just computes the
accusation scores for the colluders. Surprisingly, a significant difference in accu-
sation performance can only be observed at the last iteration (i.e. the quadruple
decoder). An equal weighting of the computation resources over the iterations
is certainly not optimal. This experiment seems to conclude that the empha-
sis should be put on the last iterations. Yet, it is not clear what the optimal
resources distribution is.
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Fig. 5. Iteration making the first accusation (a), and average runtime in seconds for
score computation and thresholding for the single and joint decoders (b); n = 106,
c = 4, worst-case attack.

4.2 Catch-many scenario

We now consider the more realistic case where the code length m is fixed. The
only assumption at the decoder side is that c ≤ cmax. The aim is to identify
as many colluders as possible. Figure 7 shows the average number of identified
colluders by the symmetric Tardos single decoder, our non-iterated single, the
iterative side-informed single and our iterative side-informed joint decoders. The
experimental setup considers n = 1 000 000 users, code length m = 2048, and
worst-case collusion attack carried out by between two and eight colluders. The
global probability of false positive is fixed to Pfp = 10−3. The performance
advantage of the more sophisticated decoders is evident. The joint decoder has
a good chance to catch most of the colluders even when c = 8.

In Fig. 8 (a) we analyse the average number of accusations made per itera-
tion (same setup as above). Figure 8 (b) shows the average runtime in seconds
accounted for score computation and thresholding of the iterative single and
joint decoders. The longest runtimes are observed for c = 2 and c = 8. In the
first case, both colluders are caught by the single decoder, yet the remaining
iterations up to the 6-subset decoder have to be run since cmax = 8.

4.3 Runtime performance analysis

Table 3 provides average runtime results in seconds split up per decoder compo-
nent for two traitor tracing scenarios with n = 10 000 and n = 1 000 000 users.
The runtime for the collusion model estimation and refinement is negligible and
independent of the number of users, O(c ·m).

Single decoding can be efficiently implemented to compute more than ten
million scores for a code of length m = 320 per second. The complexity is
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Fig. 7. Average identified traitors for different number of colluders performing worst-
case attack; n = 106, m = 2048, Pfp = 10−3, cmax = 8.

O(n·m+n·log n). The second term relates to sorting the results which consumes
a substantial parts of the runtime for small m. The runtime contribution of
the joint decoding stage clearly depends on the size of pruned list of suspects,
O(m · p) and is independent of the subset size t thanks to the revolving door
enumeration method. Our implementation performs almost two million joint
score computations per second.

Thresholding accounts for more than half of the runtime in the experimental
setups investigated in this work. However, this is not a serious issue for appli-
cations with a large user base or when p becomes large. Thresholding depends
on the subset size t because a large number of random codeword combinations
must be generated and because we seek lower probability level in O(Pfp/n

t).
Therefore, the complexity is in O(m · t2 · log(n/Pfp)).

Note that all runtime results have been obtained with single CPU core al-
though a parallel implementation can be easily achieved. The score computation
(Eq. 6) has been implemented using pre-computed weights which reduce the
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Fig. 8. Average number of accusations per iteration (a); average runtime in seconds
for score computation and thresholding for the single and joint decoders (b); n = 106,
m = 2048, worst-case attack, Pfp = 10−3.

computation effort to a single table lookup for each codeword symbol and the
accumulation of the values.

5 Conclusion

‘Don Quixote’ is built on three main pillars. Joint decoding is made affordable
by an iterative algorithm pruning out users that are likely not guilty. The theory
of compound channel gives fast linear and discriminative scores. The rare event
simulation guarantees the reliability of the accusation by controlling the prob-
ability of false positive. The collusion size and process are nuisance parameters
that are neither needed for the construction of the code, nor at the accusation
side. The decoding performance is at the forefront of the state of the art.
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